用户名: 密码: 验证码:
一类流固耦合问题的数值算法及风场中摇曳树木的物理仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对耦合作用发生在两相交界面上的柔性结构流固耦合问题,选择两种可以优势互补的数值算法进行了研究并作出改进,使其能适用于风场中摇曳树木的物理仿真。进而系统地提出了一种风场中摇曳树木的物理仿真方法,用该方法分别模拟了风场中阔叶树和无叶树的摇曳,还将该方法应用于风场中摇曳树木的基于物理的计算机动画生成。
     文中选择任意拉格朗日—欧拉法(ALE法)和基于固定笛卡尔网格的切割单元法(CCC法)进行深入研究。在ALE法方面,本文提出了一种管道中活门运动的整体耦合模拟和网格处理方法,并使其可用于二维流场中树叶周围流场的模拟和树叶阻力系数的计算。在CCC法方面,因原算法通常用于二维问题的模拟,在处理三维问题时因切割单元成型困难而较少采用。本文针对风场中的阔叶树运动模拟的需求,提出了通过适当降低三维的CCC法求解精度而极大简化切割单元的成型过程的改进方法,这不仅有效提高计算速度,而且使算法特别适用于风场中摇曳树木的仿真分析。
     在改进算法的基础上,论文系统地提出了一种风场中摇曳树木的物理仿真方法。该方法包括树木有限元模型的生成、树叶的材料特性和空气动力学特性的仿真模拟、将树水分为阔叶树和无叶树两种模式进行风荷载计算,以及基于上述技术思路建立对风场中的树木流固耦合物理仿真的方法。该仿真模拟方法,首次提出了用虚拟壳结构代替阔叶树的树冠的建模、考虑树枝本身运动速度和流场中圆柱体上的脉动涡脱作用力的双向流固耦合模拟,以及材料参数的不对称性会影响树木的动力学特性的假设和物理仿真与验证。
     本文还将仿真分析应用于计算机图形学领域,首次提出了基于模拟结果数据库的风场中摇曳树木基于物理的计算机动画的生成方法。针对计算机动画数据量大和精度要求远低于工程设计的特点,提出了两种有效方法:一种方法是用简化的单向耦合算法来代替双向耦合算法,用人工阻尼代替双向耦合算法的物理阻尼来对单向耦合算法进行修正,使得简化的单向耦合模拟的结果更接近双向耦合算法的模拟结果;另一种方法是虚拟材料法,通过虚拟地改变材料参数来加快动力学有限元显式求解的速度。采用了上述两种方法后,所需计算时间大大缩短,能够适应动画制作的要求。
A Class of fluid-structure interaction (FSI) problems with flexible structures immersed in fluid fields and fluid-structure interfaces between fluid and solid were studied in this paper and simulation of swaying trees in wind field were carried out based on the investigation of FSI numerical algorithms. Two typical numerical algorithms were deeply studied and some improvements were made to accommodate the simulation of swaying tree in wind field. A systematic simulation approach for swaying tree in wind field was proposed, and swaying behaviors of broad-leaf tree and no-leaf tree in wind field were simulated. The simulation method for wind-induced swaying tree simulation proposed in this paper was also implemented to physics-based animation generation.
     Two FSI algorithms that deeply studied were Arbitrary Lagrangian-Eulerian (ALE) method and Cartersian Cut Cell (CCC) method. For ALE method, a monolothic coupling approach and a mesh updating approach for valves in pipes was put forward, and 2D flow field near the leaf and the drag coefficient of the leaf was calculated using the similar approach. For CCC method, the original method was merely powerful for 2D problems, however some difficulties will meet due to the variety of cut cells when extending to 3D problems. Based on the requirement of wind-induced broad-leaf tree simulation, a simplified 3D CCC method is proposed in this paper by properly lower down the precision requirement in exchange of greatly lesson the cut cell types. The simplified method is much faster than the original one, and very suitable for wind-induced broad-leaf tree simulation.
