用户名: 密码: 验证码:
E-cadherin在喉鳞状细胞癌中的表达及其与肿瘤侵袭转移的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:喉鳞状细胞癌(laryngeal squamous cell carcinoma, LSCC)是头颈部常见的恶性肿瘤之一,肿瘤的局部复发、淋巴结转移和远处转移是影响LSCC患者预后的重要因素。研究表明,细胞间粘附力下降或丧失所致的肿瘤细胞从原发灶脱落是肿瘤发生侵袭转移的早期和关键步骤。本部分研究旨在探讨细胞粘附分子上皮型钙粘蛋白(E-cadherin)在LSCC中的表达及与肿瘤临床病理特征、预后之间的关系。
     方法:采用免疫组化方法检测64例喉癌组织和30例癌旁非肿瘤组织中E-cadherin蛋白表达水平,比较二者表达差异。根据患者年龄、肿瘤临床分型、原发灶大小、淋巴结转移、病理组织学分级将病例分组,应用单因素方差分析研究E-cadherin表达与肿瘤临床病理特征之间的关系,Logistic逐步回归分析法研究与淋巴结转移有关的预测因子。结合临床随访资料,用Kaplan-Meier法绘制生存曲线,Log-rank法比较E-cadherin高表达组和E-cadherin低表达组5年生存率,Cox多因素回归法分析疾病预后的独立预测因素。
     结果:
     1.64例LSCC组织E-cadherin平均染色分数169±68分,30例癌旁非肿瘤组织E-cadherin平均染色分数346±38分,肿瘤组织中E-cadherin平均染色分数明显低于癌旁非肿瘤组织(P<0.001);
     2.肿瘤组织中E-cadherin表达水平与LSCC淋巴结转移(P<0.001)有明显相关性,而与患者年龄(P=0.66)、肿瘤临床分型(P=0.445)、原发灶大小(P=0.303)和病理分级(P=0.159)无关;
     3.除已知的因素如肿瘤原发灶大小(P=0.012)、病理组织学分级(P=0.003),E-cadherin表达水平(P<0.001)也是LSCC淋巴结转移的独立预测因子;
     4.根据LSCC组织中E-cadherin平均染色分数将病例分为E-cadherin高表达组和E-cadherin低表达组,E-cadherin高表达组5年生存率为74.1%,E-cadherin低表达组5年生存率为42.9%,E-cadherin高表达组的5年生存率高于E-cadherin低表达组,差异具有统计学意义(Log-rank, P<0.05);
     5.多变量Cox风险比例模型分析表明,仅淋巴结转移是LSCC预后的独立预测因子(P=0.002),其余各参数,如肿瘤临床分型、原发灶大小、病理分级和E-cadherin表达水平均不能单独预测疾病的预后。
     结论:
     1.E-cadherin在LSCC组织中表达减低,可能参与了喉癌的发生发展;
     2.E-cadherin表达水平可能作为预测LSCC颈淋巴结隐匿性转移的潜在肿瘤标志物;
     3.E-cadherin表达水平减低与LSCC复发和疾病生存率减低有关。
     目的:探讨表皮生长因子受体(epidermal growth factor receptor, EGFR)配体EGF和EGFR小分子酪氨酸激酶抑制剂Erlotinib对体外培养的喉癌Hep-2细胞增殖和细胞周期的影响。
     方法:分别用不同浓度EGF、Erlotinib干预喉癌Hep-2细胞,MTT实验比较其对细胞生长的影响,并计算细胞生存(增殖)率,筛选EGF、Erlotinib干预浓度,流式细胞仪分析EGF、Erlotinib对喉癌Hep-2细胞周期和凋亡的影响。
     结果:
     1.MTT实验:EGF能明显促进喉癌Hep-2细胞的增殖,其对喉癌Hep-2细胞生长的促进作用与EGF干预时间、浓度呈正相关;Erlotinib能有效抑制喉癌Hep-2细胞的增殖,使细胞数量减少、密度减低、细胞生存率下降,Erlotinib对喉癌Hep-2细胞生长的抑制作用与干预时间、浓度呈正相关;
     2.流式细胞仪分析:EGF使喉癌Hep-2细胞G1期比例减少而S期比例增加(P<0.05),对细胞凋亡无明显影响;Erlotinib使喉癌Hep-2细胞G1期比例增加而S期比例减少(P<0.05),并使喉癌Hep-2细胞凋亡率明显高于对照组,差异有统计学意义(P<0.001)。
     结论:
     1.EGF促进喉癌Hep-2细胞周期从G1期向S期转化,促进细胞增殖;
     2.Erlotinib使喉癌Hep-2细胞周期阻滞于G1期,并能诱导喉癌Hep-2细胞凋亡,抑制细胞增殖。
     目的:前一部分实验已明确EGF、Erlotinib对喉癌Hep-2细胞生长增殖和细胞周期的影响,并分别筛选出EGF、Erlotinib干预浓度。以此为基础,本部分实验研究EGF、Erlotinib对体外培养的喉癌Hep-2细胞表型、运动迁移、侵袭转移能力的影响。
     方法:分别用10ng/ml EGF、20μmol/L Erlotinib干预喉癌Hep-2细胞,倒置显微镜下观察细胞表型改变,免疫细胞化学实验和Western blot检测喉癌Hep-2细胞E-cadherin、vimentin等相关蛋白表达和定位改变,并用划痕愈合实验和Transwell侵袭实验观察细胞运动迁移能力、侵袭转移能力变化。
     结果:
     1.倒置显微镜观察细胞表型改变:EGF干预的喉癌Hep-2细胞彼此分散,失去细胞间连接,形态向长梭形、纺锤形的间质细胞表型转变;Erlotinib干预的细胞形态变圆或变方,成团生长,细胞之间连接紧密,细胞的上皮特征更明显;
     2.免疫细胞化学实验:EGF使喉癌Hep-2细胞E-cadherin表达下调,细胞膜表达极低;Erlotinib使喉癌Hep-2细胞E-cadherin表达上调,部分细胞E-cadherin出现细胞膜表达;
     3. Western blot:EGF干预喉癌Hep-2细胞后,E-cadherin表达下调,Vimentin和p-EGFR表达上调,EGFR表达无明显改变;Erlotinib干预喉癌Hep-2细胞后,E-cadherin表达上调,Vimentin和p-EGFR表达下调,而EGFR表达改变不明显;
     4.划痕愈合实验:EGF能明显促进划痕愈合,使细胞侵袭运动能力增强;Erlotinib使划痕愈合延迟,能部分抑制喉癌Hep-2细胞的侵袭运动能力,实验组24h细胞迁移距离与对照组比较差异均有统计学意义(P<0.05);
     5. Transwell侵袭实验:EGF使喉癌Hep-2细胞侵袭转移能力增强,干预24h后穿过Transwell小室的每200倍视野平均细胞数为58.5±10.3个,与对照组比较差异有统计学意义(P<0.05);Erlotinib能抑制喉癌Hep-2细胞的侵袭转移能力,干预24h后穿过Transwell小室的每200倍视野平均细胞数为18.7±4.8个,与对照组比较差异有统计学意义(P<0.05)。
     结论:
     1.在喉癌Hep-2细胞中可通过调控EGFR信号传导通路来调节E-cadherin的表达,改变细胞表型和侵袭转移能力;
     2.小分子量EGFR酪氨酸激酶抑制剂Erlotinib能使喉癌Hep-2细胞E-cadherin表达上调,细胞运动迁移和侵袭转移能力减弱。
Objective:Laryngeal squamous cell carcinoma (LSCC) is one of the commonest tumors in the head and neck, locoregional recurrence, cervical lymph nodes metastases and distant metastases are the factors that significantly affect the prognosis in LSCC patients. An important step in the development of tumor metastasis is the detachment of malignant cells from their original site, which results from the reduced cell-cell adhesiveness. The aim of this study was to investigate the clinical significance of E-cadherin expression in laryngeal squamous cell carcinoma.
