用户名: 密码: 验证码:
BMP4诱导头颈鳞癌细胞上皮—间质转化及其转移的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
头颈鳞癌的早期转移一直是影响患者疗效的重要原因,因此寻找头颈鳞癌转移的关键分子及其作用的分子机制一直是人们研究的重点和热点。本文将分章讨论一新颖分子骨形态发生蛋白4(Bone morphogenetic protein 4, BMP4)在头颈鳞癌转移中的作用及机制。
     第一章BMP4在头颈鳞癌中的异常表达及其临床意义
     目的探讨头颈鳞癌组织中BMP4及其信号通路蛋白Smadl与p-Smad1的表达与病理分化、淋巴结转移等临床病理学参数的关系,并分析BMP4与头颈鳞癌预后的关系。
     方法采用免疫组织化学方法对89例头颈鳞癌组织、20例癌旁正常组织的新鲜标本进行石蜡包埋,切片染色,检测BMP4、Smad1与p-Smadl的表达,分析其在头颈鳞癌组织中的表达与临床病理学参数的关系,采用Sperman相关统计学方法对BMP4与Smadl和p-Smad1表达的相关性进行分析,应用log-rank检验分析该三种蛋白的表达与头颈鳞癌预后的关系。
     结果BMP4、Smad1与p-Smad1蛋白在头颈鳞癌组织中的表达均显著高于癌旁组织(P<0.05)。BMP4与p-Smad1的表达与头颈肿瘤的临床分期、病理分级、淋巴结转移、是否复发等因素相关(P<0.05),而与患者年龄无关(P>0.05);Smad1的表达与头颈肿瘤的临床分期、病理分级有关(P<0.05),而与年龄、淋巴结转移、是否复发等因素无关(P>0.05);BMP4蛋白与Smad1蛋白的表达不相关,而与p-Smad1的表达呈正相关(rs值分别为0.013和0.548),BMP4与p-Smad1的高表达与患者预后有关(P值分别为0.01562和0.0418),Smad1的表达与患者的预后无关(P=0.6587)。
     结论以上结果提示检测BMP4、Smad1与p-Smad1的表达可更能有效地预测头颈鳞癌的发生、早期转移以及预后等,为头颈鳞癌转移机制研究提供新的线索。
     第二章BMP4诱导头颈鳞癌上皮-间质转化(EMT)及侵袭转移的机制研究
     目的探讨BMP4对头颈鳞癌细胞上皮-间质转化及侵袭转移能力的作用及机制。
     方法重组人BMP4作用于头颈鳞癌细胞Hep-2、Tu686、Tu212、M2、M4和212LN。MTT试验检测其对各细胞株生长增殖能力的影响;激光共聚焦显微镜下观察BMP4对Tu686与Tu212细胞形态学方面的作用;Western blot或RT-PCR检测BMP4对Tu686与Tu212细胞EMT相关基因的影响;Transwell细胞侵袭试验与细胞划痕试验分别研究BMP4对两种细胞侵袭与迁移能力的影响。
     结果不同浓度的BMP4刺激六株细胞72小时后,生长增殖能力均无显著改变(P>0.05)。Tu686与Tu212细胞的形状均变得更加狭长,呈梭形改变,细胞之间的连接变得松散;两种细胞中E-Cadherin表达均随着BMP4的干预呈浓度与时间依赖性下降,而Vimentin与p-Smad1的表达均随着BMP4的干预呈浓度与时间依赖性升高;与此同时,两种细胞的侵袭与迁移能力均显著增强(P<0.05)。
     结论BMP4不影响头颈鳞癌细胞的生长增殖,但可诱导Tu686与Tu212细胞发生EMT改变,同时增强其侵袭与迁移能力,为进一步研究BMP4促进头颈肿瘤转移的机制提供了理论基础,也提示抑制BMP4在预防肿瘤的转移中存在的潜在应用价值。
     第三章Smad1基因通过BMP4介导的信号通路对人头颈鳞癌细胞侵袭能力的影响
     目的探讨Smad1基因上调或下调后,在BMP4刺激下,头颈肿瘤细胞侵袭转移能力与EMT相关基因表达的改变。
     方法将pcDNA3.1(+) Smadl与siRNA Smadl分别瞬时转染Tu686和Tu212细胞,100ng/ml BMP4干预细胞72h,在mRNA水平或蛋白水平检测转染效率。成功上调或下调Smadl后,检测两种细胞中p-Smad1、E-Cadherin与Vimentin表达的变化,Transwell细胞侵袭试验与细胞划痕试验分别检测上述处理后细胞侵袭与迁移能力的变化。
     结果瞬时转染pcDNA3.1(+) Smad1成功上调Smad1的表达后,在100ng/ml BMP4的刺激下,Tu686和Tu212细胞中E-Cadherin的表达均显著下降(P<0.05),p-Smad1与Vimentin的表达均显著上升(P<0.05)同时细胞的侵袭与迁移能力均显著增加(P<0.05);瞬时转染siRNA Smadl并成功抑制Smad1表达后,在100ng/ml BMP4的刺激下,两细胞中E-Cadherin的表达均显著上升(P<0.05),而p-Smad1与Vimentin的表达均显著下降(P<0.05),同时细胞的侵袭与迁移能力均显著下降(P<0.05)。
     结论Smadl的磷酸化在BMP4所诱导的头颈鳞癌细胞EMT及其侵袭转移能力的增强中起重要作用。这一实验结果对我们进一步探讨Smad1在头颈肿瘤转移中的作用具有重要启示。
Early metastasis has always been an important factor for the poor prognosis of Squamous cell carcinoma of the head and neck (SCCHN), So looking for the prediction of metastasis and studying the molecular mechanism of SCCHN are of great significance. This manuscript will discuss the effects and mechanisms of a novel molecule-BMP4 on the metastasis of SCCHN in separate chapters.
     Chapter 1 The aberrant expression of BMP4 and its clinical significance in SCCHN
     Objective. To evaluate the expressions of BMP4 and two related signal pathway proteins, Smadl and p-Smadl in human SCCHN, then to determine their relationships with lymph node metastasis, tumor differentiation, lymphatic metastasis and the prognosis of SCCHN.
     Methods. Tissue samples of primary tumors from 89 SCCHN, and 20 normal tissue samples from pharynx or larynx were undergoing paraffin imbedding slices. Immunohistochemistry was used to detect the expressions of BMP4, Smadl and p-Smad1. The relationships between the pathological parameters and three proteins were analysed, Sperman correlation test was applied to analysis the relationships between expressions of BMP4 and Smadl, p-Smadl. Log-rank test was employed to analyse the relationships between the three proteins and the prognosis of SCCHN.