     Based on the mended algorithms, a systematic approach of wind induced swaying tree simulation is proposed. This approach includes finite element tree model generation, estimation of material and aerodynamic property of tree leaves, different wind loading methods for broad-leaf tree and no-leaf tree, along with the FSI simulation methods for swaying trees in wind field. As an important part of the approach, a new method for calculating wind force exerting on the finite element broad-leaf tree model was given. The method was to establish a virtual shell structure as the fluid-structure interface surrounding the crown structure of the tree. Another important part of the approach is the two-way coupling simulation for no-leaf trees based on the experimental data of the fluctuating wind force on circular cylinders derived during the wind tunnel tests. The next point worth to mention was the investigation of a geometrically symmetric model for special purpose to investigate the influence of asymmetric material properties on tree motion.
     The simulation approach proposed in this paper was also applied to computer graphics field and a new method for physics-based animation generation based on the resulting database of wind-induced swaying tree simulation is proposed. Considering that animation generation needs massive data but the requirement of simulation precision is much lower than any engineering simulation, two effective methods were bring forward to accelerate the simulation: The first method was to run the one-way coupling code instead of two-way coupling code to save the time, but artificial damping was added to compensate the physical damping of two-way coupling algorithm, the amendment of artificial damping may prevent the dropping of simulation precision. The second method was named as "virtual material method", this method can enhance the time step size of explicit code of the dynamic finite element simulation by virtually adjusting the material parameters of tree material. The combination of simplified FS1 simulation method and virtual material method can greatly reduce the time for running the simulation, and meets the requirement of physics-based animation generation.
引文
[1]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [2]Zhang A.,Suzuki K.A comparative study of numerical simulations for fluid-structure interaction of liquid-filled tank during ship collision[J].Ocean Engineering,2007,34(5):645-652.
    [3]Hansson RA,Sandberg G.Dynamic finite element analysis of fluid-filled pipes,Dynamic finite element analysis of fluid-filled pipes[J].Computer Methods in Applied Mechanics Engineering,2001,190(24):3111-3120.
    [4]Lai Y.G.A numerical simulation of mechanical heart valve closure fluid dynamics[J].Journal of Biomechanics,2002,35(7):881-892.
    [5]Girodroux L.P.,Grisval J.P.Guillemot S.,et al.Comparison of static and dynamic fluid-structure interaction solutions in the case of a highly flexible modern transport aircraft wing[J].Aerospace Science and Technology,2003,7(2):121-133.
    [6]Wang X.Q.,So R.M.C..Liu Y.Flow-induced vibration of an Euler-Bernoulli beam[J].Journal of Sound and Vibration,2001,243(2):241-268,
    [7]Slone A.K.,Pericleous K.,Bailey C.,et al.,Dynamic fluid-structure interaction using finite volume unstructured mesh procedures[J].Computers and Structure,2002,80(5-6):371-390.
    [8]戴大农.流固耦合系统动力分析的若干基本问题与数值方法[D].清华大学工程力学系,北京.1988.
    [9]杜建镔,王勖成.旋转周期性含液容器的流固耦合动力特性[J].清华大学学报,1999,39(8):108-111.
    [10]张立翔,杨柯.流体结构互动理论[M],科学出版社,北京,2004.
    [11]Hart J.D.A two-dimensional fluid-structure interaction model of the aortic value[J].Journal of Biomechanics,2000,33(9):1079-1088.
    [12]Loon R.V.,Anderson P.D..Hart J.D.,et al.A combined fictitious domail/adaptive meshing method for fluid-structure interaction in heart valves[J].International Journal For Numerical Methods' in Fluids.2004,46:533-544.
    [13]Loon R.V.,Anderson P.D.,Baaijens F.R.T.,et al.A three-dimensional fluid-structure interaction method for heart valve modeling[J].Comptes Rendus Mecanique,2005,333(12):856-866.
    [14]Bluestein D.,Li Y.M.,Krukenkamp I.B.Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques[J].Journal of Biomechanics,2002,35:1533-1540.
    [15]王双连,郭乙木,陶伟明等.带活门轴对称变截面管道中强激波的传播特性[J].浙江大学学报(工学版),2001,35(5):540-545.
    [16]Gabbai R.D.,Benaroya H.,An overview of modeling and experiments of vortex-induced vibration of circular cylinders[J],Journal of Sound and Vibration,2005,282:575-616.
    [17]Williamson C.H.K.,Govardhan R.,Vortex-induced vibrations[J],Annual Review of Fluid Mechanics,2004,36:413-455.