     Methods:The level of E-cadherin expression in 64 tumor tissues and 30 adjacent non-tumor laryngeal tissues were determined by immunohistochemistry. Patients were classified according to age, primary site, T stage, lymph node metastases and histological differentiation. Staining scores were averaged for each group, and mean scores were compared within groups stratified with respect to clinicopathological parameters by one-way ANOVA test. Survival curves were calculated using the Kaplan-Meier method. Differences in 5-year survival rate were analysed by the log-rank test. Multivariate Cox proportional hazards models were used to examine the relative impact of either variable on the disease prognosis.
     Results:
     1. The mean staining score for sixty-four carcinomas was 169±68, and the thirty non-tumor laryngeal tissues had a mean staining score of 346±38, the mean score in tumor tissues was significantly lower than the non-tumor laryngeal tissues(P<0.001);
     2. The expression of E-cadherin were significantly correlated with lymph node metastases (P<0.001). The differences of E-cadherin expression between the different age (p=0.66), primary site (P=0.445), T stage (P=0.303) and histological differentiation (P=0.159) group were not statistically significant;
     3. In addition to other known factors such as T-stage and histological grade, E-cadherin staining score was also the statistically significant, independent predictors of lymph node metastases;
     4. We classified patients as E-cadherin low-expression group and E-cadherin high-expression group according to the mean staining score. The 5-year survival rate in E-cadherin high-expression group were significantly increased than that of E-cadherin low-expression group (Log-rank, P<0.05);
     5. The results of multivariate Cox proportional hazards model confirmed that only the presence of cervical lymph node metastases was a statistically significant, independent predictor of prognosis (P=0.002). Other parameters, such as primary sit, T-stage, histological grade, E-cadherin expression, cannot predicate disease prognosis separately.
     Conclusion:
     1. The expression of E-cadherin is decreased in the tumor tissues, which indicated that E-cadherin may have been involved in the tumor occurrence and development.
     2. Expression of E-cadherin is an independent predictor of lymph node metastases in laryngeal cancer, it might be a tumor marker for occult lymph node metastases.
     3. Decreased E-cadherin expression is associated with recurrence and decreased disease survival rate in laryngeal squamous cell carcinoma.
     Objective:To investigate the impact of epidermal growth factor receptor (EGFR) ligand EGF and small molecule tyrosine kinase inhibitor Erotinib on the proliferation and cell cycle in human laryngeal cancer cell line Hep-2.
     Methods:Human laryngeal cancer cell line Hep-2 was treated with EGF and Erlotinib, respectively. Then, cell proliferation in different groups was measured by MTT assay. The influence of EGF and Erlotinib on the cell cycle and apoptosis were analysed by Flow Cytometer.
     Results:
     1. MTT assay:EGF promoted proliferation of Hep-2 cells as the extension of treatment concentration and time; Erlotinib inhibited proliferation of Hep-2 cells, which induced the decreases in cell number, density and survival rate.
     2. Flow Cytometer:Hep-2 cells treated with EGF exhibited the decreases in phase G1 and increases in phase S (P<0.05), while the cell apoptosis was not influenced; Treatment of Erlotinib resulted in the increases in phase G1 and decreases in phase S (P<0.05), and cell apoptosis rate was significantly increased than the control group (P<0.001).
     Conclusion:
     1.EGF accelerates the cell cycle transition from G1 phase to S phase, and promotes Hep-2 cell proliferation.
     2. Treatment of Erlotinib results in the G1 phase arrest of cell cycle, and induces Hep-2 cell apoptosis, ultimately inhibits Hep-2 cell proliferation.
     Objective:To investigate the impact of epidermal growth factor receptor (EGFR) ligand EGF and small molecule tyrosine kinase inhibitor Erotinib on the phenotype, cell motility, invasion and metastases in human laryngeal cancer cell line Hep-2.
     Methods:Human laryngeal cancer cell line Hep-2 was treated with 10ng/ml EGF and 20μmol/L Erlotinib, respectively. The cell phenotype changes were observed using inverted microscope. Changes in the localization and expression of E-cadherin, vimentin were examined by immunocytochemistry and Western blot. Wound healing assay and Transwell invasion assay were used to detect cell motility, invasion and metastases, respectively.
     Results:
     1. In the presence of EGF treatment, Hep-2 cells changed its shape to fusiform fibroblastoid phenotype and its colony formation from compact to sparse, while Erlotinib induced the cell morphological changes to round or square, cell grew into cluster;
     2. Immunocytochemistry:EGF resulted in the down-regulation of E-cadherin protein, especially in the cell membrane; while Erlotinib could up-regulate the E-cadherin expression, in some cell there were recurrent positive membrane expression;
     3. Western blot:EGF induced down-regulation of E-cadherin expression, and up-regulation of vimentin, p-EGFR in Hep-2 cells; Erlotinib could lead to up-regulation of E-cadherin, down-regulation of vimentin and p-EGFR. Both the two interference had less impact on EGFR expression;
     4. Wound healing assay:EGF promoted the wound healing, resulted in the increased cell motility and movement; Erlotinib delayed the wound healing, and partly inhibited cell motility and movement. The 24h distance of cell migration in the two experimental group were significantly different than the control group (P<0.05);
     5. Transwell invasion assay:EGF promoted the invasion and metastases of Hep-2 cells, the invasive numbers of Hep-2 cells with EGF treatment at 24h time point were 58.5±10.3 (P<0.05); Erlotinib inhibited the invasion and metastases of Hep-2 cells, the invasive numbers of Hep-2 cells with Erlotinib treatment at 24h time point were 18.7±4.8, which was significantly less than the control group (P<0.05).