     Results. The expressions of BMP4、Smadl and p-Smadl in SCCHN tissues were significantly higher than those in normal mucosa (P<0.05). The expressions of both BMP4 and p-Smad1 were correlated with clinical stage, pathological grade, lymph node metastasis and recurrence (P<0.05), but were not related to patients'age (P>0.05). The expression of Smad1 was correlated with clinical stage, pathological grade(P<0.05), but was not related to patients'age, lymph node metastasis and recurrence (P>0.05). The expression of BMP4 was not related to Smadl, while was positively correlated with p-Smadl (rs values were 0.013 and 0.548, respectively).The high expressions of BMP4 and p-Smadl were associated with the poor prognosis of SCCHN (P values were 0.01562 and 0.0418, respectively), the expression of Smadl was not related to the prognosis of SCCHN (P=0.6587).
     Conclusions. All the results suggest that detection of BMP4, Smad1 and p-Smadl will be helpful for the prediction of carcinogenesis, early metastasis and prognosis of SCCHN, it provides new clues for the metastatic studies of SCCHN.
     Chapter 2 Bone morphogenetic protein 4 induces invasiveness of the SCCHN cells through EMT in vitro
     Objective. To study the mechanisms of BMP4 induced invasiveness of SCCHN cell in vitro.
     Methods. Six SCCHN cell lines:Hep-2、Tu686、Tu212、M2、M4、212LN were treated with recombination human BMP4 for 72 hours, MTT test was used to detect the proliferations of each cell line after treatment. Confocal microscopy was applied to observe the phenotypic changes of EMT in both Tu686 and Tu212 after treatment of BMP4; western blot or RT-PCR was applied to detect the expressions of associated genes after treatment by BMP4; Transwell invasive test and scratch test were employed to detect the changes of invasive cell number and migrating cell number of Tu686 and Tu212 after treatment by BMP4, respectively.
     Results. There was no statistic difference in proliferation between the BMP4 treated groups and there respective control groups (P>0.05) in all six cell lines after treatment for 72 hours. Both Tu686 and Tu212 epithelial cells turned into more narrow, long strip or fusiform shapes, stretch out silipues boundary, undergoing EMT. The expressions of p-Smad1 and Vimentin in Tu686 and Tu212 cells showed dose and time-dependent increases after treatment with BMP4, while the expression of E-Cadherin were dose and time-dependent decreased after treatment with BMP4. The invasive and migratory abilities of both Tu686 and Tu212 cells were increased significantly after treatment with BMP4 for 72 hours(P<0.05).
     Conclusions. BMP4 doesn't affect the proliferation of SCCHN cells, it induces Tu686 and Tu212 cells undergoing EMT in vitro, and facilitates the invasiveness and migration in two cells, so it gives theorical foundations for the further study of BMP4 induced invasiveness in SCCHN, the latent applied values of BMP4 will be proved in the prevention of metastasis in SCCHN.
     Chapter 3 The effect of Smadl on the metastasis of SCCHN through BMP4 mediated signal pathways
     Objective. To study the effects of Smadl on the invasiveness and the expressions of EMT associated genes in SCCHN cell lines with the stimulation of BMP4 in vitro.
     Methods. Tu686 and Tu212 cells were transfected with siRNA Smad1 or pcDNA3.1(+) Smad1, then followed by the treatment of 100ng/ml BMP4 for 72 hours, the efficiencies of transfection were detected on both gene and protein levels. Western blot was applied to detect the changes of p-Smad1, E-cadherin and Vimentin after successfully up or down regulating the expression of Smad1 in two cells. Transwell invasive test or scratch test were employed to detect the invasive and migratory ability after treatment, respectively.
     Results. After transfection of Tu686 and Tu212 cells with Smadl gene, Smadl was successfully up-regulated, under the stimulation of 100ng/ml BMP4 for 72 hours, the expressions of E-Cadherin were all significantly down-regulated(P<0.05), the expressions of p-Smad1 and Vimentin were significantly up-regulated(P<0.05). The invasive and migratory abilities of two cells were both decreased significantly(P<0.05). While Smadl was successfully knocked down, in Tu686 and Tu212 cells, the expressions of E-Cadherin were significantly up-regulated(P<0.05), the expression of p-Smad1 and Vimentin were significantly down-regulated(P<0.05). The invasive and migratory abilities of two cells were all decreased significantly(P<0.05).
     Conclusions. Smadl and p-Smadl play important roles in the BMP4 induced EMT and invasiveness in SCCHN cells. It paves the way for the further study of Smadl on the metastasis of SCCHN.
引文
[1]Parkin DM, Pisani P, Ferlay J. Global cancer statistics.CA Cancer J Clin 1999, 49:33-64.
    [2]Jemal A, Murray T, Ward E et al. Cancer statistics, CA Cancer J Clin 2005,55:10-30.
    [3]Jan Akervall. Gene profiling in squamous cell carcinoma of the head and neck. Cancer and Metastasis Reviews.2005,24:87-94.
    [4]Yap AS, Crampton MS, Hardin J. Making and breaking contacts:the cellular biology of cadherin regulation. Curr Opin Cell Biol.2007,19(5):508-14.
    [5]Thompson EW, Newgreen DF. Carcinoma invasion and metastasis:A role for epithelial-mesenchymal transition? Cancer Reseach.2005,65(14):5991-5995.
    [6]Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol.2006,172(7):973-81.
    [7]Mahmut Yilmaz, Gerhard Christofori. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev.2009,28:15-33.
    [8]Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositlo 3'kinase/AKT pathways. Oncogene.2005,24:7443-7454.
    [9]Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Cancer.2006,7:131-142.
    [10]Tse JC, KalluriR. Mechanisms of metastasis:epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem.2007,101(4):816-29.
    [11]Kang Y, Massague J. Epithelial-mesenchymal transitions:twist in development and metastasis.Cell.2004,118(3):277-9.
    [12]Mandal M, Myers JN, Lippman SM, Johnson FM, Williams MD, Rayala S, Ohshiro K, Rosenthal DI, Weber RS, Gallick GE, El-Naggar AK. Epithelial to mesenchymal transition in head and neck squamous carcinoma:association of Src activation with E-cadherin down-regulation, vimentin expression,. and aggressive tumor features. Cancer.2008 Mar 7.
    [13]Zavadil J, Bottinger E. TGF-β and epithelial-mesenchymal transitions. Oncogene. 2005,24:5764-74.
    [14]Araki S, Eitel JA, Batuello, CN. TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. The Journal of Clinical Investigation.
    [15]Han GW, Lu SL. Li AG, et al. distinct mechanisms of TGF-betal-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. The
    Journal of Clinical Investigation.115,7:1714-1723.
