用户名: 密码: 验证码:
多履带行走装置关键设计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,斗轮挖掘机连续开采工艺成套设备在许多大型褐煤与金属露天矿等工程的应用,显示出效率高、建设周期短,成本低的优越性。斗轮挖掘机的机型也逐渐向高生产能力、大型化方向发展。多履带行走装置担负着大型斗轮挖掘机等重型装备的承重、移动与转向行驶等重要工作,其性能和可靠性直接影响整机的工作安全性和工作效率。开发大型多履带斗轮挖掘机以满足煤炭行业和冶金行业资源开采需求是目前我国矿山机械行业面临的主要任务之一。本文结合产学研合作项目对多履带行走装置的转向行驶理论、主要设计参数确定方法、虚拟样机仿真、多履带行走装置行驶试验以及多履带行走装置设计计算平台开发等关键设计技术进行了研究。
     本文在查阅国内外相关文献和与国内外相关企业交流基础上,介绍了多履带行走装置的结构特点、转向方式及转向机构、驱动装置及控制方法,综述了多履带行走装置的理论研究现状和发展趋势。
     转向时履带的受力分析是研究多履带行走装置行驶理论的基础。本文对多履带行走装置转向时各条履带的受力进行了研究,考虑了履带的宽度、履带接地面瞬时转动中心的纵向、横向偏移等因素,并分析了各种因素对履带受力的影响。提出了适用于各种多履带行走装置稳态转向分析的数学模型及求解方法。以正三支点六履带行走装置为例,对多履带行走装置非稳态转向特性进行了分析,提出了非稳态转向运动动力学模型及数值求解方法。
     基于多履带行走装置行驶理论,提出了通用的多履带行走装置的行驶阻力、转向机构拉力和各条履带驱动功率的计算公式,提出了关键工作部件主要参数的确定方法。基于理想柔性链假设,建立了悬垂履带链的数学模型,推导出离散履带链节的悬垂量计算公式和稳态履带链环的张紧力计算公式。针对影响多履带行走装置行驶安全的脱链问题,提出用于评判脱链风险的指标。
     虚拟样机技术是研究多履带行走装置的重要工具,论文基于多体动力学软件RecurDyn建立了多履带行走装置虚拟样机,以三支点六履带行走装置为例进行了典型工况仿真性能试验,对多履带行走装置的工作性能进行预测。
     理论分析方法和虚拟样机仿真方法均能够预测多履带行走装置的行驶性能,而理论分析和仿真结果的正确性需通过试验进行验证。本文针对目前国内最大的地面行走机械—应用于元宝山露天煤矿的六履带斗轮挖掘机,进行了直线行驶和转向行驶工况下履带驱动电机功率测试,同时将测试结果和理论计算结果及虚拟样机仿真结果进行了对比,验证了理论计算和虚拟样机仿真结果的正确。
     以多履带行驶理论为基础,基于MATLAB/GUI技术,面向多履带行走装置设计工程师开发了多履带行走装置设计计算平台,包括:多履带行走装置转向性能通用计算模块、支重轮辅助设计模块、球铰辅助设计模块和履带转向机构计算等模块,计算多履带行走装置的工作参数和预测其不同工况下的工作性能。
     本文对多履带行走装置转向时履带受力、稳态转向特性、非稳态转向特性、虚拟样机仿真及多履带行走装置设计计算平台的开发为多履带走行装置的设计提供了先进的分析方法和软件工具,为我国自主研制和开发多履带行走装置提供了科学的依据。
In recent years, the engineering applications of continuous mining complete set of equipments including bucket wheel excavators, such as in the large lignite and metal open-pit mine, show the advantages of high efficiency, short construction period and low cost. The bucket wheel excavators move toward high production capacity and large-scale direction. The multi-crawler devices are used to carry the huge weight of large bucket wheel excavators, and to drive and steer the entire machine. Their performance and reliability directly influence work efficiency and operational safety of the bucket wheel excavators. Therefore, developing for large multi-crawler bucket wheel excavators is one of the main tasks in mining machinery industry at present. Combining with the project of research cooperation, the key design technologies of multi-crawler devices such as driving theory, determination methods of the main parameters, virtual prototype simulation, driving experiment and design calculation platform development have been studied in this paper.
