用户名: 密码: 验证码:
超高硅铝合金中硅相的细化与界面性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过共晶Al-Si合金由于具有高的比强度和良好的铸造性能,得到了广泛的应用。制约过共晶Al-Si合金应用的关键是初晶Si的尺寸和形貌。对于含Si量大于50wt.%的Al-Si合金,初晶Si异常粗大,导致难以应用。超高硅铝合金在电子封装等领域具有特殊的用途;并且具有高的硬度和良好的耐磨性等优良性能,因而具有潜在的应用价值。因此,开展超高硅铝合余的晶粒细化研究具有现实意义。在细化机理方面,现有文献局限于晶格错配度理论,缺乏从原子层次上研究异质形核界面的结合情况,而这对于进一步揭示细化机理有理论意义。
     本文利用高倍视频金相显微镜(HSVM)、电子探针显微分析仪(EPMA)、扫描电镜(SEM)、X射线衍射仪(XRD)、差式扫描量热仪(DSC)、高温熔体X射线衍射仪等测试手段研究了采用Si-20P中间合金细化超高硅铝合金的规律;采用高性能计算软件Materials Studio,用第一性原理研究了超高硅铝合金细化过程中涉及到的几种物相:TiC、AlP、Si和Al,研究了这4种物相的体性质、表面性质和它们之间的界面性质,研究了界面附近原子间的结合情况。考虑到吸附行为在形核初期的重要性,还研究了Si原子在AlP表面的吸附问题。主要研究工作和结果如下:
     发现采用新型Si-20P中间合金可以有效细化含Si量在30-70wt.%范围的铝合金,使初晶Si尺寸由2-6mm细化至30-50μm。在Si含量达到50wt.%时,所需要的临界细化温度和临界加P量都存在突变现象,Si含量小于50wt.%时,细化所需要的最小过热度△T_(min)小于100K(△T_(min)=T_(min)-T_L,T_(min)为临界细化温度,T_L为液相线温度);而当Si含量大于50wt.%时,细化所需要的最小过热度△T_(min)基本上为恒定值260K。利用高温熔体X射线衍射仪研究了Al-50Si合金熔体微观结构随温度的变化,发现上述突变现象与其熔体微观结构随温度的演化有关。通过对熔体的相关半径、团簇平均原子个数和配位数等的比较,发现在低过热熔体中,团簇的尺寸明显增加,而配位数增加幅度较小。即在较低的过热温度下,熔体中存在中程有序结构特征,因而不能达到良好的细化效果。在结构因子图中,当Al和Si的特征峰均不明显时,方可达到良好的细化效果。
     提出了细化超高硅铝合金的两种新方法,可以有效细化含Si量高达70wt.%的铝合金。一种是采用Si-20P中间合金细化,并根据试验数据得出了临界细化温度和临界加P量的经验公式;第二种是运用TiC/AlP复合粒子形核的原理,采用Si-20P中间合金和适当配比的Al-TiO_2-C粉末压块体来细化,这样不仅可以提高细化效果,而且较前一种方法降低所需熔体温度100K左右。在细化后的初晶Si内部观察到TiC/AlP复合粒子,分析了Al-TiO_2-C混合粉在熔体中的反应过程以及原位生成的TiC粒子与AlP的相互作用。
     观察并分析了Si-20P中间合金在铝熔体中的反应、扩散、长大和溶解过程。(1)该中间合金中的SiP与铝熔体发生反应生成颗粒状的AlP聚集体,随保温时间延长颗粒状AlP发生扩散并长大为条状;(2)熔体经历高温以后,条状AlP发生溶解,凝固后析出成短针状。AlP在Al-Si合金中可能的存在形态有:颗粒状、短针状、长条状和粗大的板片状,不同形态的AlP对初晶Si细化的促进作用亦不相同。细小弥散分布的AlP对初晶Si的细化最为有利,而熔体中存在粗大或板片状的AlP则使生成的初晶Si非常粗大。
     由于AlP很容易在抛光或放置过程中与水蒸汽发生反应,故在文献中常看到的初晶Si内的AlP相,实际上是氧化后的含P相。本文采用特殊方法制备了未氧化的试样,在背散射照片中观察到未氧化的AlP相,它与初晶Si的颜色基本一致。用差热分析仪对细化前后的Al-50Si合金进行分析发现,加P细化后的合金初晶Si的析出温度明显升高,形核过冷度显著降低。通过调整凝固条件和加P量,可以改变初晶Si的生长形貌,使超高硅铝合金中的初晶Si也可存在类似共晶Si变质后的珊瑚状形态。
     研究了AlP(100)、(110)和(111)面原子层数从2层到6层变化时表面能的变化,AlP的(100)、(110)和(111)面分别达到3、4、5层以后,表面能即不再明显变化,此时已经显示出体性质。经计算得出:(100)表面能最高,(111)表面能次之,(110)表面能最小。6层AlP(111)面在弛豫后,表面朝向真空层的一侧电子密度显著减少,P原子所在的位置电子密度有所减少,而Al原子所在的位置电子密度有所增加。AlP(111)面在弛豫后,费米能附近的DOS峰值显著下降,经过弛豫后表面稳定性增加。表面弛豫不仅引起表面几何结构的变化,而且使表面层的电子结构与键合特性发生变化,弛豫后表面层原子的部分价电子转移到了真空层,使表面层原子的电子态密度发生变化,而且还出现新的表面态。
     研究发现,AlP不同表面上的电子态密度在费米能级处的峰值不相同,这反映了不同表面性质的差异。对表面不同原子层局域电子态密度的分析发现,AlP表面性质主要受第一层和第二层原子的影响。Al原子随着表面深度的增加,费米能处的DOS峰值迅速下降。对AlP表面稳定性的研究发现,AlP(111)面的表面自由能依赖于体系的化学成分,在一定范围内变动。当Al的化学势较低时,AlP以P终止更稳定:而当Al的化学势较大时,AlP以Al终止更稳定。总体上,在大部分区域以P终止更稳定。
     研究了AlP/Si界面结合能的大小,发现同一晶面结合时,P-Si比Al-Si的界面结合能大;锯齿形结合界面能较大,同时界面间距较小,说明结合后更稳定。由于AlP存在极性表面和非极性表面,这对AlP/Si的界面影响很大:经过仔细比较DOS图发现,费米面附近分两类情况:一类是费米面附近DOS数值很小,对应非极性AlP表面和Si组合的界面类型;另一类则是在费米能级处的DOS数值较高,有的还存在小峰,属于极性AlP表面和Si组合的类型。极性AlP表面与Si形成Al-Si结合界面时,费米面附近的DOS主要是Al原子的贡献。对于Si-P界面类型,费米面附近的DOS主要来自P原子的贡献。所有的AlP/Si界面都显示了一定的离子性质,即Si原子在Si-Al结合时将得到电子,而在Si-P结合时将失去电子。在各种界面结合中,起主导作用的是Si-Al或Si-P共价键。当Al或P原子不是直接位于Si原子的上方,而是位于Si原子之间时,界面间距较小,同时界面结合能也较大,说明这种界面更稳定。经过弛豫后,Si原子发生了一定的横向移动,不再停留在原来Al或P原子的上方,而是倾向于停留在Al与P原子中间,从而形成锯齿形的结合界面。
     发现Si原子在AlP不同表面的吸附能均较大。Si-P结合方式有时以双键结合,有时以三键结合,Si-Al结合则均是以单键结合。Si与P成键时的吸附能比Si与Al原子成键时的吸附能大。在吸附过程中,Si原子受P原子的影响要比Al原子大。
     同时研究了细化后合金中的其它界面结合情况。一是研究了两种Si-Al界面的结合:[110]_(si)//[112]_(Al),[103]_(si)//[110]_(Al),得出第二种界面结合能更高,界面间距更小;通过研究这两种Si/Al界面的电荷密度分布和差分电荷密度分布,得出Al-Si之间呈现较弱的共价键,界面处的Al原子与Si原子成单键结构;通过原子布居分析,发现它们之间也存在少量的离子键成分。二是研究了TiC/AlP界面,得出它们的界面形成需要吸收大量的能量,即TiC与AlP之间形成界面是一个吸热过程。原位反应生成的TiC易于和AlP结合,反应时放出的热量为TiC与AlP的界面结合提供了能量条件。
Al-Si alloy,an important foundry alloy,has attracted extensive investigation for excellent properties,such as high strengh-to-weight ratio and good casting characteristic.The morphology of primary silicon is a key factor to the application of hypereutectic Al-Si alloys.There are many literatures on hypereutectic Al-Si alloys which silicon content is below 30 wt.%,but few papers focus on Si-high Al alloys,especially the alloys with more than 50 wt.%Si content in spite of their special performance.In addition,Si-high Al alloys have potential application for their good abrasion,corrosion resistance and hardness.Up to now,the refinement effect of AlP on primary Si is believed to be due to low mismatch between the two phases,but the knowledge of interfacial bonding between them,which is useful to understand the refinement mechanism,is absent.