    [16]Paduch R, Martyna KS, et al. Transforming growth factor-betal and acetylcholine(ACh) alter nitric oxide(NO) and interleukin-lbeta secretion in human colon adenocarcinoma cells. In Vitro Cell. Dev. Biol.-Animal.2009,45:543-550.
    [17]Wang XM, Sun WJ, Bai J. et al. Growth inhibition induced by transforming growth factor-betal in human oral squamous cell carcinoma. Molecular Biology Reports. 2009,36(5):861-869.
    [18]Takayama S. Hatori M, Kurihara Y, et al. Inhibition of TGF-beta 1 suppresses motility and invasiveness of oral squamous cell carcinoma cell lines via modulation of integrins and down-regulation of matrix-metalloproteinases. Oncology Reports.2009, 21(1):205-210.
    [19]Do TV, Kubba LA, Du H, et al. Transforming growth factor-beta 1, transforming growth factor-beta 2, and transforming growth factor-beta 3 enhance ovarian cancer metastatic potential by inducing a smad3-dependent epithelial-to-mesenchymal transition. Molecular Cancer Research.2008,6(5):695-705.
    [20]Langenskiod M, Holmdahl L, et al. Increased TGF-beta 1 protein expression in patients with advanced colorectal cancer. Journal of Surgical Oncology.2008, 97(5):409-415.
    [21]Gazzerro E. Canalis E. et al. Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord.2006,7:51-65.
    [22]Gupta MC, Khan SN. Application of bone morphogeneticproteins in spinal fusion. Cytokine Growth Factor Rev 2005,16:347-55.
    [23]Molloy EL, Adams A. BMP4 induces an epithelial-mesenchymal transition-like response in adult airway epithelial cells. Growth Factors,2008 Feb; 26(1):12-22.
    [24]Hong Shen, et al. Effect of transforming growth factor beta and bone morphogenetic proteins on rat hepatic stellate cell proliferation and trans-differentiation. World J Gastroenterol.2003,9(4):784-787.
    [25]Jianghong Fan et al. Bone morphogenetic protein 4 mediates bile duct ligation induced liver fibrosis through activation of Smadl and ERK1/2 in rat hepatic stellate cells. Journal of cellular physiology.2006,207:499-505.
    [26]Chen YH, Ishii M, et al. Msxl and Msx2 are required for endothelial-mesenchymal transformation of the atrioventricular cushions and patterning of the atrioventricular myocardium. BMC Developmental Biology.2008,8(75).
    [27]Theriault BL, Shepherd TG, et al. BMP4 induces EMT and Rho GTPase activation in
    human ovarian cancer cells. Carcinogenesis.2007,28(6):1153-1162.
    [28]Gordon KJ, et al.2009.Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smadl-dependent mechanism that involves matrix metalloproteinase-2. Carcinogenesis.30(2):238-248.
    [29]Ye L, Lewis-Russell JM, et al. Bone morphogenetic proteins and their receptor signaling in prostate cancer. Histology and histopathology.2007,22(10):1129-1147.
    [30]Kang MH, Kim JS. et al. BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Exp Cell Res,2010,316(1):24-37.
    [31]Stewart BW, Kleihues PE. World cancer report. International Agency for Research on Cancer Press,2003. Lyon, France.
    [32]Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics.2002. CA Cancer J Clin.2005,55:74-108.
    [33]Gil Z, Fliss DM. Contemporary management of head and neck cancers.
    [34]Yao M, Epstein JB, Modi BJ, Pytynia KB, Mundt AJ, Feldman LE. Current surgical treatment of squamous cell carcinoma of the head and neck. Oral Oncol 2007; 43(3): 213-23.
    [35]Jakobsen J, Hansen O, J(?)rgensen KE, Bastholt L. Lymph node metastases from laryngeal and pharyngeal carcinomas:calculation of burden of metastasis and its impact on prognosis. Acta Oncol.1998;37(5):489-493.
    [36]Dias FL, Lima RA, Kligerman J, et al. Relevance of skip metastases for squamous cell carcinoma of the oral tongue and the floor of the mouth. Otolaryngol. Head Neck Surg. 2006;134(3):460-465.
    [37]Boonkitticharoen V, Kulapaditharom B, Leopairut J, et al. Vascular endothelial growth factor A and proliferation marker in prediction of lymph node metastasis in oral and pharyngeal squamous cell carcinoma. Arch otolaryngol head neck surgery.2008, 134(12):1305-1311.
    [38]Muller S, Su L, Tighiouart M, et al. Distinctive E-Cadherin and epidermal growth factor receptor expression in metastatic and nonmetastatic head and neck squamous cell carcinoma. Cancer.2008,1(113):97-107.
    [39]Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer statistics, CA Cancer J Clin.2003; 53(1):5-26.
    [40]Bock, JM, Sinclair LL, Bedford NS, et al. Modulation of cellular invasion by VEGF-C expression in squamous cell carcinoma of the head and neck. Arch Otolaryngol head
    neck surgery.2008,134(4):355-362.
    [41]Wang J Xi L, Hunt JL, et al. Expression pattern of chemokine receptor 6(CCR6) and CCR7 in squamous cell carcinoma of the head and neck identifies a novel metastatic phenotype. Cancer Research.2004,64(5):1861-1866.
    [42]Luangdilok S, Box C, Patterson L, et al. Syk tyrosine kinase is linked to cell motility and progression in squamous cell carcinomas of the head and neck. Cancer Research, 2007,67(16):7907-7916.
    [43]Seethala RR, Coodling WE, Handler PN, et al. Immlmohistochemical analysis of phosphotyr06ine signal transducer and activator of transcription 3 and epidermal growth factor receptor autocrine signaling pathways in head and neck cancers and metastatic lympy nodes. Clin Cancer Res,2008,14(5):1303-1309.
    [44]Muller S, Su L, Tighiouart M, et al. Distinctive E-Cadherin and epidermal growth factor receptor expression in metastatic and nonmetastatic head and neck squamous cell carcinoma. Cancer.2008,1(113):97-107.
    [45]Canalis E, Economides AN, Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev.2003;24:218-35.
    [46]Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins.Growth Factors 2004;22:233-41.
    [47]Cao X, Chen D. The BMP signaling and in vivo bone formation. Gene 2005;357:1-8.
    [48]Canalis E, Economides AN, Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 2003; 24:218-35.
    [49]Chen D, Zhao M. Mundy GR. Bone morphogenetic proteins. Growth Factors 2004;22:233-41.
    [50]Cao X. Chen D. The BMP signaling and in vivo bone formation. Gene 2005;357:1-8.
    [51]Kishigami S, Mishina Y. BMP signaling and early embryonic patterning. Cytokine Growth Factor Rev 2005; 16:265-78.