    [18]Yamamoto C.T.,Meneghini J.R.,Saltara F.,et al.Numerical simulation of vortex-induced vibration on flexible cylinders[J],Journal of Fluids and Structures,2004,19(4):467-489.
    [19]Fujarra A.L.C.Vortex-induced vibration of a flexible cantilever[J],Journal of Fluids and Structures,2001,15(3):651-658.
    [20]Matthias H.An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems[J].Computer Methods in Applied Mechanics and Engineering,2004,193(1):1-23.
    [21]Chen X.Y.,Zha G.C.Fully cgupled fluid-structural interactions using an efficient highresolution upwind scheme[J].Journal of Fluids and Structures,2005,20(8):1105-1125.
    [22]Hermann.G.M.,Jan S.Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction[J].Computer & Structures,2002,80(27-30):1991-1999.
    [23]Jan V.,Lieve,L.,Joris D.Implicit coupling Of partitioned,fluid-structure interaction problems with reduced order models[J].Computer & Structures,2007,85(11-14):970-976.
    [24]Zuijlen V.A.H.,Bosscher S.,Bijl H.Two level algorithms for partitioned fluid-structure interaction computations[J].Computer Methods in Applied Mechanics and Engineering,2007,196(8):1458-1470.
    [25]Bjorn H.,Elmar W.,Dieter D.Amonolithic approach to fluid-strucutre interaction using space-time finite elements[J].Computer Methods in Applied Mechanics and Engineering,2004,193(23-26):2087-2104.
    [26]Matthew F.B.,Jeffrey L.P.Methods for Simulation-based Analysis of Fluid-Structure Interaction[D],NASA Scientific and Technical Aerospace Reports,Report No(s):DE20,06-875605;SAND2005-6573.
    [27]Josep S.,Antonio H.,Jean D.Arbitrary Lagrangian-Eulerian formulation for fluid-rigid body interaction[J].Computer Methods in Applied Mechanics and Engineering,2001,190(24-25):3171-3188.
    [28]Fabian D.,Raul G.,Srinivasan N.Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries[J].Computer Methods in Applied Mechanics ana Engineering,.2004,193(45-47):4819-4836.
    [29]Rajat M.,Gianluca I.Immersed Boundary Methods[J].Annual Review of Fluid Mechanics,2005,37:239-261.
    [30]Dokyun K.,Haecheon C.hnmersed boundary method for flow around an arbitrarily moving body[J],Journal of Computational Physics,2006,212(2):662-680.
    [31]Daniele B,,Lucia G.A finite element approach for the immersed boundary method[J].Computers & Structures,2003,81(8-11):491-501.
    [32]Wei X.H.,Soo J.S.,Hyung J.S.Simulation of flexible filaments in a uniform flow by the immersed boundary method[J].Journal of Computational Physics,2007,226(2):2206-2228.,
    [33]Bertrand,F.,Tanguy,P.A.,Thibault,F.A three-dimensional fictitious domain method for incompressible fluid flow problems[J].International Journal of Numerical Methods for Fluids,1997,25:719-739.
    [34]Giguere R.,Bertrand F.,Tanguy P.A.A three-dimensional mesh refinement strategy for the simulation of fluid flow with a fictitious domain method[J].Computers and Chemical Engineering,2006,30(3):453-466.
    [35]Diaz G.C.,Minev P.D.,Nandakumar K.A fictitious domain/finite element method for particulate flows[J].Journal of Computational Physics,2003.192(1):105-123.
    [36]Zhou Y.C.,Wei G.W.On the fictitious-domain and interpolation formulations of the matched interface and boundary(MIB)method[J].Journal of Computational Physics,2006,219(1):228-246.
    [37]Zhao S.Y.,Xue M.S.A direct-forcing fictitious domain method for particulate flows[J].Journal of Computational Physics,2007,227(1):292-314.
    [38]Francis C.,Patrick J.,Florence M.Fictitious domain method for unsteady problems[J].Journal of Computationa! Physics,1997.138(2):907-938.
    [39]Loon R.,Anderson P.D.,Vosse F.N.,et al.Comparison of various fluid-structure interaction methods for deformable bodies[J].Computers and Structures,2007.85(11-14):833-843.