     The experimental and computational methods were used in this dissertation. The refinement of Si-high Al alloys were systemtically studied using optical microscope(OM),electron probe micro-analyzer(EPMA),scanning electron microscope(SEM),differential scanning calorimeter(DSC) and high temperature diffractometer etc.The calculation software,Materials Studio,was used for the theoretical analysis.The refinement of Si-high Al alloys and the interfacial bonding in refined alloys were systemtically investigated.The major research efforts of the present study are as follows:
     Si-high Al alloys with Si content ranging from 30 wt.%to 70 wt.%can be effectively refined using Si-20P master alloy.The average size of primary silicon particles transforms from 2-4 mm to about 30-50μm.The minimal holding temperature and adding phosphorus amount for good refinement increase abruptly when Si content reaches 50%in the melt.The minimal overheating degreeΔT_(min) (ΔT_(min) is the difference between the minimal overheating temperature T_(min) and the liquidus temperature T_L) for good refinement is about 260 K when silicon content is above 50 wt.%in the melt.The X-ray diffraction data of the Al-50Si melt demonstrate that structural change occurs when the melting temperature varies from 1373 K to 1573 K.Furthermore,the reason of the abrupt temperature augment for the refinement is due to the variation of the melt structure.The short range order of the microstructure in the melt is strong at 1373 K,and weak at 1573 K.Silicon atoms have intense interaction force at the low overheating degree(60 K) in the Al-50Si melt.AlP particles and solvent phosphorus atoms have a limited refinement effect on the strong short range order of silicon,which is the reason for the formation of the plate-like primary silicon particle at a low overheating temperature.
     Two new refinement methods for Si-high Al alloys were presented,and Al-70Si alloy can be well refined easily now.The first method was using the newly developed Si-20P master alloy.Different silicon content Si-high Al alloys can be refined successfully using the master alloy at the critical superheating temperature. Experiential formulae about the critical superheating temperature and the adding phosphorus amount are.founded according to the experimental data.The other method was the combination of Si-20P master alloy and Al-TiO_2-C mixture powders.The primary silicon cannot be well refined at 1473 K using 1%Si-20P master alloy addition,but it can be refined at this temperature using 1%Si-20P master alloy and 2%Al-TiO_2-C mixture powders.Moreover,the refinement effect was also enhanced.Duplex nuclei of TiC and AlP particles were found in the center of the primary silicon in despite of their large mismatch.
     The reaction of Si-20P master alloy in the Al-Si melt was investigated.Si and P atoms diffuse into the melt when the Si-20P master alloy is added to the Al-50Si melt and AlP compound forms.The coarse AlP sticks becomes needle-like or granular in the high temperature melt.The morphologies of AlP compound play an important role in the refinement of primary silicon.Undoubtedly,the fine and dispersed AlP is favorable to the refinement efficiency.
     AlP compound can react with water in the air,so the actual AlP compound is difficult to be observed in the refined primary silicon.The difference between oxidized nuclei and actual AlP nuclei was investigated in this paper.The actual AlP nuclei have the same color as the primary silicon in backscattered electron images, which has not been observed until now.The oxidized AlP nuclei appear as a black Al-P-O compound,as have been observed in the past experiments.The differential scanning calorimeter results show that the precipitation temperature of primary silicon increases after adding sufficient phosphorus to the melt.The growth and the morphology of primary silicon were also investigated in this paper,and the primary silicon with a kind of coralloid morphology which is similar to modified eutectic silicon has been found.The growth mode of primary silicon changed at certain cooling rate with a little phosphorus in the melt.