    [52]Castillo GD, Murillo MM, Bertran E, et al. Autocrine production of TGF-beta confers resistance to apoptosis after an epithelian-mesenchymal transition process in hepatocytes:Role of EGF receptor ligands. Experimental Cell Research. 2006:2860-2871.
    [53]Thuault S, Valcourt U, Petersen M, et al. Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. The Journal of Cell biology. 2006:175-183.
    [54]Janda E, Lehmann K, Killisch I, et al. Ras and TGF-beta cooperatively regulate epithelial cell plasticity and metastasis:dissection of Ras signaling pathways. The Journal of Cell biology.2002:299-313.
    [55]Gordon KJ, et al. Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smadl-dependent mechanism that involves matrix metalloproteinase-2.2009. Carcinogenesis.30(2):238-248.
    [56]Deng H, Ravikumar TS, Yang WL. Overexpression of bone morphogenetic protein 4 enhances the invasiveness of Smad4-deficient human colorectal cancer cells. Cancer Letters.2009,281:220-231.
    [57]Deng H, Ravikumar TS, Yang WL. Bone morphogenetic protein-4 is overexpressed in colonic adenocarcinomas and promotes migration and invasion of HCT116 cells. Experimental Cell Research.2007:1033-1044.
    [58]Calvo MB, Fernandez VB, Villaamil VM, et al. Biology of BMP signaling and cancer. Clin Transl Oncol.2009,11:126-138.
    [59]Geiger TR, Peeper DS. Metastasis mechanisms. Biochimica et biophysica acta.2009, 293-308. Thiery, J. P.2002.
    [60]Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer,2, 442-454.
    [61]Meindl-Beinker, et al. Transforming growth factor-beta and hepatocyte transdifferentiation in liver fibrogenesis. Journal of gastroenterology and hepatology. 2008,23:122-127.
    [62]Wynn, TA. Cellular and molecular mechanisms of fibrosis. Journal of pathology, 2008,214:199-210.
    [63]Chea, SW, et al. TGF-beta mediated epithelial-mesenchymal transition in autosomal dominant polycystic kidney disease. Yonsei Medical Journal.2009,50(1):105-111.
    [64]Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol,2003,15:740-746.
    [65]M. Jechlinger, S. Grunert, I.H. Tamir, E. Janda, S. Ludemann, T. Waerner, P. Seither, A. Weith, H. Beug, N. Kraut, Expression profiling of epithelial plasticity in tumor progression, Oncogene 22 (2003) 7155-7169.
    [66]R. Maestro, A.P. Dei Tos, Y. Hamamori, S. Krasnokutsky, V. Sartorelli, L. Kedes, C. Doglioni, D.H. Beach, G.J. Hannon, Twist is a potential oncogene that inhibits apoptosis, Genes Dev.13 (1999) 2207-2217.
    [67]S. Valsesia-Wittmann, M. Magdeleine, S. Dupasquier, E. Garin, A.C. Jallas, V. Combaret, A. Krause, P. Leissner, A. Puisieux, Oncogenic cooperation between HTwist and N-Myc overrides failsafe programs in cancer cells, Cancer Cell 6 (2004) 625-630.
    [68]S. Vega, A.V. Morales, O.H. Ocana, F. Valdes, I. Fabregat, M.A. Nieto, Snail blocks the cell cycle and confers resistance to cell death, Genes Dev.18 (2004) 1131-1143.
    [69]W.S. Wu, S. Heinrichs, D. Xu, S.P. Garrison, G.P. Zambetti, J.M. Adams, A.T. Look, Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma, Cell 123 (2005) 641-653.
    [70]Ma L, Lu MF, Schwartz RJ, Martin JF.2005. Bmp2 isessential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132(24):5601-5611.
    [71]Theriault BL, Shepherd TG, Mujoomdar ML, Nachtigal MW.2007. BMP4 induces. EMT and Rho GTPase activation in human ovarian cancer cells. Carcinogenesis 28(6):1153-1162.
    [72]Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R.2003. BMP-7 counteracts TGFbetal-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9(7):964-968.
    [73]Canalis E, Economides AN, Gazzerro E. Bone Morphogenetic Proteins, Their Antagonists, and the Skeleton. Endocrine Reviews.2002,24(2):218-235.
    [74]Wang S, Caestecker MD, Kopp J, et al. Renal Bone Morphogenetic Protein-7 Protects against Diabetic Nephropathy. American Society of Nephrology.2006,17:2504-2512.
    [75]Gordon KJ, Kirkbride KC, How T, et al. Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a smadl-dependent mechanism that involves matrix metalloproteinase-2. Carcinogenesis.2009.30(2):238-248.
    [76]Deng H, Makizumi R, Ravikumar TS, Dong H, Yang W, Yang WL. Bone morphogenetic protein-4 is overexpressed in colonic adenocarcinomas and promotes migration and invasion of HCT116 cells. Exp Cell Res 2007,313(5):1033-1044.
    [77]Jin Y, Tipoe GL, Liong EC, Lau TY, Fung PC, Leung KM.2001. Overexpression of BMP-2/4,-5 and BMPR-IA associated with malignancy of oral epithelium. Oral Oncol 37(3):225-233.
    [78]Sasaki K, Natsugoe S, Ishigami S, Matsumoto M, et al. Significance of twist expression and its association with E-Cadherin in esophageal squamous cell carcinoma. Journal of experimental and clinical cancer research.2009,12,28(1):158.
    [79]Gallo D, Ferlini C, Scambia G. The epithelial-mesenchymal transition and the estrogen-signaling in ovarian cancer. Current Drug Targets.2009,12,16.
    [80]Thiery JP, Acloque H, et al. Epithelial-mesenchymal transitions in development and disease. Cell.2009,139(5):871-890.
    [81]Zhu ML, Kyprianou N. Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. The FASEB journal.2009,12.
    [82]Lundgren K, Nordenskjold B, Landberg G. Hypoxia, Snail and incomplete epithelial-mesenchymal transition in breast cancer. British Journal of cancer. 2009,101(10):1769-1781.
    [83]Lliopoulos D, Polytarchou C, Hatziapostolou M, et al. MicroRNAs differentially regulated by AKT isoforms control EMT and stem cell renewal in cancer cells. Science Signaling.2009,10,2(92):ra62.
    [84]Gumireddy K, Li A, et al. KLF17 is negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nature Cell Biology.2009, 11(11):1297-1304.
    [85]Vleminckx K, Vakaet Jr L, Mareel M, FiersWand van Roy F. Cell,1991,66:107-119.
    [86]Leong, K. G, Niessen, K., Kulic, I., Raouf, A., Eaves, C., & Pollet, I. Jagged 1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med,2007,204,2935-2948.
