用户名: 密码: 验证码:
基于压电悬臂结构的能量采集研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展,各种便携式发电装置的研究将成为新的研究热点,其目的是在某些特殊的应用领域替代电池或自动为电池充电。利用每一种发电原理构造的发电装置都有其自身的特点和使用领域,压电发电装置的优点在于结构简单、无电磁干扰、易于加工制作和实现结构上的微小化、集成化等,尤其适用于各类传感及监测系统。本文通过对压电悬臂结构的理论特性分析,得出了压电振子最佳的结构尺寸,并制作了压电双晶片振子,对经典能量采集电路和同步电荷提取电路通过ORCAD/PSpice进行仿真,并通过实验与仿真经行对比。最后设计了能量存储电路,实现了对锂电池的充电。本文的具体研究内容如下:
     1.通过研究压电效应及压电方程从而得到基于正压电效应的压电能量采集理论基础,研究分析了适合于压电能量采集的振动模式。
     2.建立压电悬臂梁的两种典型结构即单晶片悬臂结构与双晶片悬臂结构,对两种结构建立能量转换模型,得出理论公式。通过数值分析得到压电振子的结构尺寸、材料性能以及厚度比对其发电性能的影响规律。
     3.设计经典能量采集电路与同步电荷提取电路,并使用ORCAD/PSpice对设计的电路进行仿真,分析不同电路的负载对能量采集的影响。设计占空比为定值的控制信号电路,实现对同步电荷提取电路控制开关的控制。
     4.选取合适的压电材料和基板材料,制作了压电双晶片振子,搭建实验平台,通过设计的电路实现对能量的采集,并把实验结果与仿真结果进行对比。最后设计了能量存储电路,实现了对锂电池的充电。
With the development of science and technology, research about a variety of portable power generation devices will become a new hotspot, which purpose is to replace batteries or recharge the battery automatically at some particular applications. A power generation device which make use of every principle of construction has its own characteristics and applications, the advantages of piezoelectric power generation devices lie in simple structure, no heat, no electromagnetic interference, ease of manufacture and realization of the structure of the small, integrated and so on, especially suitable for various types of sensing and monitoring systems. In this paper, we study theory and characteristic of piezoelectric cantilever structure, do the simulation about the classical energy acquisition circuit and the synchronous electric charge extraction circuit with the ORCAD / PSpice, compare and contrast test results with simulation results. Finally we design the energy storage circuitry and recharge lithium batteries. Specific studies of this article are as the following:
     1. By studying the piezoelectric effect and the piezoelectric equations we can obtain piezoelectric energy harvesting theoretical basis based on the piezoelectric effect, and choose the appropriate mode of piezoelectric vibration to harvest acquisition.
     2. Establish two typical structures, namely, single-crystal flakes cantilever and bimorph cantilever, on which we built the energy conversion model to arrive at theoretical formula. With Maple software doing numerical analysis, we can obtain the rule of its power performance which is influenced by the structure of Piezoelectric Vibrator size, material properties and thickness ratio.
     3. Design classics energy acquisition circuits and synchronous electric charge extraction circuit, and do the circuit simulation by the ORCAD / PSpice circuit simulation software, analyze the impact on the energy acquisition of different circuit load.
     4. Select the appropriate piezoelectric material and substrate materials, make a piezoelectric bimorph oscillator, build an experimental platform, harvest energy by the designed circuit, and compare experimental results with simulation results. Finally we design the energy storage circuit, recharge the lithium battery.
引文
[1]王革华,田雅林,袁婧婷.能源与可持续发展.北京:化学工业出版社,2005:50~58.
    [2] C. B. Williams, S. Shearwood, M. A. Harradine, et al. Development of an electromagnetic micro-generator. IEE Proc. Circuits, Devices and Syst., 2001,148(6):337~342.
    [3] R.Amirtharajah,A.P.Chandrakasan. Self-powered signal processing using vibration-based power generation, IEEE Journal of Solid-State Circuits , 1998, 33:687~695.