     The surface energies of 2-6 layers of AlP(100),(110) and(111) surface were calculated.AlP(100),(110) and(111) surfaces show bulk properties when they reach 3,4,5-layer,respectively.The surface energy of(100) is the biggest and that of(110) is the least among them.The electron density that exposed to the vacuum decreased after the relaxation.The electron density at P atomic position decreased while that at Al atomic position increased.The height of DOS peak at the Fermi level decreased after the relaxation,which shows more steady.The geometry structure,the electron structure and bond characteristic are all varied during the relaxed process.Some electrons go to the vacuum,therefore,the surface DOS varies,and some new surface states occur.
     To further explore the electronic properties of AlP surface,I studied DOS of AlP(100),(110),(111) surface.DOS of AlP surface is different from the bulk AlP crystal because the DOS peaks become narrower and higher.Different AlP surfaces have different DOS peaks at Fermi level,which contributes to the variation of structure stability.The decrease of coordination number of atom on the surface contributes to metallic characteristics.The DOS peaks of Al atoms on the outmost layer are high at the Fermi level,and decrease sharply on the second and third layers.While the DOS curves of P atoms on different layers show the similar value at the Fermi level,which indicates that the superficial Al atoms are crucial to the surface structure.AlP(111) surface was choosed as an example to explore its structural stabilities.AlP(111) surface free energy is a function of the systematic potential.The Al-terminated surface is more stable than the P-terminated surface at low Al potential.The P-terminated AlP(111) surface is thermodynamically more favorable in most of the range of chemical potential ofΔμ_(Al)(Δμ_(Al)=μ_(Al)-μ_(Al) (bulk)).
     The atomic structure,bonding,and ideal work of adhesion(W_(ad)~(ideal)) of the interface formed between AlP(100)/Si(100),AlP(110)/Si(110) and AlP(111)/Si(111) are calculated.The favourable interfaces can be deduced for the reason that adhesive interface energies(W_(ad)) are different,which cannot be obtained from the traditional mismatch theory.The results show that the main bonding between AlP and Si is covalent P-Si or Al-Si bond,accompanying some ionic characteristic. Un-polar and polar AlP surfaces have different contribution to the AlP/Si interface. The values of DOS at Fermi level are very small when the bonding is between un-polar AlP surface and Si surface.The DOS curves often have sharp peak when the bonding is between polar AlP surface and Si surface.According to traditional disregistry theory,the favorable nucleation effect of AlP is attributed to the crystal similarity between AlP and Si crystals,but the position of Si and AlP is uncertain. The movement of Si atoms at lateral direction occurs at interface during relaxation process in this work.Afterward,Si atoms are not on the top of Al or P atoms,but on the bridge sites between Al and P atoms.
     The adsorption of Si atoms on the AlP surface was studied using first-principles.The bonding characteristic between Si and AlP surface,such as adsorption position,adsorption energy,bond type,bond length,DOS,charge density distribution and difference charge density distribution were investigated, which are very important to understand the initial stages of heterogenous nucleaion. The adsorption of Si atoms on the AlP surface is an exothermic reaction.Si-P bonds are sometimes double bond or triple bond while the Si-Al bonds are always single bond.The adsorption energy of Si-P bond is bigger than that of Si-Al bond. The Al-P bonds of exterior layer are weakened after the adsorption of Si on the AlP surface.In all,the superficial P atoms have strong effect on adsorptive Si atoms.
     Si/Al interface and TiC/AlP interface were also investigated in this dissertation.Two interface geometries,namely[112]_(Al)//[110]_(Si) and [110]_(Al)//[103]_(Si) were investigated.It is found that the main bonding between Al and Si is covalent Al-Si or P-Si bond,accompanying some ionic characteristic. Moreover,adhesion energies(W_(ad)) of several types of interfaces were calculated.It is a endothermal reaction to form TiC(100)/AlP(100) interface or TiC(110)/AlP(110) interface,which is deduced from the interfacial adhesion energy.Therefore,the duplex nucleation of TiC/AlP must be formed in the high temperatue melt.The exothermic reaction of in situ TiC provides the necessary formation energy of the duplex nuclei.
引文
[1]D.G.Pettifor.Electron theory in materials modeling,Acta Mater.,2003,51:5649-5673