    [87]Jong In Yook, Xiao-Yan Li, Ichiro Ota, et al. Wnt-dependent Regulation of the E-cadherin Repressor Snail. The Journal of Biological Chemistry.2005, 3,25:11740-11748.
    [88]Peinado, H., Olmeda, D., & Cano, A. Snail, Zeb and bHLH factors in tumour progression:an alliance against the epithelial phenotype? Nat Rev Cancer.2007,7, 415-428.
    [89]Hendrix MJ, Seftor EA, Chu YW, Trevor KT, Seftor RE. Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev 1999,15: 507-525.
    [90]严蓉,陈峰.Smad蛋白-肝纤维化时TGF-β1信号转导的关键物质.国际流行病学传染病学杂志.2007,34(3):191-194.
    [91]Fire A, Xu SQ, Montgomery MK et al.1998. Potent and specific genetic interference by double-stranded RNA in Camorhabditis elegans. Nature,391(6669):806-811.
    [92]Shrey K, Suchit A, Nishant M, et al. RNA interference:Emerging diagnostics and therapeutics tool. Biochemical and Biophysical Research Communications.2009, 386:273-277.
    [93]E. Bernstein, A.A. Caudy, S.M. Hammond, G.J. Hannon, Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature 2001,409:363-366.
    [94]Le Page C, Puiffe ML, Meunier L, et al. BMP-2 signaling in ovarian cancer and its association with poor prognosis. J Ovarian Res.2009,4,14:2:4.
    [95]Herrera B, Van Dinther M, et al. Autocrine Bone Morphogenetic Protein-9 Signals through Activin Receptor-like Kinase-2/Smadl/Smad4 to Promote Ovarian Cancer Cell Proliferation. Cancer Research.2009,69,24:9254-9262.
    [96]Gordon KJ, Kirkbride KC, How T, et al. Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smadl-dependent mechanism that involves matrix metalloproteinase-2. Carcinogenesis,2009.30,2:238-248.
    [97]Katsuno Y, Hanyu A, Kanda H, et al. Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through smad pathway. Oncogene, 2008,27,49:6322-6333.
    [98]Katsuno Y, Hanyu A, Kanda H, et al. Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene, 2008,23;27(49):6322-6333.
    [99]Hiroya Takeuchi, Akihide Fujimoto, Maki Tanaka, et al. CCL21 Chemokine Regulates Chemokine Receptor CCR7 Bearing Malignant Melanoma Cels. Clinical Cancer Research,2004,10:2351-2358.
    [100]Zlotnik A. Chemokines in neoplastic progression. Semin Cancer Biol, 2004,14(3):181-185.
    [1]M.B. Sporn, The war on cancer, Lancet 1996,347:1377-1381.
    [2]Mahmut Yilmaz, Gerhard Christofori. EMT, the cytoskeleton, and cancer cell invasion. 2009,28:15-33.
    [3]Thiery, J. P.2002. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer:2442-2454.
    [4]Meindl-Beinker, et al. Transforming growth factor-beta and hepatocyte transdifferentiation in liver fibrogenesis. Journal of gastroenterology and hepatology. 2008,23:122-127.
    [5]Wynn, TA. Cellular and molecular mechanisms of fibrosis. Journal of pathology, 2008,214:199-210.
    [6]Chea, SW, et al. TGF-beta mediated epithelial-mesenchymal transition in autosomal dominant polycystic kidney disease. Yonsei Medical Journal.2009,50(l):105-111.
    [7]Breitkopf, K, Godoy, P, et al. TGF-beta/Smad signaling in the injured liver. Zeitschrift fur gastroenterology.2006,44(1):57-66.
    [8]Jean Paul Thiery. Epithelial-mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology.2003,15:740-746.
    [9]Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest.2003,112:1776-1784.
    [10]Petersen OW, Nielsen HL, Gudjonsson T, Villadsen R, Rank F, Niebuhr E, Bissell MJ, Ronnov-Jessen L. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 2003,162:391-402.
    [11]Radisky DC, Kenny PA, Bissell MJ.2007. Fibrosis and cancer:Do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem.2007,101:830-839.
    [12]Lionel Larue, Alfonso Bellacosa. Epithelial-mesenchymal transition in development and cancer:role of phosphatidylinositol 30 kinase/AKT pathways. Oncogene,2005, 24:7443-7454.
    [13]Thiery, J. P., & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol.2006,7:131-142.
    [14]Mahmut Yilmaz, Gerhard Christofori. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev.2009,28:15-33.
    [15]Klymkowsky MW. Beta-catenin and its regulatory network. Hum Pathol 2005,36: 225-227.
    [16]Kang Y and Massague J. Cell,2004,118:277-279.
    [17]Thiery JP and Morgan M. Nat. Med.2004,10:777-778.
    [18]Chambers AF, Groom AC and MacDonald IC. Nat. Rev. Cancer,2002,2:563-572.
    [19]Rommel A. Mathias, Richard J. Simpson. Towards understanding epithelial-mesenchymal transition:A proteomics perspective. Biochimica Acta.2009, 1325-1331.
    [20]Brabletz, T., Hlubek, F., Spaderna, S., Schmalhofer, O, Hiendlmeyer, E., & Jung, A. Invasion and metastasis in colorectal cancer:epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs, 2005,179(1-2):56-65.
    [21]Sarrio, D., Rodriguez-Pinilla, S. M., Hardisson, D., Cano, A., Moreno-Bueno, G, & Palacios, J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res,2008,68:989-997.
    [22]Tarin, D., Thompson, E. W., & Newgreen, D. F. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res,2005,65,5996-6000 discussion 6000-1.
    [23]Friedl, P. Prespecification and plasticity:shifting mechanisms of cell migration. Curr Opin Cell Biol,2004,16:14-23.
    [24]Wicki, A., Lehembre, F., Wick, N., Hantusch, B., Kerjaschki, D, & Christofori, G Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell,2006,9: 261-272.
    [25]M. Stoker, M. Perryman, An epithelial scatter factor released by embryo fibroblasts, J. Cell Sci.1985,77:209-223.
    [26]K.M. Weidner, J. Behrens, J. Vandekerckhove, W. Birchmeier, Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells, J. Cell Biol. 1990,111:2097-2108.
    [27]M. Guarino, B. Rubino, G Ballabio, The role of epithelial-mesenchymal transition in cancer pathology, Pathology.2007,39:305-318.
    [28]M.A. Huber, N. Kraut, H. Beug, Molecular requirements for epithelial-mesenchymal transition during tumor progression, Curr. Opin. Cell Biol.2005,17:548-558.
    [29]A. Cano, M.A. Perez-Moreno, I. Rodrigo, A. Locascio, M.J. Blanco, M.G. del Barrio, F. Portillo, M.A. Nieto, The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression, Nat. Cell Biol.2000,2:76-83.