     Conclusion:
     1.EGFR signal modulation regulates E-cadherin expression and cell phenotype, motility, invasion and metastases in human laryngeal cancer cell line Hep-2.
     2. Treatment of small molecule tyrosine kinase inhibitor erotinib up-regulates E-cadherin expression, decreases cell motility and movement, inhibits cell invasion and metastases in Hep-2 cells.
引文
[1]Sanderson RJ, Ironside JA. Squamous cell carcinomas of the head and neck. BMJ,2002,325(7368):822-827.
    [2]Cosetti M, Yu GP, Schantz SP. Five-year survival rates and time trends of laryngeal cancer in the US population. Arch Otolaryngol Head Neck Surg,2008, 134(4):370-379.
    [3]Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer,2002,2(3):161-174.
    [4]Charalabopoulos K, Pignatelli M. Adhesion molecules and cancer. Arch Hell Med,2001,18:16-19.
    [5]Charalabopoulos K, Binolis I, Karkabounas S. Adhesion molecules in carcinogenesis. Exp Oncol,2002,24:249-257.
    [6]Van Den Brekel MW, Casteljins JA, Croll GA, et al. Magnetic resonance imaging vs palpation of cervical lymph node metastases. Arch Otolaryngol Head Neck Surg,1991,117(6):666-673.
    [7]Kemler R. From cadherins to caderins:cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet,1993,9(9):317-321.
    [8]Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Sience,1991,251(5000):1451-1455.
    [9]Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer,2002,34(3):255-268.
    [10]Van Aken E, De Wever O, Correia da Rocha AS, Mareel M. Defective E-cadherin/catenin complexes in human cancer. Virchows Arch,2001, 439(6):725-751.
    [11]Racadot S, Mercier M, Dussart S, et al. Randomized clinical trial of post-operative radiotherapy versus concomitant carboplatin and radiotherapy for head and neck cancers with lymph node involvement. Radiother Oncol,2008, 87(2):164-172.
    [12]Rodrigo JP, Dominquez F, Suarez V, et al. Focal adhension kinase and E-cadherin as markers for nodal metastasis in laryngeal cancer. Arch Otolaryngol Head Neck Surg,2007,133(2):145-150.
    [13]Rodriquez Tojo MJ, Garcia Cano FJ, Infante Sanchez JC, et al. Immunoexpression of p53, Ki-67 and E-cadherin in basaloid squamous cell carcinomas of the larynx. Clin Transl Oncol,2005,7(3):110-114.
    [14]Takes RP, Baatenburg de Jong RJ, Keuning J, et al. Protein expression of cancer associated genes:biopsy material compared to resection material in laryngeal cancer. Anticancer Res,1998,18(6B):4787-4791.
    [15]Rodrigo Tapia JP, Dominquez Iqlesias F, Alvarez Marcos C, et al. Prognostic significance of the expression of adhension molecules E-cadherin, Cd44 and CD44V6 in supraglottic squamous carcinoma. Acta Otorrinolaringol Esp,2002, 53(10):745-751.
    [16]Hoschuetzky H, Aberle H, Kemler R. Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol, 1994,127(5):1375-1380.
    [17]Takahashi K, Suzuki K, Tsukatani Y. Induction of tyrosine phosphorylation and association of beta-catenin with EGF receptor upon tryptic digestion of quiescent cells at confluence. Oncogene,1997,15(1):71-78.
    [18]Sun YN, Li Y. Expression of mRNA for membrane-type 1,2, and 3 matrix metalloproteinases in human laryngeal cancer. Chin Med Sci J,2004, 19(3):170-173.
    [19]Rodrigo JP, Dominguez F, Alvarez C, et al. Expression of E-cadherin in squamous cell carcinomas of the supraglottic larynx with correlations to clinicopathological features. Eur J Cancer,2002,38(8):1059-1064.
    [20]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008. CA Cancer J Clin, 2008,58(2):71-96.
    [21]Snow GB, Patel P, Leemans CR, et al. Management of cervical lymph nodes in patients with head and neck cancer. Eur Arch Otorhinolaryngol,1992, 249(4):187-194.
    [22]于靖寰,季文樾,关超,等.声门上型喉癌颈淋巴结转移的临床病理研究.中华耳鼻咽喉科杂志,1997,32(6):325-328.
    [23]Lutz CK, Johnson JT, Wagner RL, et al. Supraglottic carcinoma:patterns of recurrence. Ann Otol Rhinol Laryngol,1990,99(1):12-17.
    [24]季文樾,于靖寰,关超.声门上型喉癌颈淋巴结隐匿性转移.中华耳鼻咽喉科杂志,1999,34(2):111-112.
    [25]Ozturkcan S, Katilmis H, Ozdemir I, et al. Occult contralateral nodal metastases in supraglottic laryngeal cancer crossing the midline. Eur Arch Otorhinolaryngol, 2009,266(1):117-120.
    [26]Muller S, Su L, Tighiouart M, et al. Distinctive E-cadherin and epidermal growth factor receptor expression in metastatic and nonmetastatic head and neck squamous cell carcinoma:predictive and prognostic correlation,2008, 113(1):97-107.
    [27]Van Den Brekel MW, Castelijns JA, Stel HV, et al. Modern imaging techniques and ultrasound-guided aspiration cytology for the assessment of neck node metastases:a prospective comparative study. Eur Arch Otorhinolaryngol,1993, 250(1):11-17.
    [28]Remmler D, Byers R, Scheetz J, et al. A prospective study of shoulder disability resulting from radical and modified neck dissections. Head Neck Surg,1986, 8(4):280-286.
    [29]Patten C, Hillel AD. The 11th nerve syndrome:accessory nerve palsy or adhesive capsulitis? Arch Otolaryngol Head Neck Surg,1993,119(2):215-220.
    [30]Van Den Brekel MWM, Castelijns JA, et al. Diagnostic evaluation of the neck. Otolaryngol Clin North Am,1998,31(4):601-620.
    [31]Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg,2000,87(8):992-1005.
    [32]Bremnes RM, Veve R, Gabrielson E, et al. High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. J Clin Oncol,2002,20(10):2417-2428.
    [33]Ivanov DB, Philippova MP, Tkachuk VA. Structure and functions of classical cadherins. Biochemistry(Mosc),2001,66(10):1174-1186.
    [34]Yamada S, Pokutta S, Drees F, et al. Deconstructing the cadherin-catenin-actin complex. Cell,2005,123(5):889-901.
    [35]Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol,1998,153(2):333-339.
    [36]Frixen UH, Behrens J, Sachs M, et al. E-cadherin-mediated cellcell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol,1991, 113(1):173-185.