    [2]D.G.Pettifor.Computer-aided materials design:bridging the gaps between physics,chemistry and engineering,Phys.Educ-London,1997,5:164-168
    [3]D.Turnbull.Formation of crystal nuclei in liquid metals,J.Appl.Phys.,1950,21:1022-1028
    [4]J.W.Cahn,W.B.Hillig,G.W.Sears.The molecular mechanism of solidification,Acta Metall.,1964,12:1421-1439
    [5]S.Witzke,J.P.Riquet,F.Durand.Diffusion field ahead of a growing columnar front:Discussion of the columnar-equiaxed transition,Acta Metall.,1981,29(2):365-374
    [6]J.Lipton,W.Kurz,R.Trivedi.Rapid dendrite growth in undercooled alloys,Acta.Metall.,1987,35(4):957-964
    [7]W.J.Boettinger,S.R.Coriell,A.L.Greer,A.Karma,W.Kurz,M.Pappaz,R.Trivedi.Solidification microstructures:Recent developments,future directions,Acta.Mater.,2000,48:43-70
    [8]R.Trivedi,J.Lipton,W.Kurz.Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts,Acta Mater.,1987,35(4):965-970
    [9]胡赓祥,蔡珣.材料科学基础,上海:上海交大出版社,2000
    [10]L.F.Mondolf.Grain refinement in the casting of non-ferrous alloys,in "Grain refinement in casting and welds",Edited by G.J.Abbaschian and S.A.David,The Metallurgical Society of AIME,1983,3-50
    [11]翟启杰,赵沛,胡汉起,徐匡迪.金属凝固细晶技术研究,凝固科学技术与材料发展(香山科学会议第211次学术讨论会论文集),北京:国防工业出版社,2005
    [12]兰晔峰,朱正峰.铝合金用中间合金及其现状,轻金属,2004,5:49-51
    [13]张君尧.美国铝业公司对中间合金的质量要求,轻合金加工技术,1994;22(10):34-38
    [14]D.A.Granger.Refining and alloying of liquid aluminum and ferro-alloys,Trondhelm,Norway,1985,231-245
    [15]谷兰成.合金化用中间合金,山东冶金,1995,17(3):19-20
    [16]衡雪梅,刘俊,黄振翅.铝合金用中间合金细化剂,轻金属,2004,12:46-50
    [17]傅高升,孙锋山,王连登,康积行.中间合金对铝合金细化处理的现状分析与探索,特种铸造及有色合金,2001,2:50-53
    [18]张建新,钟建华.用于铝合金品粒细化的中间合金研究现状与分析,铝加工,2002,25(1):24-26
    [19]A.P.Bates,B.S.Met.,A.R.S.M.Hypereutectic aluminium-silicon alloys,Metallurgia,1960,61:70-78
    [20]P.S.Mohanty,J.E.Gruzleski.Grain refinement mechanism of hypoeutectic Al-Si alloys,Acta Mater.,1996,44(9):3749-3760
    [21]M.Dash,M.Makhlouf.Effect of key alloying elements on the feeding characteristics of aluminium-silicon casting alloys,Journal of Light Metals,2001,1:251-265
    [22]S.A.Kori,B.S.Murty,M.Chakraborty.Development of an efficient grain refiner for Al-7Si alloy and its modification with strontium,Mat.Sci.Eng.A-Struct.,2000,283:94-104
    [23]N.Tenekedjiev,J.E.Gruzleski.Hypereutectic aluminum-silicon casting alloys—a review,Cast Metals,1990,3(2):96-105
    [24]B.S.Murty,S.A.Kori,M.Chakrabory.Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying,Int.Mater.Rev.,2002,47:3-16
    [25]P.H.Shingu,Jin-ichi Takamura.Grain-size refining of primary crystals in hypereutectic Al-Si and Al-Ge alloys,Metall.Trans.,1970,(8):2339-2340
    [26]P.Schumacher,B.J.McKay.TEM investigation of heterogeneous nucleation mechanisms in Al-Si alloys,J.Non-Cryst.Solids,2003,317:123-128
    [27]D.R.Allen,M.Gremaud,J.H.Perepezko.Nucleation-controlled microstructural development in Al-Si alloys,Mat.Sci.Eng.A-Struct.,1997,226-228:173-177
    [28]S.Shankar,Y.W.Riddle,M.M.Makhlouf.Nucleation mechanism of the eutectic phase in aluminium-silicon hypoeutectic alloys,Acta Mater.,2004,52:4447-4460
    [29]S.D.McDonald,K.Nogita,A.K.Dale.Eutectic nucleation in Al-Si alloys,Acta Mater.,2004,52:4273-4280
    [30]J.Chang,I.Moon,C.Chol.Refinement of cast microstructure of hypereutectic Al-Si alloys through the addition of rare earth metals,J.Mater.Sci.,1998,33:5015-5023
    [31]C.L.Xu,Q.C.Jiang.Morphologies of primary silicon in hypereutectic Al-Si alloys with melt overheating temperature and cooling rate,Mat.Sci.Eng.A-Struct.,2006,437:451-455
    [32]D.Liang,Y.Bayaktar,H.Jones.Formation and segregation of primary silicon in Bridgman solidified Al-18.3 wt%Si alloy,Acta Metall.Mater.,1995,43(2):579-585
    [33]F.C.Robles,Hernandez,J.H.Sokolowski.Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al-Si hypereutectic alloys,J.Alloy Compd.,2006,426:205-212
    [34]C.L.Xu,H.Y.Wang,C.Liu,Q.C.Jiang.Growth of octahedral primary silicon in cast hypereutectic Al-Si alloys,J.Cryst.Growth,2006,291:540-547
    [35]S.Kamble,C.Ravindran.Analysis of primary silicon crystals in hypereutectic aluminum-silicon alloys:Effect of change in process parameters,AFS Trans.,2005,056:87-97
    [36]S.Kamble,C.Ravindran.Primary silicon crystals and flow stoppage in hypereutectic Al-Si alloys,AFS Trans..2006,016:85-95
    [37]Yong-Bin Sun.Microstructure control and investigation of nucleation and growth mechanism of silicon crystal grown from the hypereutectic Al-Si melt,PhD thesis,University of Wisconsin-Madison,1989
    [38]D.G.lbarra.Control of grain refinement of Al-Si alloys by thermal analysis,PhD thesis,McGill University,1999
    [39]陈治明,王健农.半导体器件中的材料物理学基础,北京:科学出版社,1999
    [40]黄强,顾明元,金燕萍.电子封装材料的研究现状,材料导报,2000,14(9):28-32
    [41]D.M.Jacobson.Spray-formed silicon-aluminium,Adv.Mater & Proc.,2000,157(3):36-39