    [30]Vallin, J, Thuret, R, et al. Cloning and characterization of three Xenopus Slug promoters reveal direct regulation by Lef/beta-catenin signaling. Journal of biological chemistry,2001,276(32):30350-30358.
    [31]Monsoro-Burq, AH, Fletcher, RB, et al. Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals. Development.2003,130(14):3111-3124.
    [32]Liem, KF, Tremml, G. et al. Dorsal differentialion of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell.1995,82(6):969-979.
    [33]Vleminckx K, Vakaet Jr L, Mareel M, FiersWand van Roy F. Cell,1991,66:107-119.
    [34]Leong, K. G, Niessen, K., Kulic, I., Raouf, A., Eaves, C., & Pollet, I. Jagged 1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med,2007,204,2935-2948.
    [35]Jong In Yook, Xiao-Yan Li, Ichiro Ota, et al. Wnt-dependent Regulation of the E-cadherin Repressor Snail. The Journal of Biological Chemistry.2005, 3,25:11740-11748.
    [36]Peinado, H., Olmeda, D., & Cano, A. Snail, Zeb and bHLH factors in tumour progression:an alliance against the epithelial phenotype? Nat Rev Cancer.2007,7, 415-428.
    [37]Jean Paul Thiery, Jonathan P. Sleeman. Complex networks or chestrate epithelial-mesenchymal transitions. Molecular Cell Biology.2006,7:131-142.
    [38]Eckes B, Colucci-Guyon E, Smola H, Nodder S, Babinet C, Krieg T, Martin P. Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci 2000,113(Pt13):2455-2462.
    [39]Hendrix MJ, Seftor EA, Chu YW, Trevor KT, Seftor RE. Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev 1999,15: 507-525.
    [40]Matsuo, N; Shiraha, H, et al. Twist expression promotes migration and invasion in hepatocellular carcinoma. BMC Cancer.2009,9,240.
    [41]ChenMH, Yip GW, Tse GM, et al. Exp ression of basal keratins and vimentin in breast cancers of young women correlates with adverse pathologic parameters. Mod Pathol, 2008,21 (10):1183-1191.
    [42]Hu L,Lau SH, Tzang CH, et al. Association of vimentin overexp ression and hepatocellular carcinoma metastasis. Oncogene,2004,23 (1):298-302.
    [43]Lang SH, Hyde C, Reid IN, et al. Enhanced exp ression of vimentin in motile p rostate cell lines and in poorly differentiated and metastatic p rostate carcinoma. Prostate, 2002,52 (4):253-263.
    [44]Singh S, Sadacharan S, Su S, et al. Overexp ression of vimentin:role in the invasive phenotype in an androgen2independent model of p rostate cancer. Cancer Res,2003, 63 (9):2306-2311.
    [45]Heldin C-H, Miyazono K, ten Dijke P:TGF-Psignalling from cell membrane to nucleus through SMAD proteins. Nature 1997,390:465-471.
    [46]Muraoka-Cook RS, Dumont N and Arteaga CL.2005. Clin. Cancer Res.,11,937-943.
    [47]Geng MM, Ellenreider V, Wallrapp C, Muller-Pillasch F, Sommer G, Adler G, Gress TM. Use of representational difference analysis to study the effect of TGF-b on the expression profile of a pancreatic cancer cell line. Genes Chr Cancer.1999,26:70-79.
    [48]Janji B, Melchior C, Gouon V, Vallar L, Kieffer N. Autocrine TGF-b-regulated expression of adhesion receptors and integrin-linked kinase in HT-144 melanoma cells correlates with their metastatic phenotype. Int J Cancer 1999,83:255-262.
    [49]Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP. Genetic programs of epithelial cell plasticity directed by transforming growth factor-b. Proc Natl Acad Sci USA 2001,98:6686-6691.
    [50]Yi JY, Hur KC, Lee E, Jin YJ, Arteaga CL, Son YS. TGF-β1-mediated epithelial to mesenchymal transition is accompanied by invasion in the SiHa cell line. Eur J Cell Biol 2002,81:457-468.
    [51]Massague J. TGF-beta signal transduction. Annu Rev Biochem 1998,67:753-791.
    [52]Goumans, M.J. et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol. Cell 2003,12:817-828.
    [53]Daly, A.C. et al. Transforming growth factor b-induced Smadl/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol. Cell. Biol.2008,28:6889-6902.
    [54]Liu, I.M. et al. TGFβ-stimulated Smadl/5 phosphorylation requires the ALK5 L45 loop and mediates the pro-migratory TGFβswitch. EMBO J 2009,28,88-98.
    [55]R. Derynck, R.J. Akhurst, A. Balmain, TGF-beta signaling in tumor suppression and cancer progression, Nat. Genet.2001,29:117-129.
    [56]I. Shin, A.V. Bakin, U. Rodeck, A. Brunet, C.L. Arteaga, Transforming growth factor beta enhances epithelial cell survival via Akt-dependent regulation of FKHRL1, Mol. Biol. Cell 2001,12:3328-3339.
    [57]M.E. Engel, P.K. Datta, H.L. Moses, Signal transduction by transforming growth factor-beta:a cooperative paradigm with extensive negative regulation, J. Cell. Biochem. Suppl 1998,31:111-122.
    [58]L.M. Wakefield, A.B. Roberts, TGF-beta signaling:positive and negative effects on
    tumorigenesis, Curr. Opin. Genet. Dev.2002,12:22-29.
    [59]A.V. Bakin, C. Rinehart, A.K. Tomlinson, C.L. Arteaga, p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration, J. Cell. Sci.2002,115:3193-3206.
    [60]B.A. Hocevar, T.L. Brown, P.H. Howe, TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway, EMBO J. 1999,18:1345-1356.
    [61]H. Wang, V. Radjendirane, K.K. Wary, S. Chakrabarty, Transforming growth factor beta regulates cell-cell adhesion through extracellular matrix remodeling and activation of focal adhesion kinase in human colon carcinoma Moser cells, Oncogene 2004,23:5558-5561.
    [62]Y. Zhao, Transforming growth factor-beta (TGF-beta) type I and type II receptors are both required for TGF-beta-mediated extracellular matrix production in lung fibroblasts, Mol. Cell. Endocrinol.1999,150:91-97.
    [63]Verrecchia F, Vindevoghel L, Lechleider RJ, Uitto J, Roberts AB, Mauviel A. Smad3/AP-1 interactions control transcriptional responses to TGF-β in a promoter specific manner. Oncogene 2001,20:3332-3340.
    [64]Maria Davies, Max Robinson, Emily Smith, et al. Induction of an Epithelial to Mesenchymal Transition in Human Immortal and Malignant Keratinocytes by TGF-β1 involves MAPK, Smad and AP-1 Signalling Pathways. Journal of Cellular Biochemistry.2005,95:918-931.