     This paper comprehensively analyzed the structure features, steering method and steering mechanism, driving device and control method of the multi-crawler. Additionally, the theoretical study and the development trend of large-scale crawler are also reviewed.
     Stress analysis of crawler during steering is the basis of studying the theory of multi-crawler device. In this paper, the stress of various crawlers when multi-crawler device on steering has been studied, considering factors like crawler width, longitudinal and lateral deviations of the rotation center in the instant of the crawler contacts to the ground. And the influence of various factors on crawler stress has been analyzed. Mathematical model and the solution method of steady steering analysis suitable for all kinds of multi-crawler devices have been putted forward. Taking three-crawler device as an example, the non-steady steering property has been analyzed, and the dynamic model and the numerical solution method of non-steady steering movement have been proposed.
     Based on the steering theory of multi-crawler, the commonly used calculation formulas of turning resistance, theoretical turning radius, sweep turning radius and the turning radius of each of the tracks on multi- crawler vehicles are provided. The main calculation methods of the critical parts are also proposed. Using the classical Newtonian mechanics, the mathematical equations of hanging chains for the ideal flexible chain have been deduced, based on which the calculation formula of the discrete track-chain is studied. And then, the calculation formula of the tension force of the steady track chain is deduced. According to the issues on disconnection of the chain that will affect the safety of the vehicle, four quantifiable indicators for judging the risk of disconnection have been put forward.
     A digital prototype of multi-crawler device is established and virtual tests on the performance of the three-point-six-track under multiple operating conditions were simulated. Both of the numerical simulation method and the virtual prototype simulation method can be employed to forecast the driving performance of the multi-crawler. The accuracy of simulation results should be verified by experiments, and according to the largest six-track bucket wheel excavator operated in Yuanbaoshan mine of China, the driving parameters were tested. The test results and virtual prototype simulation were compared to verify whether the numerical simulation and virtual prototype simulation results are reasonable or not.
     This paper explored the design and computation platform of the multi-crawler. It includes the following contents concretely: (1) Based on Solidworks (3D modeling software) and MATLAB, the digital design platform of the three-point multi-crawler was researched and developed; (2) Based on MATLAB/GUI, the design and computation platform of three-point-six-track was established. Finally, the calculation module of steering was verified by the lateral force, power and turning speed. And also the interplay relationship among pressure and force of supporting wheels, the ball hinge force and other design parameters were analyzed comprehensively.
     In short, this thesis obtained the important progress for the large-scale multi-crawler research in the force imposed on the crawler device when steering, steering performance analysis in steady and nonsteady cases, virtual prototyping simulation and development of the design platform. It not only provided the advanced analysis methods and software, but also provided the scientific basis of independent research and development of a large-scale crawler device for our country. So it achieved significant the theoretical value and the practical application.
引文
[1] Durst W, Vogt W.斗轮挖掘机[M].天津:天津科技翻译出版公司, 1992.
    [2]邱丽娟,余群.地面-车辆系统力学中的有限元法[M].北京:机械工业出版社, 1989.
    [3]张克建.车辆地面力学[M].北京:国防工业出版社, 2002.
    [4]陈秉聪.土壤-车辆系统力学[M].北京:中国农业机械出版社, 1987.
    [5] Bekker M G.地面-车辆系统导论[M].北京:机械工业出版社, 1978.
    [6] Kogure K. External motion resistance caused by rut sinkage of tracked vehicle[J]. Journal of Terramechanics, 1976, 13: 1-14.
    [7] Janosi Z, Hanamoto B. The analytical determination of the drawbar pull as a function of slip for tracked vehicles in deformable soils[J]. Proceedings of the 1st International Conference on the Mechanics of Soil-Vehicle Systems. Italy: Torino-Saint Vincent, 1961: 707-23.
    [8] Kitano M, Kuma M. Analysis of Horizontal Plane Motion of Tracked Vehicles[J]. Journal of Terramechanics, 1977, 14: 211-225.
