用户名: 密码: 验证码:
某客车前轮摆振及影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前轮摆振是指汽车在平坦公路上行驶时所产生的车轮绕主销的持续的振动现象,它对汽车动力性、燃油经济性、操纵稳定性、行驶平顺性以及安全性都有极大的负面影响。前轮摆振有强迫振动和自激振动两种形式,由于自激振动是非线性动力系统特有的振动现象,本文建立了包含间隙、干摩擦等非线性因素的5自由度客车前轮摆振模型,研究了摆振的发生机理和探索了有效的减摆措施,具体内容有:
     1.以某国产客车为研究对象,建立五自由度客车摆振系统动力学模型,对模型中间隙、干摩擦等非线性因素的处理作了详细的阐述。
     2.运用非线性动力学理论,阐述转向轮自激摆振是系统发生Hopf分岔后出现稳定的极限环振动现象,根据Routh-Hurwitz判据判断摆振系统在不同车速下的稳定性,确定客车摆振系统发生自激摆振的Hopf分岔点,并进一步判断极限环的稳定性。
     3.运用MATLAB&Simulink软件建立客车转向轮摆振仿真模型。通过仿真结果检验理论分析,同时得到转向轮发生强迫型振动、自激型摆振、耦合型摆振的特征,并得到车速、转向系参数、横拉杆参数、质心位置、主销后倾角等参数与转向轮自激摆振幅值的关系曲线,通过确定影响自激摆振的敏感参数及敏感参数的适取范围,可以有效减小或消除客车的自激摆振。
     4.本文重点分析了横拉杆间隙、主销处干摩擦对自激摆振的车速区间、摆振幅值的影响。研究表明,间隙能增大自激摆振的车速区间、极限环幅值;干摩擦在一定程度上能抑制自激摆振的发生。
Front wheel shimmy is the phenomenon that steering wheels vibrate around king-Pin axis when the vehicle travels in a straight road. It performs negative influence on Power Performance, fuel economy performance, vehicle handling stability, riding comfort and driving safety. There are two forms of front wheel shimmy: forced vibration and self-excited vibration. As the self-excited vibration is the vibration of nonlinear dynamic system-specific phenomena, a steering wheel shimmy model of a coach with five degrees of freedom is constructed which include nonlinear elements, such as dry friction, clearance and so on. Studied the mechanism of the occurrence of shimmy and explore effective measurements to reduce the shimmy. Details are:
     1. Taking a coach of domestic for the study, the establishment. A shimmy system dynamics model of the coach with five degrees of freedom is established. Elaborated that how to deal with these nonlinear elements of dry friction, clearance and so on, which included in the model.
     2. Applying nonlinear dynamical system theories, Elaborated that Steering wheel self-excited shimmy is a phenomenon of stable limit cycle vibration when the shimmy system occurred Hopf bifurcation. Determine shimmy system stability under different speeds According to Routh-Hurwitz criterion. Determine the coach shimmy system at the self-excited shimmy of the Hopf bifurcation point, and further to determine the stability of limit cycles.
     3. Through MATLAB&Simulink software, a steering wheel shimmy simulative model of the coach is constructed. Check the theoretic analysis results using simulative results, and obtain the characteristics of Steering wheel occurring forced shimmy, self-excited shimmy, coupled shimmy. Obtain the curves concerning the relationship between velocity, steering gear parameters, tie-rod parameters, center of mass location, kingpin caster angle and amplitude of the steering wheel self-excited shimmy. Find out the sensitive parameters and its suitable range which affect shimmy can effectively reduce or eliminate self-excited shimmy of the coach.
     4. The thesis focuses on analysis the influence of horizontal pulling lever clearance, kingpin dry friction on the self-excited shimmy of the speed range, swing amplitude effects. Studies have shown that clearance can increase the self-excited shimmy of the speed range, limit cycle amplitude; dry friction to a certain extent, can inhibit the occurrence of self-excited shimmy.
引文
[1]何渝生,魏克严,洪宗林等.汽车振动学[M].北京:人民交通出版社, 1990.5.
    [2]宋健.导向轮轮胎和定位参数对汽车摆振影响的研究及整车横向动力学优化分析[D].北京:清华大学, 1987.
    [3] Kim M G, Jeong H I. Sensitivity analysis of chassis system to improve shimmy and brake judder vibration on steering wheel[C]. SAE 960734, 1996: 1136-1150.
    [4]姜红军.独立悬架轻型汽车转向轮摆振分析及其控制的初步研究[D].长春:吉林工业大学, 1993.
    [5] Stepan G. Chaotic motion of wheels[J]. Vehicle System Dynamics, 1991, 20(6): 341-351.
    [6] Demic M, Analysis of Influence of Design Parameters on Steered Wheels Shimmy of Heavy Vehicles[J]. Vehicle System Dynamics, 1996, 26(5): 343-379.
    [7] Kimura T, Hanamura Y, Takata H, et al. Analysis of steering Shimmy Accompanied by Sprung Mass Vibration on Light Duty Truck-Fundamental Mechanism[J]. JASE Review, 1996, 17(3): 301-306.
