用户名: 密码: 验证码:
溶剂和电子转移对费米共振的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在多原子分子中,由于非谐相互作用而产生了和频和倍频,以致于费米共振现象的出现,这些使多原子分子的振动光谱的结构和强度发生变化,导致谱线结构变得复杂。为了分析光谱的振动结构,必然要了解分子中的相互作用信息,费米共振现象作为分子内和分子间的一种主要的相互作用,对其的研究是非常必要的。
     不同的溶剂环境对分子振动能级的影响是不同的,通过对不同溶剂中四甲基脲的羰基的振动频移的分析,得到其羰基振动频率与溶剂参数的定量关系。同时还分析了四甲基脲与水不同体积比混合二元体系的拉曼光谱,得到了四甲基脲分子的特征拉曼谱线在不同浓度下的频移情况,进而得出四甲基脲与水分子形成氢键最大体积结合比为1:2。
     分析对苯醌在13种溶剂中的傅立叶变换红外光谱,得到对苯醌羰基费米共振的强度比与溶剂介电常数间的函数关系:R=0.40+0.66/ (ε-1.93)。对Nyquist的环戊酮和Seehra的苯甲醛的红外光谱数据分析,得到它们费米共振的强度比和介电常数之间有着类似的函数关系,分别为:R=0.37+3.60/ (ε-1.50)和R=0.68+0.78/ (ε-1.76)。把KBM方程引入到费米共振中,对实验结果进行了解释。
     用紫外可见光谱确定了对苯醌和脯氨酸生成电子转移络合物的条件,用改进后的连续变化法确定了络合物的组成;测得络合物在液芯光纤中的共振拉曼光谱,络合物的谱线与对苯醌的谱线有这对应关系,与对苯醌的拉曼光谱相比,络合物的大多谱线向高波数频移。其中两对费米共振峰也不同程度的发生了变化。定性的给出电子转移对费米共振的影响。
Fermi resonance is a common and important phenomenon that widely exits in infrared spectra and Raman spectra etc. Fermi resonance can occur when a fundamental vibrational level F+0 is close to an overtone (or combination) vibrational level F-0. This process leads to the appearance of two new vibrational levels, F+ and F-, and the original levels are substituted. Frequency shift and energy transfer are invloved in Fermi resonance. The investigation of Ferimi resonance not only has great theoretical significance in some physics field, such as molecular electronic state, vibration and dynamic interaction, but also has important applications in material, biology, and assignation of spectra. Complex is a kind of compound that has complex structure and wide range of applications. In the last twenty years, complex chemistry as one of the most active subjects in the field of modern chemical infiltrate into organic chemistry, polymer chemistry, physical chemistry and biochemistry, has formed many new marginal disciplines. Therefore, we can understand the nature of the formation of complex more clearly by studying the effects of complex on Fermi resonance. This is important to clarify the assignation of complex spectra and the change of spectra intensity.
     We did the following studies, and have obtained some valuable results: study the change of vibationa frequency of C=O in solvents was inverstigated by the method of solvent variation. We variated and compared some models of solvent effects and then found out the best model which accords with the experimental results. These results have important practical value for determining the vibration frequency in solvents. The function of the dielectric constants of solvents and the intensity ratio of Fermi resonance was obtained, through the analysis of the Fourier transform infrared spectra of p-benzoquinone in solvents. This is first time to combine the solvent dielectric constant and Fermi resonance. The condition of formation of complex was studied, and developed continuous variation method was employed to confirm the ratio of p-benzoquinone and amino acids in the interaction. By comparing the spectra of p-benzoquinone and that of the complex, we investigated the effects of charge-transfer on Fermi resonance.
     There are three parts in this paper, as follow:
     partⅠ: Investigation on the change of frequency shifts of tetramethylurea`s C=O. Figure 1 Shifts of C=O vs. KBM parameter Figure 2 Shifts of C=O vs. AN
     Raman spectra of 1, 1, 3, 3-tetramethylurea in 20 solvents were obtained to investigate the solute-solvent interactions and the spectra can correlate solvent properties such as the Kirkwood-Bauer-Magat (KBM) equation, the solvent acceptor number (AN) and the linear solvation energy relationships (LSER), with the Raman shifts of carbonyl group respectively. There is little linear relation between dielectric constants and the Raman shift. These solvents ware divided into two sections according to the acceptor number. These two sections exhibit good correlation with AN, respectively. Line A:νA= -0.34AN+1644.57 R2=0.932 SD=0.346 Line B:νB= -1.22AN+1663.69 R2=0.976 SD=1.306
     These frequencies show a better correlation with LSER than the solvent AN. How the solvents interacts with the C=O can be obtained from the regression coefficients.
     ν(C=O)=(1666.03±0.89)+(-23.11±1.23)α+(-4.87±1.26)β+(-21.83± 1.30)π*+(-1.95±0.64)δR2=0.986 SD=1.469
     Figure 3 the change of shifts of C=O with the ratio of H2O and TMU Under the influence of special interactions (hydrogen band) and steric hindrance of the associated water molecule, when the ratio of water and TMU is lower than 2, the frequency changes of stretching vibration of carboxyl in TMU is linear proportion to this ratio. But when this ratio is larger than two, the frequency of stretching vibration of carboxyl is a constant at 1585 cm-1. Under the influence of non-special interactions of solvent effects, other vibration frequency change is small.