    [37]Tomasino RM, Daniele E,. Bazan V, et al. Prognostic significance of cell kinetics in laryngeal squamous cell carcinoma:clinicopathological associations. Cancer Res,1995,55(24):6103-6108.
    [38]Bowie GL, Caslin AW, Roland NJ, et al. Expression of the cell-cell adhesion molecule E-cadherin in squamous cell carcinoma of the head and neck. Clin Otolaryngol,1993,18(3):196-201.
    [39]Shvero J, Hader T, Feinmesser R, et al. Laryngeal carcinoma in females. Eur J Surg Oncol,1996,22(l):61-64.
    [40]夏良平,曾宗渊,魏茂文,等.影响喉癌生存率的单因素和多因素分析.中国肿瘤,2002,11(11):655-657.
    [41]Stell PM. Prognosis in laryngeal carcinoma:host factors. Clin Otolaryngol,1990, 15(2):111-119.
    [42]Nguyen-Tan PF, Le QT, Quivey JM, et al. Treatment results and prognostic factors of advanced T3-4 laryngeal carcinoma:the University of California, San Francisco (UCSF) and Stanford University Hospital (SUH) experience. Int J Radiat Oncol Biol Phys,2001,50(5):1172-1180.
    [43]Jose J, Coatesworth AP, Johnston C, et al. Cervical node metastases in squamous cell carcinoma of the upper aerodigestive tract:the significance of extracapsular spread and soft tissue deposits. Head Neck,2003,25(6):451-456.
    [44]Valles, AM, Boyer B, Badet J, et al. Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc Natl Acad Sci USA,1990,87(3):1124-1128.
    [45]Morali OG, Jouneau A, McLaughlin KJ, et al. IGF-II promotes mesoderm formation. Dev Biol,2000,227(1):133-145.
    [46]Shiozaki H, Kadowaki T, Doki Y, et al. Effect of epidermal growth factor on cadherin-mediated adhesion in a human oesophageal cancer cell line. Br J Cancer, 1995,71(2):250-258.
    [47]Al Moustafa AE, Yen L, Benlimame N, et al. Regulation of E-cadherin/catenin complex patterns by epidermal growth factor receptor modulation in human lung cancer cells. Lung Cancer,2002,37(1):49-56.
    [48]Jones JL, Royall JE, Walker RA. E-cadherin relates to EGFR expression and lymph node metastasis in primary breast carcinoma. Br J Cancer,1996, 74(8):1237-1241.
    [49]Fujii K, Furukawa F, Matsuyoshi N. Ligand activation of overexpressed epidermal growth factor receptor results in colony dissociation and disturbed E-cadherin function in HSC-1 human cutaneous squamous carcinoma cells. Exp Cell Res,1996,223(1):50-62.
    [50]Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol,2009,21(2):177-184.
    [51]Schlessinger J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell,2002,110(6):669-672.
    [52]Solic N, Davies DE. Differential effects of EGF and amphiregulin on adhesion molecule expression and migration of colon carcinoma cells. Exp Cell Res,1997, 234(2):465-476.
    [53]Martinelli E, De Palma R, Orditura M, et al. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin Exp Immunol,2009, 158(1):1-9.
    [54]Takeuchi K, Ito F. EGF receptor in relation to tumor development:molecular basis of responsiveness of cancer cells to EGFR-targeting tyrosine kinase inhibitors. FEBS J,2010,277(2):316-326.
    [55]Moyer JD, Barbacci EG, Iwata KK, et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Bes,1997,57(21):4838-4848.
    [56]Pollack VA, Savage DM, Baker DA, et al. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinoma with CP-358,774:dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J Pharmcol Exp Ther,1999,291(2):739-748.
    [57]Huang L, Verstrepen L, Heyninck K, et al. ABINs inhibit EGF receptor-mediated NF-kappaB activation and growth of EGF receptor-overexpressing tumour cells. Oncogene,2008,27(47):6131-6140.
    [58]Ling YH, Li T, Yuan Z, et al.Erlotinib, an effective epidermal growth factor receptor tyrosine kinase inhibitor, induces p27KIP1 up-regulation and nuclear translocation in association with cell growth inhibition and G1/S phase arrest in human non-small-cell lung cancer cell lines. Mol Pharmacol,2007, 72(2):248-258.
    [59]Qian X, Li J, Ding J, et al. Erlotinib activates mitochondrial death pathways related to the production of reactive oxygen species in the human non-small cell lung cancer cell line A549. Clin Exp Pharmacol Physiol,2009,36(5-6):487-494.
    [60]Mitchison TJ, Cramer LP. Actin-based cell motality and cell lomotion. Cell, 1996,84(3):371-391.
    [61]Gao J, Li J, Ma L. Regulation of EGF-induced ERK/MAPK activation and EGFR internalization by G protein-coupled receptor kinase 2. Acta Biochim Biology Sin(Shanghai).2005,37(8):525-531.
    [62]Harms BD, Bassi GM, Horwitz AR, et al. Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophy J,2005,88(2):1479-1488.
    [63]Yan W, Fu Y, Tian D, et al. PI3 kinase/Akt signaling mediates epithelial-mesenchymal transition in hypoxic hepatocellular carcinoma cells.Biochem Biophys Res Commun,2009,382(3):631-636.
    [64]Steeg P S. Tumor metastasis:mechanistic insights and clinical challenges. Nat Med,2006,12(8):895-904.
    [65]Micalizzi DS, Ford HL. Epithelial-mesenchymal transition in development and cancer. Future Oncol,2009,5(8):1129-1143.
    [66]Cardiff RD. Epithelial to mesenchymal transition tumors:fallacious or snail's pace? Clin Cancer Res,2005,11(24 Pt 1):8534-8537.
    [67]Thompson E W, Newgreen D F, Tarin D. Carcinoma invasion and metastasis:a role for epithelial-mesenchymal transition? Cancer Res,2005, 65(14):5991-5995.
    [68]Thiery JP. Epithelial-mesenchymal transitions in tumor progression. Nat Rev Cancer,2002,2(6):442-454.
    [69]Gavert N, Ben-Ze'ev A. Epithelial-mesenchymal transition and the invasive potential of tumors. Trends Mol Med,2008,14(5):199-209.
    [70]Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest,2009,119(6):1429-1437.
    [71]Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta,2009,1796(2):75-90.
    [72]Gupta GP, Massague J. Cancer metastasis:building a framework. Cell,2006, 127(4):679-695.
    [73]Hoschuetzky H, Aberle H. Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol, 1994,127(5):1375-1380.
    [74]Lu Z, Ghosh S, Wang Z, et al. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell,2003,4(6):499-515.
    [75]Lopez D, Niu G, Huber P, et al. Tumor-induced upregulation of Twist, Snail, and Slug represses the activity of the human VE-cadherin promoter. Arch Biochem Biophys,2009,482(1-2):77-82.