    [40]Vuyst T.,Vignjevic R.,Campbell J.C.Coupling between meshless and finite element methods [J].International Journal of Impact Engineering,2005,31(8):1054-1064.
    [41]Idelsohn S.R.,Onate E.,Pin F.A Lagrangian meshless finite element method applied to fluid-structure interaction problems[J].Computers and Structures,2003,81(8-11):655-671.
    [42]Wang X.Velocity/pressure mixed finite element and finite volume formulation with ALE descriptions for nonlinear fluid-structure interaction problems[J].Advances in Engineering Software,2000,31(1):35-44.
    [43]Zhang Q,Hisada T.Analysis of fluid-structure interaction problems with structural buckling and large domain changes by ALE finite element method[J],Computer Methods in Applied Mechanics and Engineering,2001,190(48):6341-6357.
    [44]Zhang H.Recent development of fluid-structure interaction capabilities in the ADINA system [J].Computers and Structures,2003,81(8-11):1071-1085.
    [45]Hirt C.W.,Amdsen A.A.,Cook J.L.An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J].Journal of Computational Physics,1974,14:227-53.
    [46]Watton P.N.,Wang L.X.,Bernacca G.M.,et al.Dynamic modelling of prosthetic chorded mitral valves using the immersed boundary method[J].Journal of Biomechanics,2007,40(3):613-626.
    [47]Sethian J.A.,Smereka P.Level Set Methods for Fluid Interfaces[J].Annual Review of Fluid Mechanics,2003,35:341-372.
    [48]Kunihiko T.,Tim C.The immersed boundary method:A projection approach[J].Journal of Computational Physics,2007,225(2):2118-2137.
    [49]Luca H.On the stability of the finite element immersed boundary method[J],Computers and Structures,2008,86(7-8):598-617.
    [50]Krafczyk M.,Tolke J.,Rank E.,et al.Two-dimensional simulation of fluid-structure interaction using lattice-Boltzmann methods[J].Computers and Structures,2001,79(22-25):2031-2037.
    [51]Lallemand P.,Luo L.S.Lattice Boltzmann method for moving boundaries[J].Journal of Computational Physics,2003,184(2):406-421.
    [52]Takaji I.Lattice Boltzmann methods for viscous fluid flows and for two-phase fluid flows[J].Fluid Dynamics Research,2006,38(9):641-659.
    [53]Carla A.,Mario G.,Stefano S.Numerical simulation of fluid-structure interaction by SPH [J].Computers and Structures,2007,85(11-14):879-890.
    [54]柳有权,刘学慧,朱红斌等.基于物理的流体模拟动画综述[J].计算机辅助设计与图形学学报,2005,17(12):2581-2589.
    [55]Chapman RM.,Wills D.P.M.An overview of Physically-Based Modeling Techniques for virtual Environments[J].Virtual Reality,2000,5:117-131.
    [56]Seipel S.Real-time visualization of animated trees[J].The Visual Computer,2005,21:397-405.
    [57]Tatsumi S.,Jun O.Modeling and Animation of Botanical Trees for Interactive Virtual Environments[C].Proceedings,of the ACM symposium on-Virtual reality software and technology,1999:139-146.
    [58]Wu E.H.,Chert Y.Y.,Yah T.,et al.Reconstruction and physically-based animation of trees from static images[C].In:Magnenat-Thalmann M.,Thalmann D.eds.Computer Animation and Simulation'99,1999:157-166.
    [59]Weber J.,Penn J.Creation and rendering of realistic trees[C].Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,California,1995:119-1271
    [60]冯金辉,陈彦云,严涛等.树在风中的摇曳——基于动力学的计算机动画[J].计算机学报,1998,21(9):769-773.
    [61]冯金辉,严涛,陈彦云等.树木的整体性运动及树内部风场的研究[J],软件学报,2000.11(3):363-367.
    [62]Feng J.H.,Chert Y.Y.,Yah T.,et al.Physically-based simulation of leaf movement[C].CAD/CG'99 Int'l Conf,Shanghai,China,1999:1229-1233.
    [63]Feng J.H.,Chen Y.Y.,Yah Y.,et al.Leaf movement simulation[J],Journal of Computer Science and Technology,2001,16:189-192.