    [9] Kacigin V V, Guskov V V. The basic of tractor performance theory[J]. Journal of Terramechanics, 1968, 5: 43-66.
    [10] Wong J Y. Introduction To Terramechanics[J]. Journal of Terramechanics, 1983. 21: 5-17.
    [11] Wong J Y. On The Study Of Wheel-Soil Interaction[J]. Journal of Terramechanics, 1984. 21: 117-131.
    [12] Van Wyk D J, Spoelstra K J, KLerk J H. Mathematical modelling of the interaction between a tracked vehicle and the terrain[J]. Applied Mathematical Modelling, 1996, 20: 838-847.
    [13] Yamakawa J, Watanabe K. A method of optimal wheel torque determination for independent wheel drive vehicle[J]. Journal of Terramechanics. 2006, 43: 269-285.
    [14] Kun L, Paul A, Heidi H, et al. Influence of turning radius on wheeled military vehicle induced rut formation[J]. Journal of Terramechanics, 2009, 46: 49-55.
    [15] Kogure K, Kudo T. Shearing properties of sand under a repeated loading representing the ground pressure distribution of a tracked vehicle[J]. Journal of Terramechanics, 1977, 14: 237-248.
    [16] Falk A. Advanced mobility in difficult terrain[J]. Journal of Terramechanics, 2004, 41: 101-111.
    [17] George K. An evaluation of the concept of rolling resistance[J]. Journal of Terramechanics, 1999, 36: 159-166.
    [18] George K. A kinematic model for the determination of the peripheral force[J]. Journal of Terramechanics, 1997, 34: 261-268.
    [19] Nguyen V N, Matsuo T, Inaba S, et al. Experimental analysis of vertical soil reaction and soil stress distribution under off-road tires[J]. Journal of Terramechanics, 2008, 45: 25-44.
    [20] Keller T, Trautner A, Arvidsson J. Stress distribution and soil displacement under and rubber-tracked and a wheeled tractor during ploughing both on-land and within furrows[J]. Soil & Tillage Research, 2002, 68: 39-47.
    [21] Shmulevich I, Osetinskya A. Traction performance of a pushed/pulled drive wheel[J]. Journal of Terramechanics, 2003, 40: 33-50.
    [22] Heliodoro C, Pilar L, Valeriano M. Tractor_PT: A traction prediction software for agricultural tractors[J]. Computers and electronics in agriculture, 2008, 60: 289-295.
    [23] Ravi G, Ralph A. A device for the in situ determination of soil deformation modulus[J]. Journal of Terramechanics, 1995, 32: 199-204.
    [24] Khot L R, Salokhe V M, Jayasuriya H P W, et al. Experimental validation of distinct element simulation for dynamic wheel-soil interaction[J]. Journal of Terramechanics, 2007, 44: 429-437.
    [25] Li Q. Modeling of terrain impact caused by off-road vehicles[D]. Knoxville, Tennessee, US: The University of Tennessee, 2006.
    [26] Li Q, Ayers P D, Anderson A B. Modeling of terrain impact caused by tracked vehicles[J]. Journal of Terramechanics, 2007, 44: 395-410.
    [27] Tiwari V K, Pandey K P, Pranav P K. A review on traction prediction equations[J]. Journal of Terramechanics, 2010, 47: 191-199.
    [28] Wong J Y. On The Characterization Of The Shear Stress-Displacement Relationship Of Terrain[J]. Journal of Terramechanics, 1983. 19: 225-234.
    [29] Wong J Y, Huang W. "Wheels vs. tracks" - A fundamental evaluation from the traction perspective[J]. Journal of Terramechanics, 2006, 43: 27-42.
    [30] Wong J Y, Garber M, Preston-Thomas J. Theoretical prediction and experimental substantiation of the ground pressure distribution and tractive performance of tracked vehicles[J]. Journal of Transport Engineering, 1984, 198: 265-85.
    [31] Wong J Y, Preston-Thomas J. Investigation into the effects of suspension characteristics and design parameters on the performance of tracked vehicles using anadvanced computer simulation model[J]. Journal of Transport Engineering, 1988, 202: 143-61.