    [8] Stepan G, Goodwine B. Feedback linearization of shimmy[C]. Proceedings of the Mini Conference on Vehicle System Dynamic, 1998: 429-436.
    [9] StePan G. Chaotic motion of wheels[J]. Vehicle System Dynamic, 1991, 20 (6): 341-351.
    [10]管迪华,朱刚.汽车板簧悬架纵向刚度对转向轮摆振影响的研究[R].清华大学汽车工程系, 1986.9.
    [11]郭孔辉.汽车前轮定位及其影响因素[R].长春汽车研究所报告, 1986.
    [12]李胜,林逸.汽车转向轮摆振分岔特性的数值分析[J].吉林大学学报, 2005, 35(1): 7-11.
    [13]李欣业,贺丽娟等.非独立悬架载重车辆摆振的仿真研究[J].河北工业大学报, 2005, 34(3): 26-33.
    [14]李欣业,贺丽娟等.解放CA10型载货汽车前轮摆振的数值仿真研究[J].汽车工程, 2004,26(5): 585-587.
    [15]陈吉情,兰凤崇.轻型货车转向轮摆振计算仿真贺试验研究[J].振动、测试与诊断, 2005, 25(1): 26-30.
    [16]范刚. EQ2102型越野车前轮摆振问题的研究[J].汽车科技, 2006, (2): 20-23.
    [17]管迪华,陈晓悦.解放CA10油罐车悬置以上结构模态参数与导向轮自激振动[J].汽车工程, 1985, 7(1): 11-20.
    [18] Kovaes A. P. Computational Vibration Analysis of Vehicle Shimmy by a Power-Work Method Vehicle System Dynamics[J]. 1998, 29(6): 341-364.
    [19]都长清,焦宝聪,焦炳照,常微分方程[M].北京:北京师范学院出版社, 1993.4.
    [20]黄象鼎,曾钟钢,马亚南.非线性数值分析的理论与方法[M].武汉:武汉大学出版社, 2004.9.
    [21]韩茂安,朱德明.微分方程分支理论[M].北京:煤炭工业出版社, 1994.9.
    [22]刘延柱,陈立群.非线性振动[M].北京:高等教育出版社, 2001.8.
    [23]谢应齐,曹杰.非线性动力学数学方法[M].北京:气象出版社, 2001.10.
    [24]叶宗泽,杨万禄.常微分方程组与运动稳定性理论[M].天津:天津大学出版社, 1985.
    [25]阂永军,陈星,陈宁.前轮定位参数对汽车前轮摆振的影响[J].南京林业大学学报, 2001, 25(6): 38-40.
    [26]刘青,郭孔辉.基于轮胎侧偏频率响应的汽车摆振分析[J].中国机械工程, 1999, 10(2): 228-230.
    [27]丁文镜.工程中的自激振动[M].长春:吉林教育出版社, 1988.
    [28]贺丽娟,李欣业,王桂新等.非独立悬架车辆自激摆振的数值仿真分析[J].计算机仿真, 2008, 25(2): 269-273.
    [29]林逸,李胜.非独立悬架汽车转向轮自激型摆振的分岔特性分析[J].机械工程学报, 2004, 40 (12) : 187-191.
    [30] Dieterich J Schuring, Wolfgang Pelz, Marion G Pottinger. The Paper-Tire Concept A Way to Optimize Tire Force and Moment Properties [C]. SAE Paper 970557, 1997 : 857-864
    [31] Somieski Gerhard. Shimmy Analysis of a Simple Aircraft Nose Landing Gear Model Using Different Mathematic Methods [G]. German Aerospace Center, 1997.
    [32]白鸿柏,黄协清.干摩擦振动系统响应计算方法研究综述[J].力学进展, 2001, 31(4): 527-531
    [33] Savya Rafai. Jeep Cherokee Shimmy Analysis[C]. A DOE Approach., SAE 982835.
    [34]杨绍普,申永军.滞后非线性系统的分岔与奇异性[M].北京:科学出版社, 2003
    [35]诸德培.摆振理论及防摆措施[M].北京:国防工业出版社, 1984.5
    [36]廖晓昕.动力系统的稳定性理论和应用[M].北京:国防工业出版社, 2000
    [37] Hassard B.D, Kazarinoff N.D, Wan Y-H. Theory and Applications of Hopf Bifurcation[M]. New York: Cambridge University Press, 1981.
    [38]张继业,杨翊仁,曾京. Hopf分岔的代数判据及其在车辆动力学中的应用[J].力学学报2000, 32(5): 598-605
    [39]舒仲周,张继业,曹登庆.运动稳定性[M].北京:中国铁道出版社, 2001
    [40]刘秉正.非线性动力学与混沌基础[M].长春:东北师范大学出版社, 1995
    [41]张志涌等.精通MATLAB[M].北京:北京航空航天大学出版社, 2003.
    [42]李颖等. Simullnk动态系统建模与仿真基础[M].西安:西安电子科技大学出版社, 2004.
    [43] Demic M. Analysis of influence of design parameters on steered wheels shimmy of heavy vehicle[J].Vehicle System Dynamic, 1996, 26(5): 343-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700