    [76]Batlle E, Sancho E, Franci C, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol,2000, 2(2):84-89.
    [77]Onder TT, Gupta PB, Mani SA, et al. Loss of Ecadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res,2008, 68(10):3645-3654.
    [78]Wilding J, Vousden KH, Soutter WP, et al. E-cadherin transfection down-regulates the epidermal growth factor receptor and reverses the invasive phenotype of human papilloma virus-transfected keratinocytes. Cancer Res,1996, 56(22):5285-5292.
    [79]Braut T, Krstulja M, Kujundzic M, et al. Epidermal growth factor receptor protein expression and gene amplification in normal, hyperplastic, and cancerous glottic tissue:immunohistochemical and fluorescent in situ hybridization study on tissue microarrays.Croat Med J,2009,50(4):370-379.
    [80]Chang AR, Wu HG, Park CI, et al. Expression of epidermal growth factor receptor and cyclin D1 in pretreatment biopsies as a predictive factor of radiotherapy efficacy in early glottic cancer. Head Neck,2008,30(7):852-857.
    [1]Baranwal S, Alahari SK. Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun,2009,384(1):6-11.
    [2]Ivanov DB, Philippova MP, Tkachuk VA. Structure and functions of classical cadherins. Biochemistry(Mosc),2001,66(10):1174-1186.
    [3]Yamada S, Pokutta S, Drees F, et al. Deconstructing the cadherin-catenin-actin complex. Cell,2005,123(5):889-901.
    [4]Hartsock A, Nelson WJ. Adherens and tight junctions:structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta,2008, 1778(3):660-669.
    [5]Bremnes RM, Veve R, Gabrielson E, et al. High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. J Clin Oncol,2002,20(10):2417-2428.
    [6]Drees F, Pokutta S, Yamada S, et al. α-Catenin is a molecular switch that binds E-cadherin-β-catenin and regulates actin-filament assembly. Cell,2005, 123(5):903-915.
    [7]Giannini AL, Vivanco M, Kypta RM. Alpha-catenin inhibits beta-catenin signaling by preventing formation of a beta-catenin*T-cell factor*DNA complex. J Biol Chem,2000,275(29):21883-21888.
    [8]Karim R, Tse G, Putti T, et al. The significance of the Wnt pathway in the pathology of human cancers. Pathology,2004,36(2):120-128.
    [9]Vignjevic D, Schoumacher M, Gavert N, et al. Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res,2007,67(14):6844-6853.
    [10]Singh PK, Hollingsworth MA. Cell surface-associated mucins in signal transduction. Trends Cell Biol,2006,16(9):467-476.
    [11]Boonen RA, van Tijn P, Zivkovic D. Wnt signaling in Alzheimer's disease:up or down, that is the question. Ageing Res Rev,2009,8(2):71-82.
    [12]Bauer A, Huber O, Kemler R. Pontin52, an interaction partner of beta-catenin, binds to the TATA box binding protein. Proc Natl Acad Sci USA,1998, 95(25):14787-14792.
    [13]Reynolds AB. p120-catenin:Past and present. Biochim Biophys Acta,2007, 1773(1):2-7.
    [14]Anastasiadis PZ, Reynolds AB. The p120 catenin family:complex roles in adhesion, signaling and cancer. J Cell Sci,2000,113(8):1319-1334.
    [15]Anastasiadis PZ, Moon SY, Thoreson MA, et al. Inhibition of RhoA by p120 catenin. Nat Cell Biol,2000,2(9):637-644.
    [16]van Hengel J, van Roy F. Diverse functions of p120ctn in tumors. Biochim Biophys Acta,2007,1773(1):78-88.
    [17]Roura S, Miravet S, Piedra J, et al. Regulation of E-cadherin/catenin association by tyrosine phosphorylation. J Biol Chem,1999,274(51):36734-36740.
    [18]St Croix B, Sheehan C, Rak JW, et al. E-Cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27(KIP1). J Cell Biol,1998,142(2):557-571.
    [19]Lobo MV, Alonso FJ, Redondo C, et al. Cellular characterization of epidermal growth factor-expanded free-floating neurospheres. J Histochem Cytochem, 2003,51(1):89-103.
    [20]Lu Z, Ghosh S, Wang Z, et al. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell,2003,4(6):499-515.
    [21]Behrens J. Cadherins and catenins:role in signal transduction and tumor progression. Cancer Metastasis Rev,1999,18(1):15-30.
    [22]Batlle E, Sancho E, Franci C, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol,2000, 2(2):84-89.
    [23]Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol,2000,2(2):76-83.
    [24]Potla L, Boghaert ER, Armellino D, et al. Reduced expression of EphrinAl (EFNA1) inhibits three-dimensional growth of HT29 colon carcinoma cells. Cancer Lett,2002,175(2):187-195.
    [25]Lu Z, Ghosh S, Wang Z, et al. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell,2003,4(6):499-515.
    [26]Fujii K, Furukawa F, Matsuyoshi N. Ligand activation of overexpressed epidermal growth factor receptor results in colony dissociation and disturbed E-cadherin function in HSC-1 human cutaneous squamous carcinoma cells. Exp Cell Res,1996,223(1):50-62.
    [27]Shiozaki H, Kadowaki T, Doki Y, et al. Effect of epidermal growth factor on cadherin-mediated adhesion in a human oesophageal cancer cell line. Br J Cancer,1995,71(2):250-258.
    [28]Al Moustafa AE, Yen L, Benlimame N, et al. Regulation of E-cadherin/catenin complex patterns by epidermal growth factor receptor modulation in human lung cancer cells. Lung Cancer,2002,37(1):49-56.
    [29]Al Moustafa AE, Yansouni C, Alaoui-Jamali MA, et al. Up-regulation of E-cadherin by an anti-epidermal growth factor receptor monoclonal antibody in lung cancer cell lines. Clin Cancer Res,1999,5(3):681-686.
    [30]Karim R, Tse G, Putti T, et al. The significance of the Wnt pathway in the pathology of human cancers. Pathology,2004,36(2):120-128.
    [31]Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis--a look outside the nucleus. Science,2000,287(5458):1606-1609.
    [32]Akiyama T, Kawasaki Y. Wnt signalling and the actin cytoskeleton. Oncogene, 2006,25(57):7538-7544.
    [33]Cui J, Zhou X, Liu Y, et al. Mutation and overexpression of the beta-catenin gene may play an important role in primary hepatocellular carcinoma among Chinese people. J Cancer Res Clin Oncol,2001,127(9):577-581.
    [34]Fujimori M, Ikeda S, Shimizu Y, et al. Accumulation of beta-catenin protein and mutations in exon 3 of beta-catenin gene in gastrointestinal carcinoid tumor. Cancer Res,2001,61(18):6656-6659.