    [32] Wong J Y. Optimization of the tractive performance of articulated tracked vehicles using an advanced computer simulation model[J]. Journal of Automobile Engineering, 1992, 206: 29-45.
    [33] Gao Y, Wong J Y. The development and validation of a computer-aided method for design evaluation of tracked vehicles with rigid links[J]. Journal of Automobile Engineering, 1994, 208: 207-215.
    [34] Rubinstein D, Hitron R. A detailed multi-body model for dynamic simulation of off-road tracked vehicles[J]. Journal of Terramechanics, 2004, 41: 163-173.
    [35] Rubinstein D, Galili N. Rekem - a design-oriented simulation program for off-road track vehicle[J]. Journal of Terramechanics, 1994, 31: 329-352.
    [36] Wong J Y. Theory of Ground Vehicles: Third edition[M]. John Wiley & Sons Inc., 2001.
    [37] Wong J Y. Terramechanics and off-road vehicles: 2nd edition[M]. UK: Elsevier Ltd., 2010.
    [38] Wong J Y, Chiang C F. A General Theory for Skid-steering of Tracked Vehicles of Firm Ground[J]. Journal of Automobile Engineering, 2001, 215: 52-57.
    [39] Wong J Y, Gao Y. Applications of a computer-aided method to parametric study of tracked vehicles with rigid links[J]. Journal of Automobile Engineering, 1994, 208: 251-257.
    [40] Wong J Y. Optimization of design parameters of rigid link track systems using an advanced computer-aided method[J]. Journal of Automobile Engineering, 1998, 212: 153-167.
    [41] Wong J Y, Preston-Thomas J. Parametric analysis of tracked vehicle performance using an advanced computer simulation model[J]. Journal of Transport Engineering, 1986, 200: 101-114.
    [42] Wong J Y. Application of the computer simulation model NTVPM86 to the development of a new version of the infantry fighting vehicle ASCOD[J]. Journal of Terramechanics, 1995, 32: 53-61.
    [43] Wong J Y, Huang W. Evaluation of the effects of design features on tracked vehicle mobility using an advanced computer simulation model[J]. Heavy vehicle systems, 2005, 12(4): 344-365.
    [44] Wong J Y. Computer aided analysis of the effects of design parameters on theperformance of tracked vehicles[J]. Journal of Terramechanics, 1986, 32: 95-124.
    [45] Wong J Y. On the role of mean maximum pressure as an indicator of cross-country mobility for tracked vehicles[J]. Journal of Terramechanics, 1994, 31: 197-213.
    [46] Wong J Y. Computer-aided methods for design evaluation of tracked vehicles and their applications to product development[J]. International Journal of Vehicle Design, 1999, 22(1): 73-92.
    [47] Wong J Y, Huang Wei. An investigation into the effects of initial track tension on soft ground mobility of tracked vehicles using an advanced computer simulation model[J]. Journal of Automobile Engineering, 2006, 220(D6): 695-711.
    [48] Kitano M, Jyozaki H. A theoretical analysis of steerability of tracked vehicles[J]. Journal of Terramechanics, 1976, 13: 241-258.
    [49] Weiss K R. Skid-steering[J]. Automobile Engineer, 1971, 4: 22-25.
    [50] Bodin A. Development of a tracked vehicle to study the influence of vehicle parameters on tractive performance in soft terrain[J]. Journal of Terramechanics, 1999, 36: 167-181.
    [51] Alexandr G. Thrust and slip of a track determined by the compression-sliding approach[J]. Journal of Terramechanics, 2007, 44: 451-459.
    [52] Bruce M. A skid steering model with track pad flexibility[J]. Journal of Terramechanics, 2007, 44: 95-110.
    [53] Yamakawa J, Watanabe K. A spatial motion analysis model of tracked vehicles with torsion bar type suspension[J]. Journal of Terramechanics, 2004, 41: 113-126.
    [54] Murakami H, Watanabe K, Kitano M. Mathematical model for spatial motion of tracked vehicles on soft ground[J]. Journal of Terramechanics, 29: 71-81, 1992.
    [55] Croshecd J E. Skid-steering of crawlers[J]. Trans SAE, 1975, 84: 1390-1404.