    [64]柳有权,王文成,吴恩华.树在风中摇曳的快速生成系统[J].第三届中国虚拟现实与可视化会议,系统仿真学报(增刊V15),2003:39-41.
    [65]柳有权,王文成,吴恩华.快速真实地生成树的自然摇曳[J].计算机学报,2005,28(7):1185-1191.
    [66]Ota S.,Tamura M.,Fujimoto T.,et al.A hybrid method for real-time animation of trees swaying in wind fields[J].The Visual Computer,2004,20:613-623.
    [67]Ota S.,Tamura M.,Fujita K.,et al.1/f~B noise-based real-time animation of trees swaying in wind fields[J].Proceedings of the Computer Graphics International(CGI'03):52-59.
    [68]Akagi K.,Kitajima K.,Computer animation of swaying trees based on physical simulation[J].Computers & Graphics,2006,30(4):529-539.
    [69]Mar5' L.D.Wind and Trees:Surveys of tree damage in the Florida Panhandle after hurricanes Erin and Opal[C].Urban Forestry South Expo,2006,http://edis.ifas.ufl.edu.
    [70]Saunderson S.E.T.,England A.H.,Baker C.J.A Dynamic Model of the Behaviour of Sitka Spruce in High Winds[J].Journal of Theoretical Biology,1999,200(3):249-259.
    [71]Philippe A.,Benoit C.,Thierry F.,Development of an individual tree-based mechanical model to predict wind damage within forest stands[J].Forest Ecology and Management,2004,203(1-3):101-121.
    [72]Karl J.N.Computing factors of safety against wind-induced tree stem damage[J].Journal of Experimental Botany,2000,51(345):797-806.
    [73]Baker C.J.The development of a theoretical model for the windthrow of plants[J].Journal of Theoretical Biology,1995,175:355-372.
    [74]Ken J.Dynamic Loading of Trees[J].Journal of Arborieulture,2003,29(3):165-171.
    [75] Ken J. Dynamic Wind Loads on Trees [C]. http://isaac.org.au/files/wott/Dynamic% 20Wind%20Loads%20on%20trees.pdf.
    [76] Shang J.S. Three decades of accomplishments in computational fluid dynamics [J]. Progress in Aerospace Sciences, 2004, 40: 173-197.
    [77] Sun J.S., Lee K.H., Lee H.P. Comparison of implicit and explicit finite element methods for dynamic problems [J]. Journal of Materials Processing Technology, 2000, 105 (1-2):110-118.
    [78] Wang X.D. Analytical and computational approaches for some fluid-structure interaction analyses [J]. Computers and Structures, 1999, 72( 1 -3): 423-433.
    [79] Daniel G.G., Irina T., Anthony J.M., et al. Analytical modeling and extraction of the modal behavior of a cantilever beam in fluid interaction [J]. Journal of Sound and Vibration, 2007, 308(1-2): 231-245.
    [80] Xu Z.L. Finite element mesh update methods for fluid-structure interaction simulations [J],Finite Elements in Analysis and Design, 2004, 40(9-10): 1259-1269.
    [81] Voorde J.V., Vierendeels J., Dick E. Development of a Laplacian-based mesh generator for ALE calculations in rotary volumetric pumps and compressors [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39-41): 4401-4415.
    [82] So R.M.C., Liu Y., Lai Y.G. Mesh shape preservation for flow-induced vibration problems [J].Journal of Fluid and Structures, 2003, 18 (3-4): 287-304.
    [83] Teixeira P.R.F., Awruch A.M. Numerical simulation of fluid-structure interaction using the finite element method [J], Computers & Fluids. 2005, 34(2): 249-273.
    [84] Ingram D.M., Causon D.M., Mingham C.G. Developments in Cartesian cut cell methods [J],Mathematics and Computers in Simulation, 2003, 61(3-6): 561-572.
    [85] Neumann M., Tiyyagura S.R., Wall W.A., et al. Robustness and efficiency aspects for computational fluid structure interaction [C]. Thirteenth Conference on Finite Elements for Flow Problems, Swansea, Wales, 2005.