    [35]Henderson BR. Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol,2000,2(9):653-660.
    [36]Nakajima M, Fukuchi M, Miyazaki T, et al. Reduced expression of Axin correlates with tumour progression of oesophageal squamous cell carcinoma. Br J Cancer,2003,88(11):1734-1739.
    [37]Patturajan M, Nomoto S, Sommer M, et al. DeltaNp63 induces beta-catenin nuclear accumulation and signaling. Cancer Cell,2002, 1(4):369-379.
    [38]Shiina H, Igawa M, Shigeno K, et al. Beta-catenin mutations correlate with over expression of C-myc and cyclin D1 Genes in bladder cancer. J Urol,2002, 168(5):2220-2226.
    [39]Heasman J, Crawford A, Goldstone K, et al. Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell,1994,79(5):791-803.
    [40]Sanson B, White P, Vincent JP. Uncoupling cadherin-based adhesion from wingless signalling in Drosophila. Nature,1996,383(6601):627-630.
    [41]Kam Y, Quaranta V. Cadherin-bound beta-catenin feeds into the Wnt pathway upon adherens junctions dissociation:evidence for an intersection between beta-catenin pools. PLoS One,2009,4(2):e4580.
    [42]Lazar D, Taban S, Ardeleanu C, et al. The immunohistochemical expression of E-cadherin in gastric cancer:correlations with clinicopathological factors and patients'survival. Rom J Morphol Embryol,2008,49(4):459-467.
    [43]Saad AG, Yeap BY, Thunnissen FB, et al. Immunohistochemical markers associated with brain metastases in patients with nonsmall cell lung carcinoma. Cancer,2008,113(8):2129-2138.
    [44]Zhai B, Yan HX, Liu SQ, et al. Reduced expression of E-cadherin/catenin complex in hepatocellular carcinomas. World J Gastroenterol,2008, 14(37):5665-5673.
    [45]Suciu C, Cimpean AM, Muresan AM, et al. E-cadherin expression in invasive breast cancer. Rom J Morphol Embryol,2008,49(4):517-523.
    [46]Rodrigo JP, Dominquez F, Suarez V, et al. Focal adhension kinase and E-cadherin as markers for nodal metastasis in laryngeal cancer. Arch Otolaryngol Head Neck Surg,2007,133(2):145-150.
    [47]Rodriquez Tojo MJ, Garcia Cano FJ, Infante Sanchez JC, et al. Immunoexpression of p53, Ki-67 and E-cadherin in basaloid squamous cell carcinomas of the larynx. Clin Transl Oncol,2005,7(3):110-114.
    [48]Takes RP, Baatenburg De Jong R, Keuning J, et al. Protein expression of cancer associated genes:biopsy material compared to resection material in laryngeal cancer. Anticancer Res,1998,18(6B):4787-4792.
    [49]Rodrigo Tapia JP, Dominquez Iqlesias F, Alvarez Marcos C, et al. Prognostic significance of the expression of adhension molecules E-cadherin, Cd44 and CD44V6 in supraglottic squamous carcinoma. Acta Otorrinolaringol Esp,2002, 53(10):745-751.
    [50]Schipper JH, Frixen UH, Behrens J, et al. E-cadherin expression in squamous cell carcinomas of head and neck:inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res,1991, 51(23Pt1):6328-6337.
    [51]Howard EM, Lau SK, Lyles RH, et al. Expression of e-cadherin in high-risk breast cancer. J Cancer Res Clin Oncol,2005,131(1):14-18.
    [52]Yoon CS, Hyung WJ, Lee JH, et al. Expression of S100A4, E-cadherin, alpha-and beta-catenin in gastric adenocarcinoma. Hepatogastroenterology,2008, 55(86-87):1916-1920.
    [53]Zhai B, Yan HX, Liu SQ, et al. Reduced expression of P120 catenin in cholangiocarcinoma correlated with tumor clinicopathologic parameters. World J Gastroenterol,2008,14(23):3739-3744.
    [54]Lopes FF, da Costa Miguel MC, Pereira AL, et al. Changes in immunoexpression of E-cadherin and beta-catenin in oral squamous cell carcinoma with and without nodal metastasis. Ann Diagn Pathol,2009, 13(1):22-29.
    [55]Ghaffari SR, Dastan J, Rafati M, et al. Novel human pathological mutations. Gene symbol:CDH1. Disease:gastric cancer. Hum Genet,2009,125(3):337.
    [56]Masciari S, Larsson N, Senz J, et al. Germline E-cadherin mutations in familial lobular breast cancer. J Med Genet,2007,44(11):726-731.
    [57]Droufakou S, Deshmane V, Roylance R, et al. Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer,2001, 92(3):404-408.
    [58]Kwon GY, Yoo BC, Koh KC, et al. Promoter methylation of E-cadherin in hepatocellular carcinomas and dysplastic nodules. J Korean Med Sci,2005, 20(2):242-247.
    [59]Nam JS, Ino Y, Kanai Y, et al.5-aza-2'-deoxycytidine restores the E-cadherin system in E-cadherin-silenced cancer cells and reduces cancer metastasis. Clin Exp Metastasis,2004,21(1):49-56.
    [60]Muller S, Su L, Tighiouart M, et al. Distinctive E-cadherin and epidermal growth factor receptor expression in metastatic and nonmetastatic head and neck squamous cell carcinoma:predictive and prognostic correlation. Cancer,2008, 113(1):97-107.
    [61]Vleminckx K, Vakaet L Jr, Mareel M, et al. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell, 1991,66(1):107-119.
    [62]Mbalaviele G, Dunstan CR, Sasaki A, et al. E-cadherin expression in human breast cancer cells suppresses the development of osteolytic bone metastases in an experimental metastasis model. Cancer Res,1996,56(17):4063-4070.
    [63]Perl AK, Wilgenbus P, Dahl U, et al. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature,1998,392(6672):190-193.
    [64]Brabletz T, Jung A, Dag S, et al. Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol,1999, 155(4):1033-1038.
    [65]Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature,1999,398(6726):422-426.
    [66]Johnson ML, Rajamannan N. Diseases of Wnt signaling. Rev Endocr Metab Disord,2006,7(1-2):41-49.
    [67]Weeraratna AT, Jiang Y, Hostetter G, et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell,2002, 1(3):279-288.
    [68]Katoh M. Wnt/PCP signaling pathway and human cancer. Oncol Rep,2005, 14(6):1583-1588.
    [69]Chen AE, Ginty DD, Fan CM. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature,2005,433(7023):317-322.
    [70]Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature,2005, 434(7035):843-850.
    [71]Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell,2000, 103(2):311-320.
    [72]Groves C, Lamlum H, Crabtree M, et al. Mutation cluster region, association between germline and somatic mutations and genotype-phenotype correlation in upper gastrointestinal familial adenomatous polyposis. Am J Pathol,2002, 160(6):2055-2061.