    [65]Nieto, MA. The snail superfamily of zinc-finger transcription factors. Nature reviews molecular cell biology.2002,3:155-166.
    [66]Jens Waldmann, Emily P. Slater, Peter Langer, et al. Expression of the Transcription Factor Snail and Its Target Gene Twist Are Associated with Malignancy in Pheochromocytomas. Surgical oncology.2009,16:1997-2005.
    [67]Ikenouchi,J. Matsuda, M. Furuse, et al. Regulation of tight junctions during the epithelium-mesenchyme transition:direct repression of the gene expression of claudins/occludin by Snail. Journal of Cell Science,2003,116(10):1959-1967.
    [68]Moody SE, Perez D, Pan TC, et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell.2005,8:197-209.
    [69]Fendrich VW, Farzad J, Ramaswamy E, et al. Snail and sonic hedgehog activation in neuroendocrine tumors of the ileum. Endocr Relat Cancer.2007,14:865-74.
    [70]LianSheng Cheng, Zhao Zha, Bo Lang, et al. Heregulin-bl promotes metastasis of breast cancer cell line SKBR3 through upregulation of Snail and induction of epithelial-mesenchymal transition. Cancer Letter.2009,280:50-60.
    [71]Yang J, Mani SA, Donaher JL et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004,117:927-39.
    [72]Marie E. Fondrevelle, Bernadette Kantelip, Robert E, et al. The expression of Twist has an impact on survival in human bladder cancer and is influenced by the smoking status.2009,27:268-276.
    [73]Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 2007,67:1979-1987.
    [74]Kanegae Y, Tavares AT, Izpisua Belmonte JC, Verma IM. Role of Rel/NF-kappaB transcription factors during the outgrowth of the vertebrate limb. Nature 1998,392:611-614.
    [75]Takeda K, Takeuchi O, Tsujimura T, Itami S, Adachi O, Kawai T, Sanjo H, Yoshikawa K, Terada N, Akira S. Limb and skin abnormalities in mice lacking IKKalpha. Science 1999,284:313-316.
    [76]Sosic D, Olson EN. A new twist on twist-Modulation of the NF-kappa B pathway. Cell Cycle.2003,2:76-78.
    [77]Jan Akervall. Gene profiling in squamous cell carcinoma of the head and neck. Cancer and Metastasis Reviews.2005,24:87-94.
    [1]H. Nishitoh, H. Ichijo, M. Kimura, T. Matsumoto, F. Makishima, A.Yamaguchi, H. Yamashita, S. Enomoto, K. Miyazono, Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5, J. Biol. Chem. 271(1996)21345-21352.
    [2]Weigelt B, Peterse JL, van't Veer LJ.2005. Breast cancer metastasis:Markers and models. Nat Rev Cancer 5(8):591-602.
    [3]Ten Dijke P, Yamashita H, Sampath TK, Reddi AH, Estevez M, Riddle DL, Ichijo H, Heldin CH, Miyazono K.1994.Identification of type Ⅰ receptors for osteogenic protein-1 and bone morphogenetic protein-4. J Biol Chem 269(25):16985-16988.
    [4]Koenig BB, Cook JS, Wolsing DH, Ting J, Tiesman JP, Correa PE, Olson CA, Pecquet AL, Ventura F, Grant RA.1994. Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells. Mol Cell Biol 14(9):5961-5974.
    [5]Kawabata M, Chytil A, Moses HL.1995. Cloning of a novel type Ⅱ serine/threonine kinase receptor through interaction with the type Ⅰ transforming growth factor-beta receptor. J Biol Chem 270(10):5625-5630.
    [6]Nohno T, Ishikawa T, Saito T, Hosokawa K, Noji S, Wolsing DH, Rosenbaum JS. 1995. Identification of a human type Ⅱ receptor for bone morphogenetic protein-4 that forms differential heteromeric complexes with bone morphogenetic protein type Ⅰ receptors. J Biol Chem 270(38):22522-22526.
    [7]Moustakas A, Heldin CH.2002. From mono-to oligo-Smads:The heart of the matter in TGF-beta signal transduction. Genes Dev 16(15):1867-1871.
    [8]Cao X, Chen D.2005. The BMP signaling and in vivo bone formation. Gene 357(1):1-8.
    [9]B.L. Hogan, Bone morphogenetic proteins:multifunctional regulators of vertebrate development, Genes Dev.10 (1996) 1580-1594.
    [10]Zhang H, Bradley A.1996. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122(10):2977-2986.
    [11]Cox TC.2004. Taking it to the max:the genetic and developmental mechanisms coordinating midfacial morphogenesis and dysmorphology. Clin Genet 65:163-176.
    [12]Yi SE, Daluiski A, Pederson R, Rosen V, Lyons KM.2000. The type Ⅰ BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127(3): 621-630.
    [13]Devlin RD, Du Z, Pereira RC, Kimble RB, Economides AN, Jorgetti V, Canalis E. 2003. Skeletal overexpression of SHH, Notch, and BMP in Cancer Metastasis 837 noggin results in osteopenia and reduced bone formation. Endocrinology 144(5):1972-1978.
    [14]Yoshida Y, Tanaka S, Umemori H, Minowa O, Usui M, Ikematsu N, Hosoda E, Imamura T, Kuno J, Yamashita T, Miyazono K, Noda M, Noda T, Yamamoto T.2000. Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell 103(7):1085-1097.
    [15]Neil Ghodadra, Kern Singh. Recombinant human bone morphogenetic protein-2 in the treatment of bone fractures. Biologics:Targets and Therapy.2008:2(3)
    [16]J. Zhang, L. Li, BMP signaling and stem cell regulation, Dev. Biol.284 (2005) 1-11.Development 129(23):5529-5540.
    [17]R.H. Xu, X. Chen, D.S. Li, R. Li, G.C. Addicks, C. Glennon, T.P. Zwaka, J.A. Thomson, BMP4 initiates human embryonic stem cell differentiation to trophoblast, Nat. Biotechnol.20 (2002) 1261-1264.
    [18]D. Chen, X. Ji, M.A. Harris, J.Q. Feng, G. Karsenty, A.J. Celeste, V. Rosen, G.R. Mundy, S.E. Harris, Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages, J. Cell Biol.142 (1998) 295-305.
    [19]Pera MF, Andrade J, Houssami S, Reubinoff B, Trounson A, Stanley EG, Ward-van Oostwaard D, Mummery C.2004. Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117(Pt 7):1269-1280.
    [20]Yoshikawa, T. Nakase, A. Myoui, T. Ueda, Bone morphogenetic proteins in bone tumors, J. Orthop. Sci.9 (2004) 334-340.