    [56] Sasaki S, Yamada T, Miyata E. Articulated tracked vehicle with four degrees of freedom[J]. Journal of Terramechanics, 1991, 28: 189-199.
    [57]王书镇.高速履带车辆行驶系[M].北京:北京工业学院出版社, 1988.
    [58] Merhof W, Hackbarth E M著;韩雪海,等译.履带车辆行驶力学[M].北京:国防工业出版社, 1989.
    [59]汪明德,赵毓芹,祝嘉光.坦克行驶原理[M].北京:国防工业出版社, 1983.
    [60]同济大学等.工程机械底盘构造与设计[M].北京:中国建筑工业出版社, 1990.
    [61]黄祖永.地面车辆原理[M].北京:机械工业出版社, 1985.
    [62]宋海军,李军,王琛.坚实地面履带车辆转向过程仿真与试验研究[J].车辆与动力技术, 2005, 3: 45-49.
    [63]程军伟,高连华,王红岩.基于打滑条件下的履带车辆转向分析[J].机械工程学报, 2006, 42(5): 192-195.
    [64]程军伟,高连华,王红岩,等.履带车辆转向分析[J].兵工学报, 2007, 28(9): 1110-1115.
    [65]史青录,孙逢春.履带式车辆斜坡转向稳定性研究[J].农业机械学报, 2007, 7: 22-26.
    [66]毕小平,王普凯,李海军,等.履带车辆动态转向过程的仿真模型[J].兵工学报, 2003, 24(4): 551-554.
    [67] Thai T D, Muro T. Numerical analysis to predict turning characteristics of rigid suspension tracked vehicle[J]. Journal of Terramechanics, 1999, 36: 183-196.
    [68]刘景鹏.排土(岩)机履带行走装置主要参数选定[J].机械研究与应用, 2005, 18(6): 83-84
    [69]刘景鹏.排土(岩)机履带行走装置驱动功率的确定及电机选型[J].机械研究与应用, 2005, 18(5): 73-74.
    [70]宗跃.双履带斗轮挖掘机运行阻力计算及电机选型[J].工程机械, 1989, 12: 16-20.
    [71]王忠利.斗轮挖掘机主参数的确定[J].工程机械, 1983, 9: 13-16.
    [72] Khulief Y, Shabana. A Continuous Force Model For The Impact Analysis of Flexible Multibody System[J]. Mechanism and Machine Theory, 1987, 22(3): 213-224.
    [73] Dhir A, Sankar S. Analytical track models for ride dynamic simulation of tracked vehicles[J]. Journal of Terramechanics, 1994, 31: 107-138.
    [74] Dhir A, Sankar S. Assessment of tracked vehicle suspension system using a validated computer simulation model[J]. Journal of Terramechanics, 1995, 32: 127-127.
    [75] Ferretti G, Girelli R. Modelling and simulation of an agricultural tracked vehicle[J]. Journal of Terramechanics, 1999, 36: 139-158.
    [76] Gigler J K, Ward M. Simulation model for the prediction of the ground pressure distribution under tracked vehicles[J]. Journal of Terramechanics, 1993, 30: 461-469.
    [77] Watanabe K, Kitano M, Fugishima A. Handling and stability performance of four-track steering vehicles[J]. Journal of Terramechanics, 1995, 32: 285-285.
    [78] Wong J Y. Development of high-mobility tracked vehicles for over snow operations[J]. Journal of Terramechanics, 2009, 46: 141-155.
    [79] Park W Y, Chang Y. C, Lee S S, et al. Prediction of the tractive performance of a flexible tracked vehicle[J]. Journal of Terramechanics, 2008, 45: 13-23.
    [80] Adams Tracked Vehicle Toolkit version 2005: Documentation[R]. MSC Software Sweden AB, December, 2004.
    [81]江洪,李仲兴,邢启恩. SolidWorks 2003二次开发基础与实例教程[D].北京:电子工业出版社, 2003.
    [82]周君.履带起重机转向阻力矩及转向半径研究[D].大连:大连理工大学, 2009.