    [42]蔡杨,郑子樵,李世晨,冯曦.轻质Si-Al电子封装材料制备工艺的研究,粉末冶金技术,2004,22(3):168-172
    [43]杨培勇,郑子樵,蔡杨,李世晨,冯曦.Si-Al电子封装材料粉末冶金制备工艺研究,稀有金属,2004,28(1):160-165
    [44]D.M.Jacobson.Lightweight electronic packaging technology based on spray formed Si-Al,Powder Metall.,2000,43:200-202
    [45]S.P.S.Sangha,D.M.Jacobson,A.J.W.Oqilvy,M.Azema,A.A.Junai,E.Botter.Novel aluminium-silicon alloys for electronics packaging,Engineering Science and Education,1997,6(5):195-201
    [46]S.C.Hogg,A.Lambourne,A.Ogilvy,P.S.Grant.Microstructural characterization of spray formed Si-30Al for thermal management applications,Scripta Mater.,2006,55:111-114
    [47]A.G.Leatham,J.S.Coombs,J.B.Forrest,A.J.W.Ogilvy,R.Ross,L.G.Elias.United States Patent.US 6,312,535,B1,2001
    [48]R.P.Liu,D.M.Herlach,M.Vandyoussefi,A.L.Greer.Undercooling and solidification of Al-50At.Pct Si alloy by electromagnetic levitation,Metall.Mater.Trans.A,2004,35A:607-612
    [49]L.L.Ge,R.P.Liu,G.Li,M.Z.Ma,W.K.Wang.Solidification of Al-50 at.%Si alloy in a drop tube,Mat.Sci.Eng.A-Struct.,2004,385:128-132
    [50]吴安如,黎小辉.制备工艺对高硅铝合金的组织及性能的影响,材料热处理,2006,3(14):17-19
    [51]杨伏良,甘卫平,陈招科,刘泓.快速凝固粉末冶金制备高硅铝合金材料的组织与力学性能,中国有色金属学报,2004,14(10):1717-1722
    [52]杨伏良,甘卫平,陈招科.高硅铝合金几种常见制备方法及其细化机理,材料导报,2005,19(5):42-49
    [53]沈军,孙剑飞,谢壮德,周彼得,李庆春.快速凝固高硅铝合金粉末显微组织及其时效特性,特种铸造及有色合金,2001,4:1-2
    [54]林锋,冯曦,李世晨,任先京,贾先赏.新型硅基铝金属高性能电子封装复合材料研究,材料导报,2006,20(3):107-110
    [55]姚书芳.过共晶铝硅合金细化变质剂的研究,特种铸造及有色合金,2000,5:1-3
    [56]李小平,陈振华.高硅铝合金悬浮铸造的组织细化,特种铸造及有色合金,1999,6:20-21
    [57]李元元,张大童.高压水雾法制备的高硅铝合金粉末特性,金属学报,1998,1:95-99
    [58]邢书明,胡汉起.半固态金属连铸技术经济分析与研究进展,铸造,2000,8:449-453
    [59]毛卫民,李树索.电磁搅拌对过共晶Al-Si合金初生Si长大过程和形貌的影响,材料科学与工艺,2001,9(2):117-121
    [60]魏朋义,傅恒志,Reif W.熔体搅拌Al-20.0%Si合金的组织细化,中国有色金属学报,1996,6(1):98-102
    [61]曹丽云,王建中,刘兴江、杨小平、陈淑英,周大奇.电脉冲变质处理对ZL108合金性能的影响,特种铸造及有色合金,2001,4:10-11
    [62]C.R.HO,B.Cantor.Heterogeneous nucleation of solidification of Si in Al-Si and Al-Si-P alloys,Acta Metal.Mater.,1995,43:3231-3246
    [63]X.F.Liu,Y.Y.Wu,X.F.Bian.The nucleation of primary Si in Al-Si alloys after addition of boron and phosphorus,J.Alloy Compd.,2005,391:90-94
    [64]M.Faraji,I.Todd,H.Jones.Effect of solidification cooling rate and phosphorous inoculation on number per unit volume of primary silicon particles in hypereutectic aluminium-silicon alloys,J.Mater.Sci.,2005,40:6363-6365
    [65]W.J.Kyffin,W.M.Rainforth,H.Jones.Effect of phosphorous addition on the spacing between primary silicon particles in a Bridgman solidified hypereutectic Al-Si alloy,J.Mater.Sci.,2001,36:2667-2672
    [66]K.Nogita,S.D.McDonald,K.Tsujimoto,K.Yasuda,A.K.Dahle.Aluminium phosphide as a eutectic grain nucleus in hypoeutectic Al-Si alloys,J.Electron Microsc.,2004,53(4):361-369
    [67]L.N.Yu,X.F.Liu,H.M.Ding,X.F.Bian.A new nucleation mechanism of primary Si by pertectic-like coupling of A1P and TiB_2 in near eutectic Al-Si alloy,J.Alloy Compd.,2007,432:156-162
    [68]L.N.Yu,X.F.Liu,H.M.Ding,X.F.Bian.A new nucleation mechanism of primary Si by like-peritectic coupling of A1P and Al_4C_3 in near eutectic Al-Si alloy,J.Alloy Compd., 2007,429:119-125
    [69]Q.C.Jiang,C.L.Xu,M.Lu,H.Y.Wang.Effect of new Al-P-Ti-TiC-Y modifier on primary silicon in hypereutectic Al-Si alloys,Mater.Lett.,2005,59:624-628
    [70]S.Z.Beer.The solution of aluminum phosphide in aluminum,Inclusions and Cellular Substructure,1969,116(2):263-265
    [71]H.Lescuyer,M.Alllibert,G.Laslaz.Solubility and precipitation of A1P in Al-Si melts studied with a temperature controlled filtration technique,J.Alloy Compd.,1998,279:237-244
    [72]F.L.Arnold,J.S.Prestley.Hypereutectic Al-Si casting alloys phosphorous refinement,AFS Trans.,1961,69:129-137
    [73]P.J.Nassiff,J.C.Schimitt,J.P.Tatosky.The analysis of phosphorus in aluminum and aluminum alloys,AFS Trans.,1983,91:225-228
    [74]王淑俊,刘相法,武玉英.富P中间合金对过共品Al-24%Si合金的高效变质处理,铸造,2006,55(12):1244-1246
    [75]刘相法,乔进国,宋西贵,边秀房,朱利民,张屹林.Al-P中间合金在Al-Si活塞合金中的应用,特种铸造及有色合金,2002,6:43-45
    [76]王德满,郑子樵.熔铸法生产的磷变质剂对过共晶铝-硅合金组织和性能的影响,轻合金加工技术,1995,23(9):9-12
    [77]R.Sterner-Rainer.US Patent 1940922,26 Dec.1933
    [78]乔进国.Al-P-Si中间合金及其变质处理技术的研究,山东大学硕士学位论文,2005
    [79]冈一嘉,吉田政博.过共晶Al-Si合金连续铸造における初Si の微细化,住友轻合金科技报,1987,1:1-6
    [80]赵永治,高泽生.过共晶Al-Si合金连续铸造中初品Si细化的新方法.轻合金加工技术,1995,10:5-8
    [81]Y.P.Wu,S.J.Wang,H.Li,X.F.Liu.A new technique to modify hypereutectic Al-24Si alloys,J.Alloy Compd.,2008,In press
    [82]L.N.Yu,X.F.Liu,H.M.Ding,X.F.Bian.Grain refinement of A356 alloy by AlTiC/AlTiB master alloys,J.Mater.Sci.,2005,40:3865-3867
    [83]刘相法,乔进国,刘玉先,李士同,边秀房.Al-P中间合金对共晶和过共晶Al-Si 合金的变质机制,金属学报,2004,40(5):471-476
    [84]齐广慧,刘相法,杨志强,柳延辉,边秀房.“绿色”高效Al-Si合金变质剂—Al-P中间合金,材料科学与工艺,2001,9(2):211-214