     PartⅡ: The relation of intensity ratio of p-benzoquinone and the dielectric constants of solvents.
     The method of solvent variation is one of the main methods to study Fermi resonance. FT-IR spectroscopy is used to study the Fermi resonance of p-benzoquinone in thirteen solvents. The results show that there are some function relationships between the dielectric constant of solvent and the intensity ratio of Fermi resonance. And the empirical formula is obtained by curve fitting: R=0.40+0.66/ (ε-1.93)
     The equation of Kirkwood-Bauer-Magat is applied to the study of Fermi resonance. And we obtain the relation between the intensity ratio R and the dielectric constantε. This result is accordance with the empirical formula. In order to confirm our result, the Infrared data of R. A. Nyquist and J. K. Seehra are analyzed. These results are in accord with that of p-benzoquinone: R=0.37+3.60/ (ε-1.50) and R=0.68+0.78/ (ε-1.76)
     PartⅢ: The effects of charge-transfer on Fermi resonance the effect of pH value on the products. The pH value and the mixed time after which the spectrum was obtained are as follows: (a) pH≈7, t=30 min; (b) pH≈8, t=5 min; (c) pH≈11, t=5 min; (d) pH≈12, t=0 min; (e) pH≈12, t=30 min. The concentrations of PBQ and proline are all 1×10-4 M.
     We have investigated the effects of pH on the interaction of PBQ and proline with spectroscopy. With the change of pH, there are three different products: charge-transfer complex, semiquinone radical anion and substituted quinone. The composition of the complex has been determined with improved continuous variation method. And we have discussed the mechanism of formation of benzosemiquinone radical anion under condition of strong alkaline.
     Comparing the spectra of PBQ to that of complex, all peaks shift to high wavelength. For 1159 and 1153 cm-1, there is little change. For 1685 and 1655 cm-1, there is much change on the intensity ratio. This may be attributed to the charge-transfer. When charge donation occurs from a non-bonding molecular orbital located mainly on the nitrogen atom of the donor to aπanti-bonding orbital of the quinone, the force between atom C and oxygen increases. So the frequency of carboxyl shifts to high wavelength. For C-C, the effect of charge-tranfer is slight, because these two atoms C locate in the quinone ring.
     The vibration structure of polyatomic molecule is a very compliacted system, containing complicate interactions. Fermi resonance is one of the the main coupling phenomenon. It is important to study Fermi resonance for understanding the interaction of vibration energy levels and assigning vibration spctra.
引文
[1] L. M. Konen, Eunice X. J. Li and M. L. Lester, Infrared overtone spectroscopy and vibrational analysis of a Fermi resonance in nitric acid: Experiment and theory ,J. Chem. Phys., 2006, 125, 074310. V. Rodriguez-Garcia and S. Hirata et al., Fermi resonance in CO2: A combined electronic coupled-cluster and vibrational configuration-interaction prediction, J. Chem. Phys. 2007, 126, 124303.
    [2] 杜传梅等,分子振动光谱中费米共振效应的理论研究,原子与分子物理学报,2007,24(1),178.
    [3] 高小玲等,抗癌药药效和机理评价新模式—Raman 光谱分析,激光生物学报,1998, 7 (1),22—26.
    [4] 张祥麟,配合物化学,高等教育出版社,1991.
    [5] John A.S. et al, Intermolecular Fermi resonance,,J.chem phys, 2003,119(5),2747.
    [6] E. Fermi, Uber den Raman effekt des Kohlendioxyds, Uber den Ramaneffekt des Kohlendioxyds, Z. Phys. 1931, 71, 250.
    [7] J.F.Bertran et al, Study of Fermi resonance by the method of solvent variation,Spectrochimica 1968,24A,1765.
    [8] J. H. vant’s Hoff, Roult Memorial Lecture, J.Chem. Soc. 1902, 81, 969 M. Sutton: Roult Memorial Lecture,Chem. Br. 2001, 37, 66 J. van Houten: Roult Memorial Lecture,J. Chem. Educ. 2001, 78, 1570.
    [9] M. Magat, A survey of older works on solvent effects on reaction rates, Z. Phys. Chem. A, 1932, 162, 432. J. H. vant’s Hoff: Die chemische Dynamik, in Vorlesungen uber theoreische und physikalische Chemie, Vieweg, Braunschweig, 1998, Heft 1.
    [10] S. E. Sheppard, The Effects of Environment and Aggregation on the Absorption Spectra of Dyes, Rev. Modern Phys. 1942, 14, 303.
    [11] A. Hantzsch, Uber neue stickstoff-haltige Derivate des Salicins und uber mehrkernige Oxybenzyl-amine, Ber. Dtsch. Chem. Ges. 1922, 55, 953
    [12] A. Kundt: Uber den EinfluB des Losungsmittels auf die Absorptionsspectra geloster absorbiereder Medien, Poggendorfs Ann. Phys. Chem. N. F. 1878, 4, 34.