    [83] Nakanishi T, Shabana. On the Numerical Solution of Tracked Vehicle Dynamic Equations[J]. Nonlinear Dynamics, 1994, 6(4): 391-417.
    [84] Murray M, Canfield T R. Modeling of a Flexible Link Power Transmission System[C]. the 1992 International Power Transmission and Gearing Conference; Scottsdale, Sept 13-16, 1992.
    [85] Choi J, Shabana A, Wehage R. Propagation of Nonlinearities in the Inertia Matrix of Tracked Vehicle[R]. Technical Report prepared for the U.S. Army Tank Automotive Command, TCN 93097, August, 1993.
    [86]隋文涛.大型矿用挖掘机履带行走装置动力学仿真研究[D].长春:吉林大学, 2007.
    [87]李海伟. 55m3矿用挖掘机履带行走装置动力学研究[D].长春:吉林大学, 2008.
    [88] Michael K. Structural Design of Tension Units for Tracked Vehicles, Especially Construction Machines under the Aspect of Safety Requirements[J]. Journal of Terramechanics, 1997, 34: 155-163.
    [89] Choi J H, Park D C. Dynamic track tension of high mobility tracked vehicles[C]. 2001 ASME Design Engineering Technical Conferences and Information in Engineering Conference vol 6: 18th Biennial Conference on Mechanical Vibration and Noise pt. A, 2001.
    [90] Hun K, Choi J, Yoo H. Development of a multi-body Dynamics simulation tool for tracked vehicles: (Part II, Application to track tension controller design): Special issue on multibody dynamics[J]. JSME international journal. Series C, Mechanical systems, machine elements and manufacturing, 2003, 46(2): 550-556..
    [91]江创华,李佳.履带张紧装置预紧力的计算[J].工程机械, 2004, 6: 18-20.
    [92]宋晗,李晓雷.履带张紧力的多体动力学仿真[J].计算机仿真, 2005, 9: 18-21.
    [93] Michael K, Christoph P T. Strength-optimal running surface contour for track links[J]. Journal of Terramechanics, 1997, 34: 109 126.
    [94] Sarwar M, Nakanish T, Shabana A. Chain Link Deformation in The Nonlinear Dynamics of Tracked Vehicles[J] Journal of Vibration and Control, 1995, 1(2): 201-224.
    [95] Francavilla A, Zienkiewicz O. A Note on Numerical Computation of Elastic Contact Problems[J]. International Journal for Numerical Methods in Engineering, 1975, 9:913-924.
    [96] Sachdeva T, Ramakrishnan C, Natarajan R. A Finite Element Method for The Elastic Contact Problems[J]. Journal of Engineering for Industry, 1981, 103: 456-461.
    [97] Chandrasekaran N, Haisler W, Goforth R. Finite Element Analysis of Hertz contact Problem with Friction[J]. Finite Element in Analysis and Design, 1987, 3(1): 39-56.
    [98]史力晨,王良曦,张兵志,等.履带车辆在坚实地面转向瞬态过程模拟计算[J].车辆与动力技术, 2003, 1: 27-33.
    [99]史力晨,王良曦,张兵志.高速履带车辆悬挂系统动力学仿真[J].系统仿真学报, 2004, 16(7): 1429-1432.
    [100]史力晨,王良曦,张兵志.履带车辆转向动力学仿真[J].兵工学报, 2003, 24(3): 289-294.
    [101]董新建,文桂林,韩旭.履带车辆高速转向动力学仿真[J].计算机辅助工程与应用, 2006, 15(1): 277-280.
    [102] Murray M, Canfield T R. Modeling of a Flexible Link Power Transmission System[C]. the 1992 International Power Transmission and Gearing Conference; Scottsdale, Sept 13-16, 1992
    [103]陈树勇,孙逢春,张承宁.电传动履带车辆动力性能协同仿真与试验研究[J].系统仿真学报, 2007, 19(6): 1370-1375.
    [104] Choi, J H. Use of recursive and approximation methods in the dynamic analysis of spatial tracked vehicles[D]. University of Illinois at Chicago, 1996.