    [85]刘相法,齐广慧,韩延峰,边秀房,张书民,崔庆龙,陈寿鑫.Al-P中间合金变质剂在Al-Si活塞合金中的应用,内燃机配件,2001,6:14-17
    [86]R.M.Dreizler,E.K.U.Goss.Density Functional Theory,Berlin:Springer-Vertag,1990
    [87]I.N.Levine.Quantum Chemistry,Prentice Hall,Upper Saddle River,New Jersey 07458,Fifth Edition,2004
    [88]严辉,杨巍,宋雪梅.第一性原理方法在材料科学中的应用,北京工业大学学报,2004,30:210-213
    [89]M.W.Finnis.The theory of metal-ceramic interfaces.J.Phys-Condens.Mat.,1996,8:5811-5836
    [90]W.Zhang,J.R.Smith.Stoichiometry and adhesion of Nb/Al_2O_3,Phys.Rev.B,2000,61:16883-16889
    [91]W.Zhang,J.R.Smith.Nonstoichiometric interfaces an Al_2O_3 adhesion with Al and Ag,Phys.Rev.Lett.,2000,85:3225-3228
    [92]W.Zhang,J.R.Smith.The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems:Ni/Al_2O_3,Acta Mater.,2002,50:3803-3816
    [93]W.Zhang,J.R.Smith,X.G.Wang.Influence of sulfur on the adhesion of the nickel/alumina interface,Phys.Rev.B,2003,67:245414
    [94]D.J.Siegel,L.G.Hector Jr.,J.B.Adams.Adhesion,atomic structure,and bonding at the Al(111)/α-Al_2O_3(0001) interface:a first principles study,Phys.Rev.B,2002,65:085415
    [95]D.J.Siegel,L.G.Hector Jr.,J.B.Adams.Adhesion,stability,and bonding at metal/metal-carbide interface:Al/WC,Surf.Sci.,2002,498:321-336
    [96]D.J.Siegel,L.G.Hector Jr.,J.B.Adams.First-principles study of metal-carbide/nitride adhesion:Al/VC vs.Al/VN,Acta Mater.,2002,50:619-631
    [97]D.J.Siegel,L.G.Hector Jr.,J.B.Adams.Ab initio study of Al-ceramic interfacial adhesion,Phys.Rev.B,2003,67:092105
    [98]L.M.Liu,S.Q.Wang,H.Q.Ye.First-principles study of polar Al/TiN(111) interface, Acta Mater.,2004,52:3681-3688
    [99]L.M.Liu,S.Q.Wang,H.Q.Ye.Adhesion and bonding of the Al/TiC interface,Surf.Sci.,2004,550:46-56
    [100]L.M.Liu,S.Q.Wang,H.Q.Ye.Adhesion of metal-carbide/nitride interfaces:Al/TiC and Al/TiN,J.Phys-Condens.Mat.,2003,15:8103-8114
    [101]韩延峰.超声制备Al-5Ti-1B中间合金及α-Al/异质核心界面研究,上海交通大学博士学位论文,2007
    [102]Y.F.Han,Y.B.Dai,D.Shu,J.Wang,B.D.Sun.First-principles study of TiB_2(0001)surfaces,J.Phys-Condens.Mat.,2006,18:4197-4205
    [103]Y.E Han,Y.B.Dai,D.Shu,J.Wang,B.D.Sun.First-principles calculations on the stability of Al/TiB_2 interface,Appl.Phys.Lett.,2006,89:144107-3
    [1]赵岩.二元合金熔体凝固过程中的结构演化及团簇行为,山东大学博士学位论文,2005
    [2]J.Enderby.Direct method for the determination of atomic-scale structure of amorphous solids(X-ray,Electron and Neutron Scattering),J.Non-Cryst.Solids 1978,31:1-40
    [3]黄胜涛.非晶态材料的结构和结构分析,北京:科学出版社,1987
    [4]Y.Waseda.The Structure of Non-Crystalline Materials,McGraw-Gill,New York,1980
    [5]J.Krogh-Moe.A method for converting experimental X-ray intensities to an absolute scale,Acta Crystallogr,1956,9:951-953
    [6]N.Norman.The Fourier transform method for normalizing intensities,Acta Crystallogr,1957,10:370-373
    [7]Kynoch.International Tables for X-ray Crystallography,Birmingham,Ⅳ,1974
    [8]D.T.Cromer,J.B.Mann.Compton scattering factors for spherically symmetric free atoms,J.Chem.Phys.1967,47:1892-1893
    [9]陆坤权.液态物理进展概述,物理,1997,26:23-25
    [10]C.H.Fang,T.Yamaguchi,H.Wakita,H.Ohataki.X-ray diffraction study on structure of aqueous Mn(NO)_3·6H_2O Solution,Chin.Sci.Bull.,1996,41:1353-1357
    [11] D.I. Page, K. Mika. The partial structure factors of molten cuprous chlorede from neutron diffraction measurements, J. Phys. C: Solid St. Phys., 1971, 4: 3034-3044
    [12] Y. Waseda. The structure of liquids, amorphous solids and solid fast ion conductors, Prog. Mater. Sci., 1981, 26: 1-122
    [13] J.E. Enderby, D.M. North. The partial structure factors of liquid alloys, "The properties of liquid metals", Edited by P.D. Adams, H.A. Davies, S.G. Epstein, Conference Proceedings, Taylor and francis ltd., 1967: 171-176
    [14] C.N.J. Wagner, N.C. Haider. Atomic distribution and electronic transport properties in liquid alloys studied by X-ray diffraction, "The properties of liquid metals". Edited by P.D. Adams, H.A. Davies, S.G. Epstein. Conference Proceedings, Taylor and francis ltd., 1967: 241-246
    [15] A.P. Sokolov, A. Kisliuk, M. Soltwisch, D. Quitmann. Medium-range order in glasses: Comparison of Raman and diffraction measurements, Phys. Rev. Lett., 1992, 69: 1540-1543
    [16] S. Susman, D.L. Price, K.J. Volin, R.J. Dejus, D.G. Montague. Intermediate-range order in binary chalcogenide glasses: The first sharp diffraction peak, J. Non-Cryst. Solids, 1989,106:26-29
    [17] E. Vateva, E. Savova. New medium-range order features in Ge-Sb-S glasses, J. Non-Cryst. Solids, 1995, 192-193: 145-148
    [18] W.K. Heisenberg. Uber uantentheoretische Umdeutung kenematischer and mechanischer Beziehungen, Z. Physik, 1925, 33: 879-893
    [19] W.K. Heisenberg. The physical principles of quantum theory, Chicago: Chicago University Press, 1930