    [4]张福学.现代压电学(下册).北京:科学出版社,2001:28~50.
    [5] Schmidt, V.H.. Piezoelectric Energy Conversion in Windmills. Ultrasonic’s symposium, 1992:897~904.
    [6] P Glynne-Jones, S. P. Beeby, and N.M. White. Towards a piezoelectric vibration-powered micro-generator. IEE Proc. Sci. Meas. Technol. ,2001,148(2): 68~72.
    [7] Jeon Y B,Sood R,Jeong J H,et a1.MEMS power generator with transverse mode thin film PZT.Sensors and Actuators A,2005,122:16~22.
    [8] Bayrashev A,Robbins W P.Ziaie B.Low frequency wireless powering of Microsystems using piezoelectric-magnetostrictive laminate composites.Sensors and Actuators A ,2004,114:244~249.
    [9] S. R. Platt, S. Farritor, K. Garvin, and H. Haider. The use of piezoelectric ceramics for electric power generation within orthopedic implants. IEEE/ASME Transactions on Mechatronics, 2005,10:455~461.
    [10] J. W. Sohn, Seung B. Choi, and D. Y. Lee. An investigation on piezoelectric energy harvesting for MEMS power sources. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, April 2005, 219(4):429~443.
    [11] N.Shenck and J.Paradiso. Energy scavenging with shoe-mounted piezoelectrics.IEEE Micro, May-June, 2001,vol.21: 30-42.
    [12] Goldfarb, M. and Jones, L. D.. On the Efficiency of Electric Power Generation with Piezoelectric Ceramic. Journal of Dynamic Systems, Measurement, and Control, 1999,121: 566~571.
    [13] Clark, W. and Ramsay, M. J.. Smart Material Transducers as Power Sources for MEMS Devices. International Symposium on Smart Structures and Microsystems, Hong Kong. 2000.
    [14] Sodano H A, Lloyd J and Inman D J. An experimental comparison between several active composite actuators for power generation. Proc. Smart Structure and Materials Conf, SPIE 5390 :370-8.
    [15] Henry A. Sodano. Macro-Fiber Composites for Sensing, Actuation and Power Generation. Virginia: Virginia Polytechnic Institute and State University[D], 2003.
    [16] H. A. Sodano, D. J. Inman, and G. Park. Generation and Storage of Electricity from Power Harvesting Devices. Journal of Intelligent Material Systems and Structures, 2005,16(1): 67-75.
    [17] Ammar Y,Buhrig A, Marzencki M,et a1.Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator[C].Joint SOC-EUSAI conference,2005:1~6.
    [18] G. K. Ottman, H.F. Hofmann, A.C. Bhatt, and G.A. Lesieutre. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply .IEEE Transactions on Power Electronics, September 2002,17(5):669-676.
    [19] Jeon Y B,Sood R,Jeong J H,et a1.MEMS power generator with transverse mode thin film PZT.Sensors and Actuators A,2005,(122):16~22.
    [20]董璐.基于MEMS的压电型微能量采集器的研究[博士学文论文].上海:上海交通大学,2007.
    [21] Mingjie Guan and Wei-Hsin Liao.On the energy storage devices in piezoelectric energy harvesting. Smart Structures and Materials ,2006.
    [22] FANG Hua-Bin, LIU Jing-Quan. A MEMS-Based Piezoelectric Power Generator for Low Frequency Vibration Energy Harvesting. Chinese Physics Letters, 2006:732-734.
    [23]唐亚呜,丁鑫.桥梁监测无线传感压电电源.传感器技术, 2003年22(9)
    [24]李映平,赖百坛,陈荷娟,黄晓毛.一种新型的可蓄能压电电源原理研究.兵工学报. 2004,25(4).
    [25]淘宝祺等.智能材料结构.北京:国防工业出版社,1997.
    [26]杨大智.智能材料与智能系统.天津:天津大学出版社,2000.
    [27]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京:北京大学出版社,2005.7.