    [105]程钢,刘威,王红岩.基于Easy5软件车辆动力传动系统仿真平台的开发与应用[J].计算机工程与应用, 2004, 7: 185-220.
    [106]孙海涛,王国强,王良.软路面履带转向阻力的研究[J].建筑机械, 1995, 9: 23-27.
    [107]王国强.多履带行走装置转向特性研究[D].长春:吉林工业大学, 1994.
    [108]王国强,党国忠,陈向东,等.履带宽度对车辆转向阻力矩的影响[J].工程机械, 1994, 6: 11-15.
    [109]王国强,马若丁,陈向东,等.三履带机器非稳态转向特性的研究[J].建筑机械, 1997, 9: 28-37.
    [110]李勇,姚宗伟,王国强.四履带车辆转向性能仿真研究[J].北京:农业机械学报, 2011, 42(2): 34-38.
    [111] Damian D, Marcin K, Przemys A M, et al. Selected Aspects of Loads Identification in Caterpillar Undercarriage of Bucket Wheel Excavator[C]. 25th Danubia-Adria Symposium on Advances in Experimental Mechanics. Czech Republic: ?eskéBuděovice (Budweis) and ?esk? Krumlov, 2008.
    [112] Wong J Y. Improved Method For Predicting Tracked Vehicle Performance[J]. Journal of Terramechanics, 1983. 21: 35-43.
    [113] Wong J Y. Computer-aided methods for the optimization of the mobility of single-unit and two-unit articulated tracked vehicles[J]. Journal of Terramechanics, 1992. 29: 395-421.
    [114] Ehlert W, Hug B, Schmid I C. Field measurements and analytical models as a basis of test stand simulation of the turning resistance of tracked vehicles[J]. Journal of Terramechanics, 1992, 29: 57-69.
    [115]盛建清.多履带行走装置传动系统优化技术应用研究[D].长春:吉林大学硕士学位论文, 2011.
    [116]程悦荪,王国强,张友坤.多履带机械结构参数?驱动方式对转向性能的影响[J].农业机械学报, 1996, 27(3): 27-31.
    [117]宋必文.三履带机械滑移转向的理论研究及虚拟样机仿真[D].长春:吉林大学, 2011.
    [118]王国强,程悦荪,殷涌光.多履带车辆转向性能分析[J].吉林工业大学学报, 1994, 1: 1-9.
    [119]刘莉.重型履带车辆行走装置设计理论与方法研究[D].长春:吉林大学, 2005.
    [120]安东诺夫,魏宸官.履带行驶装置原理[M].北京:国防工业出版社, 1957.
    [121]刘延柱,洪嘉振,杨海兴.多刚体系统动力学[M].北京:高等教育出版社, 1989.
    [122]白琨.履带式移动机器人越障能力的研究[D].呼和浩特:内蒙古工业大学. 2007.
    [123] Wong J Y, Huang W. Study of detracking risks of track systems[J]. Proceedings of the institution machanical engineers, 2006, 220: 1235-1253.
    [124] Wong J Y, Huang W. Study of detracking risks of band tracks[R]. Camoplast Inc., Sherbrooke, Quebec, Canada, 2005.
    [125]王国强,张进平.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社, 2002.
    [126] Eschenauer H A, Olhoff N. Topology Optimization of continuum structures: A Review[J]. Applied Mechanics Review, 2001, 54: 331-390.
    [127] Kamat V R, Martinez J C. Generic Representation of 3d Motion Paths in Dynamic Animations of Simulated Construction Processes[J] Automation in Construction, 2008, 17: 188-200.
    [128] RecurDynTM/Solver Theoretical Manual: 5th Revision[R]. FunctionBay Inc., 2005.
    [129]弗兰克,刘虎.全移动自移式破碎机在大型露天矿的应用[J].露天采矿技术, 2009, 4: 4-7.
    [130]王刚.轮斗挖掘机计算机辅助设计计算的研究[D].长春:吉林大学, 2004.
    [131]成亚鹏.侧三支点多履带行走装置支撑球铰设计方法研究[D].长春:吉林大学, 2011.
    [132]鲁振.大型静定履带行走装置履带架强度有限元分析研究[D].长春:吉林大学, 2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700