    [20] W. Heitler, F. London. Wechselwirkung neutraler atome und homoopolare bindung nach der quantenmechanik, Z. Phys., 1927,44: 455-472
    [21] W. Kohn. Nobel Lecture: Electronic structure of matter—wave functions and density functionals, Rev. Mod. Phys., 1998, 71: 1253-1266
    [22] P. Hohenberg, W. Kohn. Inhomogeneous electron gas, Phys. Rev. B, 1964, 136: 864-871
    
    [23] W. Kohn, L.J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects,Phys.Rev.A,1965,140:1133-1138
    [24]J.C.Slater.Quantum Theory of Molecular and Solids,McGraw-Hill,1974
    [25]S.H.Vosko,L.Wilk,M.Nusair.Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis,Can.J.Phys.,1980,58:1200-1211
    [26]R.M.Martin.Electronic Structure:Basic Theory and Practical Methods,Cambridge University,2004
    [27]A.D.Becke.Density-functional exchange-energy approximation with correct asymptotic behavior,Phys.Rev.A,1988,38:3098-3100
    [28]K.Burke,J.P.Perdew,Y.ang.Electronic Density Functional Theory:Recent Progress and New Directions,1998
    [29]C.Adamo,V.Barone.Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:The mPW and mPW1PW models,J.Chem.Phys.,1998,108:664-675
    [30]J.P.Perdew,K.Burke,M.Ernzerhof.Generalized Gradient.Approximation Made Simple,Phys.Rev.Lett.,1996,77:3865-3868
    [31]J.P.Perdew.Density-functional approximation for the correlation energy of the inhomogeneous electron gas,Phys.Rev.B,1986,33:8822-8824
    [32]M.C.Payne,M.P.Teter,D.C.Allan,T.A.Arias,J.D.Joannopoulos.Iterative minimization techniques for ab initio total-energy calculation:molecular dynamics and conjugate gradients,Rev.Mod.Phys.,1992,64(4):1045-1097
    [33]丁迅雷.金团簇上小分子吸附的第一性原理研究,中国科学技术大学博士学位论文,2004
    [34]M.D.Segall,Philip J.D.Lindan,M.J.Probert,C.J.Pickard,P.J.Hasnip,S.J.Clark,M.C.Payne.First-principles simulation:ideas,illustrations and the CASTEP code,J.Phys.:Condens.Matter,2002,14:2717-2744
    [35]H.J.Monkhorst,J.D.Pack.Special points for Brillouin-zone integrations,Phys.Rev.B,1976,13:5188-5192
    [36]B.G.Pfrommer,M.Cote,S.G.Louie.Relaxation of crystals with the quasi-Newton method,Journal of Computations Physics,1997,131:133-140
    [37] J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77: 3865-3868
    
    [38] M.D. Segall, R. Shah, C.J. Pickard. Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B, 1996, 54: 16317-16320
    [1]Z.Q.Wang,X.F.Liu,J.Y.Zhang,X.F.Bian.Recation mechanism in an Al-TiO_2-C system for producing in situ AI/(TiC+Al_2O_3) composite,J.Mater.Sci.,2004,39:667-669
    [2]K.Satyaprasad,Y.Mahajan,W.Bhanuprasad.Strengthening of Al/20 v/o TiC composites by isothermal heat treatment,Scripta Metallurgica et Materialia,1992,26:711-716
    [3]A.R.Kennedy,D.P.Weston,M.I.Jones,C.Enel.Reaction in Al-Ti-C powders and its relation to the formation and stability of TiC in Al at high temperatures,Scripta Mater.,2000,42:1187-1192
    [4]P.Sahoo,M.J.Koczak.Microstructure-property relationships of in situ reacted TiC/Al —Cu metal matrix composites, Mater. Sci. Eng. A, 1991, 131: 69-76
    [5] H. Nakata, T. Choh, N. Kanetake. Fabrication and mechanical properties of in situ formed carbide particulate reinforced aluminium composite, J. Mater. Sci., 1995, 30: 1719-1727
    [6] K. Nogita, S.D. McDonald, K. Tsujimoto, K. Yasuda, A.K. Dahle. Aluminium phosphide as a eutectic grain nucleus in hypoeutectic Al-Si alloys, J. Electron Microsc, 2004,53:361-369
    [7] L.N. Yu, X.F. Liu, H.M. Ding, X.F. Bian. A new nucleation mechanism of primary Si by peritectic-like coupling of AlP and TiB_2 in near eutectic Al-Si alloy, J. Alloy Compd., 2007,432: 156-162
    [8] H. Lescuyer, M. Allibert, G. Laslaz. Solubility and precipitation of AlP in Al-Si melts studied with a temperature controlled filtration technique, J. Alloy Compd., 1998, 279: 237-244
    [1]桂满昌,贾均,李庆春.液态过热对高硅Al-Si合金组织和性能的影响,航空材料学报,1996,16(1):26-31
    [2]M.Singh,R.J.Kumar.Structure of liquid aluminium-silicon alloys,J.Mater.Sci.,1973,8:317-323
    [3]桂满昌,李庆春,贾均.液态过热对亚共晶Al-Si合金凝固组织与凝固过程的影响,特种铸造及有色合金,1995,1:5-8
    [4]R.Kumar,R.K.Mahanti,Structures of liquid Al-Si alloys modified with P and S,Aluminium,1977,53(6):361-365
    [5]桂满昌,宋广生,贾均,李庆春.Al-18%Si过共晶合金熔体结构特征及磷的影响,金属学报,1995,31(4):177-182
    [6]G.M.Kuznetsov,V.A.Rotenberg.Construction of the liquid faces surface of the system Al-Si-P,Inorganit Mat.,1971,7:831-834
    [7]Yongbin Sun.Microstructure control and investigation of nucleation and growth mechanism of silicon crystal grown from the hypereutectic Al-Si melt,Ph.D dissertation, Wisconsin-Madison University,1989
    [8]M.Easton,D.StJohn.Grain refinement of aluminum alloys:part Ⅰ.the nucleant and solute paradigms-a review of the literature,Metall.Mater.Trans.A,1999,30:1613-1623