    [13] W. R. Brode, The effect of Solvents on the Absorption Spectrum of a Simple Azo Dye, J. Phys. Chem. 1926, 30, 56.
    [14] G. Scheibe, E. Felger, and G. RoBler, Beeinflussung von Absorptionsspektrum, Reaktionsgeschwindigkeit und Gleichgewicht durch Losungsmittel. (V. Mitteil.; mitbearbeitet von E. Felger und G. RoBler), Ber. Dtsch. Chem. Ges. 1927, 60, 1406.
    [15] W. L. Jorgensen, Effect of hydration on the structure of an SN2 transition state, J. Phys. Chem., 1986, 90, 4651. A. Warshel Computer Modeling of Chemical Reactions in Enzymes and Solutions. New York: John Wiley & sons, Inc., 1991.
    [16] O. Tapia B. Silvi, Solvent effects on the structure and the electronic properties of simple molecules. A MINO/3-SCRF-MO study, J. Phys. Chem., 1980, 84, 2646. M. M. Karelson, Quantitative predictions of tautomeric equilibria for 2-, 3-, and 4-substituted pyridines in both the gas phase and aqueous solution: combination of AM1 with reaction field theory, A. R. Katritzky et al., J. Org. Chem., 1989, 54, 6030.
    [17] A. Bruylants, Bulletin de l’Academie Royale de Belgique (Class des Sciences) [5] 1976, 62, 866-882 (esp. p. 877).
    [18] M. V. Lomonosov: On the Action of Chemical Solventsin General, Tom 1, p. 58-73. N. H. March and M. P. Tosi: Coulomb Liquids, Academic Press, New York, London, 1984.
    [19] R. Ulbrich, Chemiker-Ztg. Pispersionskrafte inder Physic der Losungsmitted Obserflachenspannung-Thermische Ausdehnung-Assoziation, 1975, 99, 320.
    [20] J. H. Mahanty and B. W. Ninham: Dispersion Forces, Academic Press, New York, London, 1981
    [21] M. L. Huggins, Angew. Chem. 1971, 83, 163. G. A. Jeffrey: An Introduction to Hydrogen Bonding, Oxford University Press, Oxford/U. K., 1997. D. Hadzi (ed.): Theoretical Treatments of Hydrogen Bonding, Wiley-VCH, Weinheim/Germany, 1997. C. L. Perrin and J. B. Nielson: “Strong” Hydrogen Bonds in Chemistry and Biology, Annu. Rev. Phys. Chem. 1997, 48, 511. S. Scheiner: Hydrogen Bonding-A Theoretical Perspective, Oxford University Press, Oxford/U. K., 1997. I. Alkorta, I. Rozas, and J. Elguero: Non-Conventional Hydrogen Bonds, Chem. Soc. Rev. 1998, 27, 163. G. Desiraju and T. Steiner: The Weak Hydrogen Bond in Structural Chemistry andBiology, Oxford University Press, Oxford/U. K., 1999. P. Hobza and Z. Havlas: Blue-Shifting Hydrogen Bonds, Chem. Rev. 2000, 100, 4253. S. Scheiner and T. Kar, Red-versus Blue-Shifting Hydrogen Bonds: Are Three Fundamental Distinctions? J. Phys. Chem. 2002, A106, 1784.
    [22] A. E. Lutskii, V. V. Prezhdo, L. I. Degtereva, and V. G. Gordienko: Spectroscopy of Intermolecular Field Interactions in Solutions, Usp. Khim. 1982, 51, 1398. M. C. R. Symons and G. Eaton, Structure in solvents and solutions-NMR and vibrational spectroscopic studies, J. Chem. Soc. Rev. 1983, 12, 1; M. C. R. Symons and G. Eaton, Infared and NMR studies of Probes in binary solvent systems, Pure Appl. Chem. 1986, 58, 1121. H. E. Hallam: Hydrogen Bonding and Solvent Effects, in M. Davis (ed.): Infra-red Spectroscopy and Molecular Structure, Elsevier, Amsterdam, 1963, Chapter XII, p. 405ff.
    [23] L. Onsager, Electric Moments of Molecules in Liquids, J. Am. Chem. Soc., 1936, 58, 1486
    [24] J. L. Mchale, Molecular Spectroscopy, 北京,科学出版社,2003.
    [25] B. T. Thole and P. T. van Duijnen, On the Quantum Mechanical Treatment of Solvent Effects, Theoret. Chem. Acta (Berl.), 1980, 55, 307.
    [26] W. West and R. T. Edwards, The Infrared Absorption Spectrum of Hydrogen Chloride in Solution, J. Chem. Phys. 1937, 5, 14
    [27] E. Bauer and M. Magat, Regarding the deformation of molecules in a condensed phase, and the “hydrogen bond”,J. Physique Radium 1938, 9, 319;
    [28] L. J. Bellamy: Solvent Effects on Infra-red Group Frequencies, in E. Thornton and H. W. Thompson (eds.): proceedings of the Conference on Molecular Spectroscopy, held in London, 1958, Pergamon Press, London, 1959, p. 216ff.; L. J. Bellamy: The Infrared Spectra of Complex Molecules, 3rd ed., Methuen, London, 1975. A. D. E. Pullin, The variation of infra-red vibration frequencies with solvent, Spectrochim. Acta 1958, 13, 125.