    [73]Miyoshi Y, Iwao K, Nawa G, et al. Frequent mutations in the beta-catenin gene in desmoids tumors from patients without familial adenomatous polyposis. Oncol Res,1998,10(11-12):591-594.
    [74]Kikuchi A. Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci,2003,94(3):225-229.
    [75]Salahshor S, Woodgett JR. The links between Axin and carcinogenesis. J Clin Pathol,2005,58(3):225-236.
    [76]Liu W, Dong X, Mai M, et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signaling.Nat Genet, 2000,26(2):146-147.
    [1]Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002. CA Cancer J Clin,2005,55(2):74-108.
    [2]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2007. CA Cancer J Clin, 2007,57(1):43-66.
    [3]American Cancer Society. Cancer Facts and Figures 2008. Atlanta, Ga: American Cancer Society; 2008.
    [4]Gillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst,2000,92(9):709-720.
    [5]Fakhry C, Westra W, Li S, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst,2008,100(4):261-269.
    [6]Gillison ML. Human papillomavirus-associated head and neck cancer is a distinct epidemiologic, clinical, and molecular entity. Semin Oncol,2004, 31(6):744-754.
    [7]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008. CA Cancer J Clin, 2007,58(2):71-96.
    [8]Argiris A, Li Y, Forastiere A. Prognostic factors and longterm survivorship in patients with recurrent or metastatic carcinoma of the head and neck. Cancer, 2004,101(10):2222-2229.
    [9]Leon X, Hitt R, Constenla M, et al. A retrospective analysis of the outcome of patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck refractory to a platinum-based chemotherapy. Clin Oncol (R Coll Radiol),2005,17(6):418-424.
    [10]Seiwert TY, Salama JK, Vokes EE. The chemoradiation paradigm in head and neck cancer. Nat Clin Pract Oncol,2007,4(3):156-171.
    [11]Soria JC, Kim ES, Fayette J, et al. Chemoprevention of lung cancer. Lancet Oncol,2003,4(11):659-669.
    [12]Harari PM. Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer,2004,11(4):689-708.
    [13]Normanno N, De Luca A, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene,2006,366(1):2-16.
    [14]Ang KK, B'erkey BA, Tu X, et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res,2002,62(24):7350-7356.
    [15]Rubin Grandis J, Melhem MF, Barnes EL, et al. Quantitative immunohistochemical analysis of transforming growth factor-alpha and epidermal growth factor receptor in patients with squamous cell carcinoma of the head and neck. Cancer,1996,78(6):1284-1292.
    [16]Ke LD, Adler-Storthz K, Clayman GL, et al. Differential expression of epidermal growth factor receptor in human head and neck cancers. Head Neck, 1998,20(4):320-327.
    [17]Shin DM, Ro JY, Hong WK, et al. Dysregulation of epidermal growth factor receptor expression in premalignant lesions during head and neck tumorigenesis. Cancer Res,1994,54(12):3153-3159.
    [18]Kim ES, Kies M, Herbst RS. Novel therapeutics for head and neck cancer. Curr Opin Oncol,2002,14(3):334-342.
    [19]Sok JC, Coppelli FM, Thomas SM, et al. Mutant epidermal growth factor receptor (EGFRvⅢ) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin'Cancer Res,2006,12(17):5064-5073.
    [20]Baselga J, Pfister D, Cooper MR, et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol,2000,18(4):904-914.
    [21]Huang SM, Bock JM, Harari PM. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res,1999,59(8):1935-1940.
    [22]Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol,2003,21(14):2787-2799.
    [23]Dittmann K, Mayer C, Fehrenbacher B, et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem,2005,280(35):31182-31189.
    [24]Huang SM, Harari PM. Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas:inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res,2000, 6(6):2166-2174.
    [25]Milas L, Fan Z, Andratschke NH, et al. Epidermal growth factor receptor and tumor response to radiation:in vivo preclinical studies. Int J Radiat Oncol Biol Phys,2004,58(3):966-971.
    [26]Baselga J, Norton L, Masui H, et al. Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst,1993,85(16):1327-1333.
    [27]Fan Z, Baselga J, Masui H, et al. Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res,1993,53(19):4637-4642.
    [28]Kang X, Patel D, Ng S, et al. High affinity Fc receptor binding and potent induction of antibody-dependent cellular cytotoxicity (ADCC) in vitro by anti-epidermal growth factor receptor antibody cetuximab. Proc Am Soc Clin Oncol,2007,25(18S).
    [29]Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med,2006, 354(6):567-578.
    [30]Vermorken JB, Trigo J, Hitt R, et al. Open-label, uncontrolled, multicenter phase Ⅱ study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum based therapy. J Clin Oncol,2007, 25(16):2171-2177.
    [31]李金忠,郑家伟,张志愿.西妥昔单抗联合化疗或放疗治疗晚期头颈鳞癌的疗效评价.上海口腔医学,2008,17(1):1-5.
    [32]Curran D, Giralt J, Harari PM, et al. Quality of life in head and neck cancer patients after treatment with highdose radiotherapy alone or in combination with cetuximab. J Clin Oncol,2007,25(16):2191-2197.
    [33]Pfister DG, Su YB, Kraus DH, et al. Concurrent cetuximab, cisplatin, and concomitant boost radiotherapy for locoregionally advanced, squamous cell head and neck cancer:a pilot phase Ⅱ study of a new combined-modality paradigm. J Clin Oncol,2006,24(7):1072-1078.
    [34]Langer CJ, Lee JW, Patel UA, et al. Preliminary analysis of ECOG 3303: concurrent radiation (RT), cisplatin (DDP) and cetuximab (C) in unresectable, locally advanced (LA) squamous cell carcinoma of the head and neck [abstract]. J Clin Oncol,2008,26. Abstract 6006.
    [35]National Institutes of Health. Clinical trials registry. Available at: http://www.clinicaltrials.gov Accessed July 7,2008.
    [36]Burtness B, Goldwasser MA, Flood W, et al. Phase Ⅲ randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer:an Eastern Cooperative Oncology Group study. J Clin Oncol,2005,23(34):8646-8654.
    [37]Bourhis J, Rivera F, Mesia R, et al. Phase Ⅰ/Ⅱ study of cetuximab in combination with cisplatin or carboplatin and fluorouracil in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol,2006, 24(18):2866-2872.
    [38]Vermorken JB, Mesia R, Vega V. Cetuximab extends survival of patients with recurrent or metastatic SCCHN when added to first line platinum based therapy-Results of a randomized phase Ⅲ (EXTREME) study [abstract]. Proc Am Soc Clin Oncol,2007,25(18S). Abstract 6091.