    [86] Souli M., Ouahsine A., Lewin L. ALE formulation for fluid-structure interaction problems [J].Computer Methods for Applied Mechanics and Engineering, 2000, 190(5-7): 659-675.
    [87] Arcidiacono G., Corvi A., Severi T. Functional analysis of bioprosthetic heart valves [J].Journal of Biomechanics, 2005, 38(7): 1483-1490.
    [88] David R.H., Andrew J.N., Justin M.T. et al. Fundamental mechanics of aortic heart valve closure [J]. Journal of Biomechanics, 2006, 39 (5): 958-967.
    [89] Stijnen J.M.A., Hart J.D., Bovendeerd P.H.M., et al. Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves [J], Journal of Fluids and Structures,2004,19(6):835-850.
    [90]Chung M.H.Cartesian cut cell approach for simulation incompressible flows with rigid bodies of arbitrary shape[J],Computers and Fluids,2006,35(6):607-623.
    [91]Tucker P.G.,Pan Z.A Cartesian cut cell method for incompressible viscous flow[J],Applied Mathematical Modeling,2000,24(8-9):591-606.
    [92]Yang G.,Gauson D.M.,Ingrain D.M.Calculation of compressible flows about complex moving geometries using a three-dimensional Cartesian cut cell method[J].International Journal of Numerical Methods in Fluids,2000,33:1121-1151.
    [93]Udaykumar H.S.,Mittal R.,Rampunggoon R.,et al.A Sharp Interface Cartesian Grid Method for Simulating Flows with Complex Moving Boundaries[J],Journal of Computational Physics,2001,174(1):345-380.
    [94]Ye T.,Mittal R.,Udaykumar H.S,,et al.An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries[J].Journal of Computational Physics,1999,156(2):209-240.
    [95]Udaykumar H.S.,Mittal R.,Shyy W.Computation of Solid-Liquid Phase Fronts in the Sharp Interface Limit on Fixed Grids[J].Journal of Computational Physics,1999,153(2):535-574.
    [96]Causon D.M.,Ingram D.M.,Mingham C.G.,et al.Calculation of shallow water flows using a Cartesian cut cell approach[J].Advances in Water Resources,2000,23(5):545-562.
    [97]Causon D.M.,Ingrain D.M.,Mingham C.G.A Cartesian cut cell method for shallow water flows with moving boundaries[J].Advances in Water Resources,2001,24(8):899-911.
    [98]Peskin C,S,The fluid dynamics of heart valves:experimental,theoretical and computational methods[J].Annual Review of Fluid Mechanics,1981,14:235-259.
    [99]Yang G.,Causon D.M.,Ingram D.M.Calculation of compressible flows about complex moving geometries using a three-dimensional Cartesian cut cell method[J].International Journal for Numerical Methods in Fluids,2000.33:1121-1151.
    [100]Onno Ubbink,Numerical prediction of two fluid systems with sharp interfaces[D].Ph.D.thesis,Department of Mechanical Engineering,University of London,1997.
    [101]Coirer W.,Powell K.An accuracy assessment of Cartesian mesh approaches for the Euler equations[J].Journal of Computational Physics,1993,117:121-131.
    [102]Wood Handbook,Wood as an Engineering Material,USDA Forest Products Laboratory,Madison,Wisconsin,1999.
    [103]张莲洁,李东升.白帆,植物叶片弹性模量的测量[J],农业机械与木工设备,2004.32(5):14-16.
    [104]John R.Moore,Douglas A.Maguire,Natura! sway frequencies and damping ratios of trees:concepts,review and synthesis of previous studies[J].Trees-Structure and Function,2004, 18(2):195-203.
    [105]陈英俊,于希哲.风荷载计算[M].中国铁道出版社,北京,1998.
    [106]Nishimura H.,Taniike Y.Aerodynamic characteristics of fluctuating forces on a circular cylinder[J].Journal of Wind Engineering and Industrial Aerodynamics,2001,89(7-8):713-723.
    [107]Aquelet N.,Souli M.,Olovsson L.Euler-Lagrange coupling with damping effects:Application to slamming problems[J].Computer Methods in Applied Mechanics and Engineering,2006,195(1-3):110-132.