    [29] A. D. Buckingham, The dielectric constant of a compressed gas mixture, Proc. Roy. Soc. London, Ser. 1957, A 248, 169;
    [30] V. Bekarek and A. mikulecka, A Note on Evaluation of Solvent Shifts in IR. Spectroscopy, Collect. Czech. Chem. Commun. 1978, 43, 2879.
    [31] B. T. Thole, P. T. van Duijnen, On the Quantum Mechanical Treatment of SolventEffects, Theoret, Chim. Acta (Berlin), 1980, 55,307; J. Gao, Absolute Free Energy of salvation from Monte Carlo Simulations Using Combined Quantum and Molecular Mechanical Potentials, J. Phys. Chem., 1992, 96, 537; J. Gao, X Xia, A Priori Evaluation of Aqueous Polarization Effects Through Monte Carlo QM-MM Simulations, Science, 1992, 258, 631.
    [32] G. Briegleb, Elektronen-Donator-Acceptor-Komplexe, Springer, Berlin, 1961; W. B . Jensen: The Lewis Acid-Base Definition – A Status Report, Chem. Rev. 1978, 78, 1; C. J. Bender: Theoretical Models of Charge-Transfer Complexes, Chem. Soc. Rev. 1986, 15, 475.
    [33] R. S. Mulliken and W. B. Person: Molecular Complexes – A Lecture and Reprint Volume, Wiley-Interscience, New York, 1969.
    [34] P. Hobza and R. Zahradnik: Intermolecular Complexes, Elsevier, Chem. Rev. 1988, 88, 899.
    [35] V. Guttman: Coordination Chemistry in Non-Aqueous Solvents, Springer, Wien, New York, 1968; V. Guttman: Chemische Funktionslehre, Springer, Wien, New York, 1971; V. Guttman: The Donor-Acceptor Approach to Molecular Interactions, Plenum Publ. Corp., New York, 1978.
    [36] O. Tapia, O. Goscinski, Self-consistent reaction field theory of solvent effects, Mol. Phys. 1975, 29, 1653.
    [37] S. Miertus, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects, Chem. Phys. 1981, 55, 117; J. L. Rivail, B. Terryn, D. Rinaldi and M. F. Ruiz-Lopez, Liquid state quantum chemistry: A cavity model, J. Mol. Struct. 1985, 120, 387; K. V. Mikkelsen, H. Agren, H. J. A. Jensen, Multiconfigurational self-consistent reaction field theory for nonequilibrium solvation , J. Chem Phys. 1995, 108, 9010;
    [38] E. Fermi, Uber den Raman effekt des Kohlendioxyds, Uber den Ramaneffekt des Kohlendioxyds, Z. Phys. 1931, 71, 250.
    [39] H. Ziffer, E. Charney and W. D. Becker, Molecular Vibrations of Quinones. III. Preparation and Infrared Spectra (Solution and Vapor) of p-Benzoquinone-d1, p-Benzoquinone-2,5-d2, p-Benzoquinone-2,6-d2, p-Benzoquinone-18O2,and p-Benzoquinone-d4-18O2, J. Chem. Phys. 1965, 42, 914.
    [40] H. Fritzsche, Anomale bandenaufspaltung der ND-valenzschwingung in einigen N-Heterocyclen, Spectrochim. Acta 1966, 22, 1139.
    [41] O. Tapia and C. Lamborelle, Towards a quantum-chemical representation of enzyme activity. A scrf pce cndo/2 study of the ladh proton relay system,Chemical Physics Letters, 1980,72(2), 334. O. Tapica, F. M. Stamato and Y. G. Smeyers, Modelling active site response towards changes in the protein-core of serine proteases. Aa CNDO/2—INDO SCRF study of subtilisin and thiosubtilisin, J. mol. Structure: theochem, 1985,123(1), 67. O.Tapia and E.Poulain, Hydrogen bond. Environmental effects on proton potential curves. An SCRF MO CNDO/2 calculation of a water dimmer, Chem. Phys. Lett., 1975, 33(1), 65.
    [1] Watanabe A, Morita S, Ozaki Y. Temperature-dependent structural changes in hydrogen bonds in microcrystalline cellulose studied by infrared and near-infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation analysis. Appl. Spectrosoc., 2006, 60, 611.
    [2] S. Frank, Handbook of Instrumental Techniques for Analytical Chemistry, chapter 15, C.-P. Sherman Hsu, Ph.D. Infrared Spectroscopy. 1997, Prentice Hall PTR.
    [3] V. Busignies, B. Leclerc, P. Porion, P. Evesque, G. Couarraze, P. Tchoreloff, Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography, European Jounal of Pharmaceutics and Biopharmaceutics. 2006, 64, 38; J. A. Balderas-Lopez, Photoacoustic methodology to measure thermal and optical properties of dye solutions, Review of Scientific Instruments, 2006, 77, 086104.