    [9]A.L.Greet,A.M.Bunn,A.Tronche.Modelling of inoculation of metallic melts:application to grain refinement of aluminium by Al-Ti-B,Acta Mater.,2000,48:2823-2835
    [10]A.L.Greer.Grain refinement of alloys by inoculation of melts,Phil.Trans.R.Soc.Lond.A,2003,361:479-495
    [11]B.Cantor.Hetergeneous nucleation and adsorption,Phil.Trans.R.Lond.A.,2003,361:409-417
    [12]黄良余.铝硅合金变质机理的新发展和新观点(上),特种铸造及有色合金,1995,4:30-32
    [13]黄良余.铝硅合金变质机理的新发展和新观点(下),特种铸造及有色合金,1995,5:19-22
    [14]桂满昌,贾均,李庆春.五瓣星状初晶Si形核机制,金属学报,1996,32(11):1177-1183
    [15]W.Kurz,D.J.Fisher.Fundamentals of Solidification,Switzerland,Trans Tech Publications,3nd,1989
    [16]A.Hellawell.The growth and structure ofeutectics with silicon and germanium,Prog.Mater.Sci.,1970,15(1):3-78
    [17]K.F.Kobayashi,P.H.Shingu,R.Qzaki.Crystal growth of the primary silicon in an Al-16 wt.%alloy,J.Mater.Sci.,1975,10(2):290-299
    [18]K.F.Kobayashi,L.M.Hogan.Fivefold twinned silicon crystals grown in an Al-16wt.%Si melt,Phil.Mag.,1979,40(3):399-407
    [19]王渠东,翟春泉,徐小平,金俊泽.Al-Si合金中初晶Si的台阶生长,上海交通大学学报,1999,33(2):142-145
    [20]K.F.Kobayashi,L.M.Hogan.The crystal growth of silicon in Al-Si alloys,J.Mater.Sci.,1985,20:1961-1975
    [1]S.V.Dudiy,B.I.Lundqvist.First-principles density-functional study of metal-carbonitride interface adhesion:Co/TiC(001) and Co/TiN(001),Phys.Rev.B,2001,64:045403-14
    [2]A.Arya,E.A.Carter.Structure,bonding,and adhesion at the TiC(100)/Fe(110) interface from first principles,J.Chem.Phys.,2003,118:8982-8996
    [3]R.Ahuja,O.Eriksson,J.M.Wills,B.Johansson.Structural,elastic,and high-pressure properties of cubic TiC,TiN,and TiO,Phys.Rev.B,1996,53(6):3072-3079
    [4]A.Dunand,H.D.Flack,K.Yvon.Bonding study of TiC and TiN.I.High-precision x-ray-diffraction determination of the valence-electron density distribution,Debye-Waller temperature factors,and atomic static displacements in TiC_(0.94) and TiN_(0.99),Phys.Rev.B,1985,31:2299-2315
    [5]L.E.Toth.Transition Metal Carbides and Nitrides,Academic Press New York,1971
    [6]P.P.Rushton,S.J.Clark,D.J.Tozer.Density-functional calculations of semiconductor properties using a semiempirical exchange-correlation functional,Phys.Rev.B,2001,63:115206-5
    [7]L.M.Liu,S.Q.Wang,H.Q.Ye.First-principles study of polar Al/TiN(111) interfaces, Acta Mater., 2004, 52: 3681-3688
    [8] D.J. Siegel, L.G. Hector Jr, J.B. Adams. Ab initio study of Al-ceramic interfacial adhesion, Phys. Rev. B, 2003, 67: 092105-4
    
    [9] C. Kittel. Introduction to solid state physics (6~(th) edition). New York: Wiley, 1986
    [10] M.D. Segall, R. Shah, C.J. Pickard, M.C. Payne. Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B, 1996, 54: 16317-16320
    [11] J.C. Boettger. Nonconvergence of surface energies obtained from thin-film calculations, Phys. Rev. B, 1994,49:16798-16800
    [12] C. Ruberto, B.I. Lundqvist. Nature of adsorption on TiC(111) investigated with density-functional calculations, Phys. Rev. B, 2007, 75: 235438-31
    [13] L.H. Fang, L. Wang, H.S. Dai, C.X. Peng. First-Principles Study of Bulk and (001) Surface of TiC, Under review
    [14] K. Rapcewicz, B. Chen, B. Yakobson. Consistent methodology for calculating surface and interface energies, Phys. Rev. B, 1998, 57: 7281-7291
    [15] W. Zhang, J.R. Smith, X.G. Wang, A.G. Evans, Influence of sulfur on the adhesion of the nickel/alumina interface, Phys. Rev. B, 2003,67: 245414-12
    [16] S. Shankar, Y.W. Riddle, M.M. Makhlouf. Nucleation mechanism of the eutectic phases in aluminum-silicon hypoeutectic alloys, Acta Mater., 2004, 52: 4447-4460
    [17] A. Banerjea, J.R. Smith. Origins of the universal binding-energy relation, Phys. Rev. B, 1988,37:6632-6645
    [18] D.J. Siegel. First-principles study of metal-ceramic interfaces, B.S. case Western Reserve University, Ph.D dissertation, 1995
    [19] D.J. Siegel, L.GH. Jr, J.B. Adams. Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC, Surf. Sci., 2002,498: 321-336
    [20] M.D. Kriese, N.R. Moody, W.W. Gerberich. Effects of annealing and interlayers on the adhesion energy of copper thin films to SiO_2/Si substrates, Acta Mater., 1998, 46: 6623-6630
    [21] D.M. Lipkin, D.R. Clarke, A.G. Evans. Effect of interfacial carbon on adhesion and toughness of gold-sapphire interfaces, Acta Mater., 1998,46: 4835-4850
    [22] W.T. Kim, B. Cantor. An absorption model of the heterogeneous nucleation of solidification, Acta Metall. Mater., 1994, 42: 3115-3127
    [23] B. Cantor. Heterogeneous nucleation and absorption. Philosophical Transactions of the Royal Society of London, Series A, 2003, 361: 409-417
    [24] A.L. Greer. Grain refinement of alloys by inoculation of melts, Phil. Trans. R. Soc. Lond. A, 2003, 361: 479-495

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700