    [39]Vermorken JB, Hitt R, Geoffrois L, et al. Cetuximab plus platinum-based therapy first-line in recurrent and/or metastatic squamous cell carcinoma of the head and neck:efficacy and safety results of a randomized phase Ⅲ trial (EXTREME). Eur J Cancer,2007,324(4 suppl):5501.
    [40]Baselga J, Trigo JM, Bourhis J, et al. Phase Ⅱ multicenter study of the antiepidermal growth factor receptor monoclonal antibody cetuximab in combination with platinumbased chemotherapy in patients with platinum-refractory metastatic and/or recurrent squamous cell carcinoma of the head and neck. J Clin Oncol,2005,23(24):5568-5577.
    [41]Herbst RS, Arquette M, Shin DM, et al. Phase Ⅱ multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J Clin Oncol, 2005,23(24):5578-5587.
    [42]Baselga J, Averbuch SD. ZD1839(Ireasa) as an anticancer agent. Drugs,2000, 60:33-40.
    [43]Fukutome M, Maebayashi K, Nasu S, et al. Enhancement of radiosensitivity by dual inhibition of the HER family with ZD1839 ("Iressa") and trastuzumab ("Herceptin"). Int J Radiat Oncol Biol Phys.2006 Oct 1;66(2):528-36.
    [44]Wakeling AE. Epidermal growth factor receptor tyrosine kinase inhibitors. Current Opinion in Pharmacotherapy,2002,2(4):382-387.
    [45]Simon J, Stewart W, Cohen EW, et al. A phase Ⅲ randomized parallel-group
    study of gefitinib (IRESSA) versus methotrexate (IMEX) in patients with recurrent squamous cell carcinoma of the head and neck. Program and abstracts of the Annual Meeting of the American Association for Cancer Research, Los Angeles, California, April 14-18,2007.
    [46]Senzer NN,Soulieres D,Siu L, et al. Phase 2 evaluation of OSI2774, a potent oral antagonist of the EGFR-TK in patients with advanced squamous cell carcinoma of the head and neck. Proc Am Soc Clin Oncol,2001,20:2a. Abstract 6.
    [47]Kim ES, Kies MS, Glisson BS, et al. Final results of a phase Ⅱ study of Erlotinib, docetaxel and cisplatin in patients with recurrenet/metastatic head and neck cancer. Proc Am Soc Clin Oncol,2007,25(18S). Abstract 6013.
    [48]Abidoye OO, Cohen EE, Wong SJ, et al. A phase Ⅱ study of lapatinib (GW572016) in recurrent/metastatic (R/M) squamous cell carcinoma of the head and neck (SCCGB). Proc Am Soc Clin Oncol.2006,24(18S). Abstract 5568.
    [49]Fernando NH, Hurwitz HI. Inhibition of vascular endothelial growth factor in the treatment of colorectal cancer. Semin Oncol,2003,30:39-50.
    [50]Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol, 2002,29:15-18.
    [51]Jain RK. Tumor angiogenesis and accessibility:role of vascular endothelial growth factor. Semin Oncol,2002,29:3-9.
    [52]Ferrara N. VEGF as a therapeutic target in cancer. Oncology,2005,69:11-16.
    [53]Collins TS, Hurwitz HI. Targeting vascular endothelial growth factor and angiogenesis for the treatment of colorectal cancer. Semin Oncol,2005, 32(1):61-68.
    [54]Ferrara N, Hillan KJ, Gerber HP, et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov, 2004,3(5):391-400.
    [55]Konner J, Dupont J. Use of soluble recombinant decoy receptor vascular endothelial growth factor trap (VEGF Trap) to inhibit vascular endothelial growth factor activity. Clin Colorectal Cancer,2005,4:S81-S85.
    [56]O-charoenrat P, Rhys-Evans P, Modjtahedi H, et al. Vascular endothelial growth factor family members are differentially regulated by c-erbB signaling in head and neck squamous carcinoma cells. Clin Exp Metastasis,2000,18(2):155-161.
    [57]Ciardiello F, Troiani T, Bianco R, et al. Interaction between the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor (VEGF) pathways:a rational approach for multitarget anticancer therapy. Ann Oncol, 2006,17(S7):109-114.
    [58]Vokes EE, Cohen EE, Mauer AM, et al. A phase I study of Erlotinib and bevacizumab for recurrent or metastatic squamous cell carcinoma of the head and neck. Proc Am Soc Clin Oncol,2005,23(18S). Abstract 5504.
    [59]Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology. Int J Cancer,2003,107(6):873-877.
    [60]Yamada Y, Goto A, Ura T, et al. Prognostic and predictive significance of insulin-like growth factor-1 receptor (IGF-1R), epidermal growth factor receptor (EGFR), and HER2 in metastatic colorectal cancer. Proc Am Soc Clin Oncol, 2005,23(16S). Abstract 9649.
    [61]Jones H, Gee J, Hutcheson IR, et al. Growth factor receptor interplay and resistance in cancer. Endocr Relat Cancer,2006,13:S45-S51.
    [62]Morgillo F, Woo JK, Kim ES, et al. Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of Erlotinib. Cancer Res,2006, 66(20):10100-10111.
    [63]Savvides P, Greskovich J, Bokar J, et al. Phase II study of bevacizumab in combination with docetaxel and radiation in locally advanced squamous cell cancer of the head and neck. Proc Am Soc Clin Oncol,2007,25(18S). Abstract 6068.
    [64]Morgillo F, Kim WY, Kim ES, et al. Implication of the insulin-like growth factor-IR pathway in the resistance of non-small cell lung cancer cells to treatment with gefitinib. Clin Cancer Res,2007,13(9):2795-2803.
    [65]Giaccone G, Zucali PA. Src as a potential therapeutic target in non-small-cell lung cancer. Ann Oncol,2008,19(7):1219-1223.
    [66]Johnson FM, Saigal B, Talpaz M, et al. Dasatinib (BMS-3548285) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and nonsmall cell lung cancer cell. Clin Cancer Res,2005,11:6924-6932.
    [67]Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors:a novel class of potent and effective antitumor agents. Cancer Res,1999, 59(11):2615-2622.
    [68]Voorhees PM, Dees EC, O'Neil B, et al. The proteasome as a target for cancer therapy. Clin Cancer Res,2003,9(17):6316-6325.
    [69]Boyle JO, Hakim J, Koch W, et al. The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res,1993,53(19):4477-4480.
    [70]Brennan JA, Boyle JO, Koch WM, et al. Association between cigarette smoking and mutation of the p53 gene in squamous-cell carcinoma of the head and neck. N Engl J Med,1995,332(11):712-717.
    [71]Zou Y, Zong G, Ling YH, et al. Effective treatment of early endobronchial cancer with regional administration ofliposome-p53 complexes. J Natl Cancer Inst, 1998,90(15):1130-1137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700