    [4] I. T. Bae, Detection of reaction products at DMFC Cathodes by ATR-IR Spectroscopy and mass Spectrometry, Journal of the Electrochemical Society. 2006, 153, A2091; Y. Shashoua, M. B. L. D. Berthelsen, O. F. Nielsen, Raman and ATR-FTIR Spectroscopies applied to the Conservation of Archaeological Baltic Amber, Journal of Raman Spectroscopy, 2006, 37, 1227.
    [5] V. N. Panchenko, V. A. Zakharov, E. A. Paukshtis, DRIFTS and DRS studies of Phillips ethylene Polymerization catalysts. Applied Catalysis A-General, 2006, 313, 130.
    [6] C. fischer, R. Bartlome, M. W. Sigrist, The potential of mid-infrared photoacoustic spectroscopy for the detection of various doping agents used by athletes. Applied Physics B-Lasers and Optics. 2006, 85, 289.
    [7] E. Levenson, P. Lerch, M. C. Martin, Infrared imaging: Synchrotrons vs. arrays, resolution vs. speed, Infrared Physics & Technology, 2006, 49, 45.
    [8] 吴国桢,分子振动光谱学原理与研究,北京:清华大学出版社,2001.
    [9] Franz Lotze, Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen, Naturwiss., 1928, 16, 557; S. v. Bubnoff und Hans Becker, Besprechungen, Naturwiss, 1928, 16, 772.
    [10] J. Cabannes, Un nouveau phenomene d’Optique:. les battements qui se produisent lorsque des mole-. cules anisotropes en rotation et diffusent de la. lumiere visible ou ultraviolette., Compt. rend., 1928, 186, 1201
    [11] Y. Rocard, New diffused radiations. Comptes Rendus de l'Académie des Sciences, 1928, 186, 1107
    [12] D. L. Gerrard, Raman Spectroscopy. Anal Chem. 1994, 66(12): 547R
    [13] J. R. Ferraro, A History of Raman spectroscopy. Spectroscopy. 1996. 11, 18.
    [14] C.赖卡特,有机化学中的溶剂效应,化学工业出版社,1987年12月,北京第一版 J. H. van’t Hoff, Roult Memorial Lecture, J. Chem. Soc., Trans., 1902, 81, 969
    [15] 朱自莹, 顾仁敖, 陆天虹,拉曼光谱在化学中的应用,长春,东北大学出版社,1998
    [16] 里佐威等, 低浓度样品拉曼光谱的实验研究, 分析化学,2000,28,1512. A. Campion, P. Kambhampati, Surface - enhanced Raman scattering, Chem. Soc. Rev. 1998, 27, 241
    [17] A.C. Albrecht, On the Theory of Raman Intensities, J. Chem. Phys., 1961, 34: 1476 James D. Ingle, Jr. Stanley R. Crouch著,张寒琦、王芬蒂、施文译,光谱化学分析, 吉林大学出版社,1996年9月第一版
    [18] 程光煦编著, 拉曼、布里渊散射-原理及应用, 科学出版社, 2001 北京
    [19] R.L. McCreery, Raman Spectroscopy for Chemical Analysis, John Wiley & Sons, Inc., New York:, 2000.
    [20] M. Fleischman, P.J. Hendra, Raman Spectra of Pyridine Adsorbed at a silver Electrode, Chem. Phys. Lett., 1974, 26: 163 D.L. Jeanmaire, R.P. Van Duyne, Surface raman spectroelectro-chemistry part I: heterocyclic,aromatic,and aliphatic amines adsorbed on the anodized silver electrode, J Electroanal. Chem. Interfacial Electrochem., 1977, 84: 1
    [21] C.V. Raman and K.S. krishnan, A new type of secondary radiation, Nature, 1928, 121, 501; R.K. Chang,; T.E. Furtak, Eds. Surface Enhanced Raman Scattering; Plenum Press: New York, 1982.
    [22] Franz Lotze, Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen, Naturwiss., 1928, 16, 557; S. v. Bubnoff und Hans Becker, Besprechungen, Naturwiss, 1928, 16, 772.
    [23] M. Fleischman, P.J. Hendra, Raman Spectra of Pyridine Adsorbed at a silver Electrode, Chem. Phys. Lett., 1974, 26: 163
    [24] D.L. Jeanmaire, R.P. Van Duyne, J Electroanal. Chem., Interjacial Electrachem., 1977, 84: 1.
    [25] R.K. Chang, T.E. Furtak, Eds. Surface Enhanced Raman Scattering; Plenum Press: New York, 1982.
    [26] A. Campion,; P. Kambhampati, Chem. Soc. Rev. 1998, 27, 241
    [27] 薛奇 高分子结构研究中的光谱方法, 高等教育出版社, 1993
    [28] 吴征铠, 唐敖庆主编,分子光谱学专论, 山东科学技术出版社,1999
    [29] C.L. Haynes, A.J. Haes, R.P. Van Duyne, In Progress in Surface Raman Spectroscopy–Theory, Techniques & Applications, Z.Q. Tian, B. Ren, Eds.Xiamen University Press, 2000, p1.