    [28]宋道仁.压电效应与应用.北京:科学普及出版社,1987年第一版.
    [29]沈星.应用于智能材料结构的RAINBOW元件及其与SMA的集成研究[博士学文论文].南京:南京航空航天大学航空宇航学院,2003.
    [30]林声和,叶至碧,王裕斌.压电陶瓷.北京:国防工业出版社,1979:29-38.
    [31]胡敏强等.超声波电机原理与设计.北京:科学出版社,2005第一版:25-32.
    [32]龚立娇.基于压电材料的能量采集研究[硕士学位论文],南京:南京航空航天大学航空宇航学院,2007.
    [33] Christopher J Morris and Fred K Forster.Optimization of a circular piezoelectric bimorph for a micro pump driver. Micromesh.Microeng,2000,10:459~465.
    [34]徐芝纶.弹性力学简明教程[M].北京:人民教育出版社,1980:285~291.
    [35]屈维德.机械振动手册[M].北京:机械工业出版社,1992:5-46~5-56.
    [36]闫世伟.压电发电装置实验设计与应用研究[硕士学位论文].吉林:吉林大学,2007.
    [37]佟刚.压电发电及自供能装置的研究[硕士学位论文].吉林:吉林大学,2007.
    [38] Joshua P.Ayers,David W.Greve,Irving J.Oppenheim.Energy Scavenging for SensorApplications using Structural Strains.Proceedings of SPIE,2003,5057:364-375.
    [39] Lu Deming.Principle of transducer.Ocean University of Qingdao,2001,9.
    [40] J Cho,M Anderson,R Richards,et al.Optimization of electromechanical coupling for a thin-film PZT membrane[J].I.Modeling.J.Micromech.Microeng,2005,15:1797-1803.
    [41]李荣久主编,陶瓷-金属复合材料(第二版).北京:冶金工业出版社,2004,3.
    [42]戴枝荣,张远明主编,工程材料及机械制造基础--工程材料(第二版).北京:高等教育出版社,2006,3.
    [43]何青,王丽芬编著. Maple教程.北京:科学出版社,2006.8.
    [44]李银山等编著.Maple材料力学.北京:机械工业出版社,2009.2.
    [45] Hofmann, H., Ottman, G. K., and Lesieutre, G. A.. Optimized Piezoelectric Energy Circuit Using Step-Down Converter in Discontinuous Conduction Mode.IEEE Transactions on Power Electronics, 2002,18(2):696~703.
    [46] F Lu,HP Lee1 and S P Lim. Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications.Smart Materials and Structures, 2004, (13):57-63.
    [47] T.H.Ng and W.H.Liao.Sensitivity Analysis and Energy Harvesting for a Self-Powered Piezoelectric Sensor. Journal of intelligent material system and structure,2005,16:785-797.
    [48] .Sodano, H. A., Park, G., and Inman, D. J. An Investigation into the Performance of Macro-Fiber composites for Sensing and Structural Vibration Applications. Mechanical Systems and Signal Processing, , 2004a , 18: 683~697.
    [49]汪建民,钟国臣.PSpice电路设计与应用.北京:国防工业出版社,2007.9.
    [50] Steven M. Sandler著.尹华杰等译.开关电源仿真:PSpice和SPICE应用(美) .北京:人民邮电出版社,2007.10.
    [51]李永平主编,储成伟编著.PSpice电路仿真程序设计.北京:国防工业出版社,2006.7.
    [52] E. Lefeuvre, A. Badel, C. Richard et al. A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors and Actuators A 126 2006.
    [53] Adrien Badel et al. Single Crystals and Nonlinear Process for Outstanding vibration- Powered Electrical Generators. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, april 2006,53, (4).
    [54]胡广侠.锂离子电池充放电过程的研究,[硕士学位论文].上海:中国科学院研究生院(上海微系统与信息技术研究所), 2002.
    [55]尤勇.具有USB电源管理器的锂离子电池充电器,[硕士学位论文].西安:西安电子科技大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700