    [21]Kudo N, Ogose A, Arizumi T, et al. Expression of bone morphogenetic proteins in giant cell tumor of bone. Anticancer Research.2009,6,29(6):2219-2225.H.
    [22]Luo X, Chen J, Song WX, et al. Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Laboratory investigation.2008,12, 88(12):1264-1277.
    [23]Weiss KR, Cooper GM, Jadlowiec JA, et al. clinical orthopeadics and related research. 2006,9,450:111-117.VEGF and BMP expression in mouse osteosarcoma cells.
    [24]Sulzbacher I, Birner P, Trieb K, et al. The expression of bone morphogenetic protein in osteosarcoma and its relevance as a prognostic parameter. Journal of Clinical pathology.2002,5,55(5):381-385.
    [25]Ye L, Kynaston H, Jiang WG. Bone morphogenetic protein-9 induces apoptosis in prostate cancer cells, the role of prostate apoptosis response-4. Molecular cancer research.2008,10,6(10):1594-1606.
    [26]Yuen HF, Chan YP, Cheung WL, et al. The prognostic significance of BMP-6 signaling in prostate cancer. Modern Pathology.2008,21(12):1436-1443.
    [27]Herrera B, Van Dinther M, et al. Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. Cancer Research.2009,69(24):9254-9262.
    [28]Hasegawa A, Kumamoto K, et al. Gene expression profile during ovarian folliculogenesis. Journal of reproductive immunology.2009,83(1-2):40-44.
    [29]Hinoue T, Weisenberger DJ, Pan F, et al. Analysis of the association between CIMP and BRAF in colorectal cancer by DNA methylation profiling. Plos One. 2009,4(12):e8357.
    [30]Park Y, Kang MH, Seo HY, et al. Bone morphogenetic protein-2 levels are elevated in the patients with gastric cancer and correlate with disease progression. Medical Oncology.2009,11(19).
    [31]Liu C, Tian G, Tu Y, et al. Expression pattern and clinical prognostic relevance of bone morphogenetic protein-2 in human gliomas. Japanese journal of clinical oncology, 2009,39(10):625-631.
    [32]Shon SK, Kim A, Kim JY, et al. Bone morphogenetic protein-4 induced by NDRG2 expression inhibits MMP-9 activity in breast cancer cells. Biochemical and Biophysical Research.2009,24,385(2):198-203.
    [33]Deng H, Makizumi R, Ravikumar TS, Dong H, Yang W, Yang WL. Bone morphogenetic protein-4 is overexpressed in colonic adenocarcinomas and promotes migration and invasion of HCT116 cells. Exp Cell Res 2007,313(5):1033-1044.
    [34]Masuda H, Fukabori Y, Nakano K, Takezawa Y. T CS, Yamanaka H.2003. Increased expression of bone morphogenetic protein-7 in bone metastatic prostate cancer. Prostate.54(4):268-274.
    [35]Lai TH, Fong YC, Fu WM, et al. Osteoblasts-derived BMP-2 enhances the motility of prostate cancer cells via activation of integrins. Prostate.2008,9,68(12):1341-1353.
    [36]Darby S, Cross SS, Brown NJ, et al. BMP-6 over-expression in prostate cancer is associated with increased Id-1 protein and a more invasive phenotype. The Journey of Pathology.2008,2; 214(3):394-404.
    [37]Buijs JT, Rentsch CA, van der Horst G, et al. BMP7, a putative regulator of epithelial homeostasis in the human prostate, is a potent inhibitor of prostate cancer bone metastasis in vivo. The American Journal of Pathology.2007,171 (3):1047-1057.
    [38]Ye L, Lewis-Russell JM, Davies Q Sanders AJ, Kynaston H, Jiang WG.2007. Hepatocyte growth factor upregulates the expression of the bone morphogenetic protein (BMP) receptors, BMPR-IB and BMPR-Ⅱ, in human prostate cancer cells. Int J Oncol 30(2):521-529.
    [39]Arnold SF, Tims E, McGrath BE.1999. Identification of bone morphogenetic proteins and their receptors in human breast cancer cell lines:Importance of BMP2. Cytokine 11(12):1031-1037.
    [40]Katsuno Y, Hanyu A, Kanda H, et al. Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene. 2008, Oct 23; 27(49):6322-6333.
    [41]Clement JH, Raida M, Sanger J, Bicknell R, Liu J, Naumann A, Geyer A, Waldau A, Hortschansky P, Schmidt A, Hoffken K, Wolft S, Harris AL.2005. Bone morphogenetic protein 2 (BMP-2) induces in vitro invasion and in vivo hormone independent growth of breast carcinoma cells. Int J Oncol 27(2):401-407.
    [42]Jin Y, Tipoe GL, Liong EC, Lau TY, Fung PC, Leung KM.2001. Overexpression of BMP-2/4,-5 and BMPR-IA associated with malignancy of oral epithelium. Oral Oncol 37(3):225-233.
    [43]Park Y, Kim JW, Kim DS, et al. The bone morphogenesis protein-2 is associated with progression to metastatic disease in gastric cancer. Cancer Research.2008,40(3): 127-132.
    [44]Jean Paul Thiery. Epithelial-mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology.2003,15:740-746.
    [45]Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest.2003,112:1776-1784.
    [46]Petersen OW, Nielsen HL, Gudjonsson T, Villadsen R, Rank F, Niebuhr E, Bissell MJ, Ronnov-Jessen L. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 2003,162:391-402.
    [47]Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R.2003. BMP-7 counteracts TGFbetal-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9(7):964-968.
    [48]Radisky DC, Kenny PA, Bissell MJ.2007. Fibrosis and cancer:Do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem.2007,101:830-839.
    [49]Lionel Larue, Alfonso Bellacosa. Epithelial-mesenchymal transition in development and cancer:role of phosphatidylinositol 30 kinase/AKT pathways. Oncogene,2005, 24:7443-7454.
    [50]Ma L, Lu MF, Schwartz RJ, Martin JF.2005. Bmp2 isessential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132(24):5601-5611.
    [51]Theriault BL, Shepherd TG, Mujoomdar ML, Nachtigal MW.2007. BMP4 induces EMT and Rho GTPase activation in human ovarian cancer cells. Carcinogenesis 28(6):1153-1162.
    [52]Gordon KJ, Kirkbride KC, How T, et al. Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a smadl-dependent mechanism that involves matrix metalloproteinase-2. Carcinogenesis.2009.30(2):238-248.
    [53]Deng H, Ravikumar TS, Yang WL.2007. Bone morphogenetic protein-4 inhibits heat-induced apoptosis by modulating MAPK pathways in human colon cancer HCT116 cells. Cancer Lett.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700