    [30] K.Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single Molecule Detection Using Surface-Enhanced Raman Scattering ,Phys. Rev. Lett. 1997, 78, 1667
    [31] S. Nie,; S.R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , Science, 1997, 275, 1102
    [1] E. Fermi, Uber den Raman effekt des Kohlendioxyds, Uber den Ramaneffekt des Kohlendioxyds, Z. Phys. 1931, 71, 250. [2] LUO Man, GUAN Ping, LIU Wen-hui, et al. Spectroscopy and Spectral Analysis,2006, 26(11), 2030.
    [3] LIN Hai-bo, XU Xiao-xuan, WANG Bin, et al. Study of Poly (3,4-Ethylene Dioxythiophene ): Poly ( Styrene Sulfonate ) by In-Situ Resonance Raman Spectroscopy,Spectroscopy and Spectral Analysis, 2006, 26(4),646.
    [4] Matsu H, Grant ER,Fermi resonance and mode specificity in the vibrational autoionization of NO2, J.Chem. Phys., 1996, 104, 42.
    [5] Lummila J, Lukka T, Halonen L, Burger H, Polanz O, Fermi resonances and localmodes in stibine, SbH3: A Fourier interferometric and laser photoacoustic study of the overtone spectrum ,J. Chem. Phys., 1996, 104, 488.
    [6] Chafikel Idrissi M, Larzilliere M, Carre M, Fast ion beam laser spectroscopy of N2O+: Observation and interpretation of the Fermi resonance in the 1002 Πvibronic level of the ground state J. Chem. Phys., 1994,100, 204.
    [7] Sowa MG, Henry BR, Mizugai Y, Vibrational overtone study of five-membered aromatic heterocycles: Fermi resonance interactions, J. Phys. Chem., 1993, 97,809.
    [8] GAO Shu-qin, HE Jia-ming, LI Rong-fu, et al. Study of the Raman Spectrum of CCl4 Fermi Resonance, Spectroscopy and Spectral Analysis, 2007, 27(10),2042.
    [9] Marcus Y., Ion Solution, New York, John Wiley & Sons Limited, 1985:103
    [10]. Cser L, Jancso G, Jovari P, Kali G, Temperature Dependence of Small-Angle Neutron Scattering of Tetramethylurea in Carbon Disulfide Solution, J. Phys. Chem. B, 1998, 102(13): 2313~2316.
    [11]. Chaban I A, Rodnikova M N, Barthel J, Chaikov L L, Krivokhiza S V, Zhackova V V. , Light scattering in dilute solutions of tetramethylurea in ethylene glycol ,Journal of Molecular Liquids, 1999, 80, 27~31.
    [12]. Umebayashi Y, Matsumoto K, Watanabe M, Ishiguro S., Raman spectroscopic study on the solvation steric effect of the manganese(II) ion in solvent mixtures of N,N-dimethylformamide and 1,1,3,3-tetramethylurea, Journal of Molecular Liquids, 2003, 103–104: 331~337
    [13]. Tovchigrechko A, Rodnikova M, Barthel J., Comparative study of urea and tetramethylurea in water by molecular dynamics simulations,Journal of Molecular Liquids, 1999, 79:187~201
    [14] Reichardt C. Solvents and Solvent Effects in Organic Chemistry. Weinheim: WILEY-VCH Verlag GmbH & Co. kGaA, 2003, 472-474, 26 and 433.
    [15]. Belletato P, Freitas L C G, Areasc E P G, Santos P S., Computer simulation of liquid tetramethylurea and its aqueous solution, Phys. Chem. Chem. Phys.,1999, 1: 4769~4776
    [16] Bezzabotnov V Y, Grosz L C, Jancso G, Ostanevich Y M, Small-angle neutron scattering in aqueous solutions of tetramethylurea, J. Phys.Chem, 1992, 96:976~982
    [17] Cser L, Grosz T, Ostanevich Y M, J. Phys. IV, 1993, 3:229~232
    [18] Borbely S, Cser L, Grosz T, Jancso G, Neutron scattering on dense solutions of tetramethylurea, Physica B, 1995, 213-214:513~514
    [19] Ansell S, Cser L, Grosz T, Jancso G, Jovari P, Soper A K, Solute-solute correlation in aqueous solution of tetramethylurea, Physica B, 1997, 234-236:347~348
    [20] Wulf A, Ralf L., Structure and Dynamics of Water Confined in Dimethyl Sulfoxide, Chem Phys Chem, 2006, 7:266~272
    [21]. Tukhvatullin F H, Jumaboev A, Tashkenbaev U N, Osmanov B S, Mamatov Z U, Hushvaktov H., Raman study of molecular aggregation in liquid dimethyl sulfoxide ,Optics and Spectroscopy,2002, 92(6):866~870.
    [22]. Mirzaei M, Hadipour N L., Study of hydrogen bonds in 1-methyluracil by DFT calculations of oxygen, nitrogen, and hydrogen quadrupole coupling constants and isotropic chemical shifts, Chemical Physics Letters, 2007, 438 (4):304~307
    [23]. Schmidt A, Lindner A S, Ramirez F, J., DFT calculations and vibrational (FT-IR, FT-Raman) spectra on an uracilyl-pyridinium salt, Journal of Molecular Structure, 2007, 834:311~317
    [24]. Umar Y, Morsy M A., Ab initio and DFT studies of the molecular structures and vibrational spectra of succinonitrile, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 66(4):1133~1140 第四章
    [1] Matsu H, Grant ER, J.Chem. Phys., Fermi resonance and mode specificity in the vibrational autoionization of NO2,1996, 104:42.