    [108]Zhou C.Y.,So R.M.C.,Mignolet M.P.Fluid damping of an elastic cylinder in a cross-flow [J].Journal of Fluids and Structures,2000,14(3):303-322.
    [109]Conca C.,Osses A.,Planchard J.Added mass and damping in fluid-structure interaction[J].Computer Methods in Applied Mechanics and Engineering,1997,146(3-4):387-405.
    [110]Spatz H.C.,Emanns A.,Speck O.The structural basis of oscillation damping in plant stems-biomechanics and biomimetics[J].Journal of Bionics Engineering,2004,1(3):149-158.
    [111]Baker C.J.Measurements of the nature frequencies of trees[J].Journal of Experimental Botany,1997,48(310):1125-1132.
    [112]Moore J.R.,Maguire D.A.Natural sway frequencies and damping ratios of trees:influence of crown structure[J].Trees-Structure and Function,2005,19(4):363-373.
    [113]Ronen B.,John F.H.,Daniel N.W.Plausible Motion Simulation for computer Graphics Animation[C].Computer Animation and Simulation' 96(Proc.Eurographics Workshop),New York,1996,183-197.
    [114]Ling L.,Vasily V.Cloth Animation with Adaptively Refined Meshes[J].Proceeding of the Twenty-eighth Australasian conference on Computer Science,2005,38:107-113.
    [115]Mark M.,Gilles D.,Mathieu D.,et al.Interactive Animation of cloth-like objects in virtual reality[J].The Journal of Visualization and Computer Animation,2001,12(1):1-12.
    [116]Nick F.,Ronald F.Practical Animation of Liquids[C].Proceedings of the 28th annual conference on Computer graphics and interactive techniques,Los Angeles,California:ACM Press,2001:271-276.
    [117]Jos S.Stochastic Dynamics:Simulating the Effects of Turbulence on Flexible Structures[C],Computer Graphics Forum(EUROGRAPHICS'97 Proceedings),Budapest,Hungary,1997,16(3):159-164.
    [118]Howard P.H.,Michael M.B.,James E.B.et aI.The potential and promise of physics-based wildfire simulation[J].Environmental Science & Policy,2000,3(4):161-172.
    [119]Zhuang Y.,Canny J.Real-time Simulation of Physically Realistic Global Deformation[C].Proceedings of the IEEE Visualization '99,San Francisco,California,1999.
    [120]Feng Z.G.,Efstathios E.M.The immersed,boundary-lattice Boltzmann method for solving fluid-particles interaction problems[J].Journal of Computational Physics,2004,195(2):602-628.
    [121]Cottet G.H.,Maitre E.A level-set formulation of immersed boundary methods for fluid-structure interaction problems[J],Comptes Rendus Mathematique,2004,338(7):581-586.
    [122]Tai C.H.,Liew K.M.,Zhao Y.Numerical simulation of 3D fluid-structure interaction flow using an immersed object method with overlapping grids[J].Computers & Structures,2007.85(11-14):749-762.
    [123]Zhang L.,Gerstenberger A.,Wang X.D.,et al.hnmersed finite element method[J].Computer Methods in Applied Mechanics and Engineering,2004,193(21-22):2051-2067.
    [124]Zhang L.T.,Gay M.hnmersed finite element method for fluid-structure interactions[J].Journal of Fluids and Structures.2007,23(6):839-857.
    [125]Xiaodong Wang,Wing Kam Liu,Extended immersed boundary method using FEM and RKPM[J],Computer Methods in Applied Mechanics and Engineering,2004,193(12-14):1305-1321.
    [126]Xu S..Wang Z.J.An immersed interface method for simulating the interaction of a fluid with moving boundaries[J].Journal of Computational Physics,2006.216(2):454-493.
    [127]Carmo B.S.,Meneghini J.R.Numerical investigation of the flow around two circular cylinders in tandem[J].Journal of Fluids and structures,2006,22(6-7):979-988.
    [128]Jester W.,Kallinderis Y.Numerical study of incompressible flow about fixed cvlinder pairs [J].Journal of Fluids and Structures,2003,17(4):561-577.
    [129]Alam M.M.,Moriya M.,Takai K.,et al.Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number[J].Journal of Wind Engineering and Industrial Aerodynamics,2003,91(1-2):139-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700