    [2] Lummila J, Lukka T, Halonen L, Burger H, Polanz O, Fermi resonances and local modes in stibine, SbH3: A Fourier interferometric and laser photoacoustic study of the overtone spectrum ,J. Chem. Phys., 1996, 104: 488.
    [3] Chafikel Idrissi M, Larzilliere M, Carre M, Fast ion beam laser spectroscopy of N2O+: Observation and interpretation of the Fermi resonance in the 100 2II vibronic level of the ground state ,J. Chem. Phys., 1994,100: 204.
    [4] Sowa MG, Henry BR, Mizugai Y, Vibrational overtone study of five-membered aromatic heterocycles: Fermi resonance interactions ,J. Phys. Chem., 1993, 97:809.
    [5] GAO Shu-qin, HE Jia-ming, LI Rong-fu, et al. Study of the Raman Spectrum of CCl4 Fermi Resonance, Spectroscopy and Spectral Analysis, 2007, 27(10):2042.
    [6] M. Puranik, J. Chandrasekhar, S.Umapathy, Structure of the triplet excited state of tetrabromo-p-benzoquinone from time-resolved resonance Raman spectra and ab initio calculations, Chem. Phys. Lett., 2001,337, 224.
    [7] J.W. Sidman, Electronic States of p-Benzoquinone J. Am. Chem. Soc., 1956, 78, 2363.
    [8] A. Kuboyama, The Very Weak Visible Absorption Band of p-Benzoquinone Bull. Chem. Soc. Jpn., 1962, 35, 295.
    [9] J.M.Hollas, A high resolution investigation of the visible absorption spectrum of p-benzoquinone-H4 and -D4,Spectrochim. Acta, 1964, 20, 1563.
    [10] H.P. Trommsdorf, Electronic States and Spectra of p-Benzoquinone, J. Chem. Phys., 1972, 56, 5358.
    [11] R. Pou-Amerigo, M. Merchan, E. Orti, Theoretical study of the electronic spectrum of p-benzoquinone, J. Chem. Phys., 1999, 110, 9536.
    [12] J. Goodman, L.E. Brus, Distant intramolecular interaction between identical chromophores: The n-* excited states of p-benzoquinone, J. Chem. Phys. 1978, 69, 1604.
    [13] J.M.Hollas, L. Goodman, 5350-? Singlet-Triplet Transition in p-Benzoquinone, J. Chem. Phys., 1965, 43, 760.
    [14] L.E. Brus, J.R. McDonald, Electronic structure and dynamics of tunable laser excited p-benzoquinone (-h4 and -d4) in the gas phase, J. Chem. Phys., 1973, 58, 4223.
    [15] T. Anno, A. Sad?, Electronic States of p-Benzoquinone. IV. Infrared Spectrum and Assignment of Vibrational Frequencies in the Ground Electronic State, Bull. Chem. Soc. Jpn., 1958, 31, 734.
    [16] E.D. Beck, H. Ziffer, E. Charney, Molecular vibrations of quinones—I. Fermi resonance involving the carbonyl stretch in p-benzoquinone and its isotopic derivatives, Spectrochim. Acta, 1963, 19, 1871; E. Charney, E.D. Beck, Molecular vibrations of quinones. Ⅱ infrared spectra(solution and vapor) of p-benzoquinone and p-benzoquinone-d4, J. Chem. Phys., 1965, 42, 910; E.D. Beck, Raman spectra of isotopic derivatives of p-benzoquinone: revised vibrational assignments, J. Phys. Chem., 1991, 95, 2818.
    [17] H. Stammreich, Th. T. Sans, Molecular Vibrations of Quinones. IV. Raman Spectra of p-Benzoquinone and Its Centrosymmetrically Substituted Isotopic Derivatives and Assignment of Observed Frequencies, J. Chem. Phys., 1965, 42, 920.
    [18] T.M. Dunn, A.H. Francis, The ground state fundamentals of p-benzoquinone and p-benzoquinone-d4, J. Mol. Spectrosc., 1974, 50, 1.
    [19] Nyquist RA, Appl.spectrosc. , Solvent-Induced Carbonyl Frequency Shifts: Cyclopentanone and Cyclohexanone, 1990, 44(3):426.
    [20] Seehra JK, Jagodzinski PW, Fermi resonance and solvent dependence of the CO moiety of 4-(dimethylamino) benzaldehyde,J. Raman. Spectrosc. , 1990, 21: 31.
    [1] V. Barone, R. Improta, G. Morelli and F. Santoro, UV-vis spectra of p -benzoquinone anion radical in solution by a TD-DFT/PCM approach, Theor. Chem. Acc. 118 (2007) 143-148.
    [2] M. Puranik, J. Chandrasekhar, S. Umapathy, Structure of the triplet excited state of tetrabromo-p-benzoquinone from time-resolved resonance Raman spectra and ab initio calculations, Chem. Phys. Lett. 337 (2001) 224-230.
    [3] J. D. Gelder, K. D. Gussem, P. Vandenabeele and L. Moens, Reference database of Raman spectra of biological molecules, J. Raman Spectrosc. 38 (2007) 1133-1147.
    [4] A. L. Jenkins, R. A. Larsen, T. B. Williams, Characterization of amino acids using Raman spectroscopy, Spectrochimica Acta part A, 61 (2005) 1585-1594.
    [5] G. N. R. Tripathi, p-Benzosemiquinone Radical Anion on Silver Nanoparticles in Water, J. Am. Chem. Soc. 125 (2003) 1178-1179.
    [6] R. Foster, N. Kulevsky, Devapriya S. Wanigasekera, Reaction of amino-acids with p-benzoquinone, J. Chem. Soc. Perkin Trans Ⅰ, 1974, 974, 1318.
    [7] M. A. Slifkin, H. A. K. Saaid, Concentration and solvent effects on proline-p-benzoquinone complexes, Spectrochima Acta, 1986, 42A, 827.
    [8] J. B. Birks, M. A. Slifkin, interaction of amino acids, proteins and amines with chloranil, Nature, 1963, 197, 42.
    [12] T. W. Gant, Mary d’Arcy Doherty, Duro Odowole, Keith D. Sale, Gerald M. Cohen, Semiquinone anion radicals formed by the reaction of quinones with glutathione or amino acids, FEBS Lett., 1986, 201, 296.
    [13] N. Takehashi, J. Schreiber, V.Ficher. et al, Arch. Biochem. Biophys., 1987, 41, 252.
    [14] B. Kalyanaraman, P. L. Premovic and R. C. Sealy, Semiquinone anion radicals from addition of amino acids, peptides, and proteins to quinones derived from oxidation of catechols and catecholamines. An ESR spin stabilization study, J. Biol. Chem., 1987,262, 11080.
    [15] P. S. Santos, N. S. Goncalves, Resonance Raman investigation of the interaction of benzoquinone with amino acids, J. Raman Spectrosc., 1989, 20, 547.
    [16] G. N. R. Tripathi, R. H. Schuler, Resonance Raman spectra of p-benzoquinone radical and hydroquinone radical cation, J. Phys. Chem, 1987, 91, 5881.
    [17] G. N. R. Tripathi, R. H. Schuler, Resonance Raman spectra of some radiolytically prepared halogen derivatives of para-benzosemiquinone radical anion, J. Chem. Phys., 1982, 76, 2193.
    [18] G. N. R. Tripathi, Resonance Raman scattering of semiquinone radical anions, J. Chem. Phys., 1981, 74, 6044. 第五章
    [19] 络合物组成测定方法,薛光,丘星初,朱盈权,四川科技出版社,1985.
    [20] E. D. Becker, E. Charney and T. Anno, Molecular vibration of quinone. Ⅳ. Raman spectra of p-benzoquinone and its centrosymmetrically substituted isotopic derivatives and assignmeng of observed frequencies, J. Chem. Phys., 1965,42, 942.
    [21] H. Stammreich and Th. Teixeira San, Molecular Vibrations of Quinones. IV. Raman Spectra of p-Benzoquinone and Its Centrosymmetrically Substituted Isotopic Derivatives and Assignment of Observed Frequencies, J. Chem. Phys., 1965, 42, 920.
    [22] E. Charney and E.D. Becker, J. Chem. Phys., Molecular vibrations of quinones. Ⅱ infrared spectra(solution and vapor) of p-benzoquinone and p-benzoquinone-d4, J. Chem. Phys., 1965, 42,910.
    [23] A. Girlando and C. Pecile, Vibrational analysis of chlorinated p-benzoquinones, J. mol. spectrosc.. 1979, 77, 374.
    [24] C. Conti, R. Galeazzi, E. Giorgini, G. Tosi, FT- IR of trichloroacetoimidates in different solvent systems, J. Mol. Str., 2005, 744-747, 417.
    [25] Qing Liu, Wenqiang Sang, Xiaomin Xu, Solvent effects on infrared spectra of 5-methyl-7-methoxy-iso-flavone in single solvent systems, J. mol. str. 2002, 608, 253.
    [26] Nalan Tekin, Mustafa Cebe, Solvents effect on infrared spectra of trimethyl phosphate in organic solvents, Vibrational spectroscopy, 2004, 36, 129.
    [27] Hai-chou Chang, Jyh-Chiang Jiang, Wei-Cheng Tsai, et al, the effect of pressure on charge-enhangced C-H….O interactions in aqueous triethylamine hy drochloride probed by high pressure Raman spectroscopy, Chem. Phys. Lett. , 2006, 42, 100.
    [28] P. Hobza, Z. Havlas, Blue-Shifting Hydrogen Bonds Chem. Rev. 2000, 100, 4253.
    [29] A. Masunov, J.J. Dannenberg, R. H. Contreras, C-H Bond-Shortening upon Hydrogen Bond Formation: Influence of an Electric Field, J. Phys. Chem. A , 2001, 105, 4737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700