用户名: 密码: 验证码:
航空发动机加力燃烧室不稳定燃烧机理与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机加力燃烧室中的振荡燃烧一直以来都是研究者们关注的问题,引起燃烧不稳定的详细机理和激励过程到目前为止还不十分清楚,如何发展有效的手段来抑制燃烧室中不稳定的发生也仍然是需要研究的问题。
     本文围绕某型航空发动机加力蜂鸣问题,利用模型燃烧室预混燃烧及Rijke管热声振荡的一系列实验研究,探讨引起燃烧不稳定的机理、影响因素和抑制方法,并建立了能够适用于航空发动机加力燃烧室的热声振荡理论模型,在CFD数值模拟研究的基础上,对该型发动机加力燃烧室中热声振荡现象及其控制规律进行机理性的研究和分析,并试图找出一种主被动相结合的控制热声振荡新方法。
     首先是在已有的三维圆管热声振荡理论模型的基础上,发展了一个适合于航空发动机加力燃烧室的不稳定燃烧预测模型。该模型利用了模态匹配的方法来处理变截面、声衬(隔热屏)加入等复杂问题,并考虑了热源、边界条件等因素的影响。该模型的建立为预测航空发动机加力燃烧室振荡燃烧特性及控制规律提供了一种理论探索途径。
     其次为研究航空发动机加力燃烧室燃烧不稳定激励及控制方法,开展了Rijke管热声振荡研究及模型燃烧室预混燃烧不稳定性研究系列实验等基础工作。在Rijke管实验中,对热源位置、穿孔板穿孔率、声衬长度、偏流等因素对热声振荡特性的影响进行了研究,结果表明:热源位置、声衬长度、穿孔率以及偏流等因素的改变能够引起Rijke管中的有效声压、振荡频率及不稳定区域的变化。并能够从中找到抑制热声振荡的控制方法和规律。对模型燃烧室预混燃烧不稳定性研究实验中,着重研究了当量比、旋流和扩张段结构等对于振荡燃烧的影响,实验表明燃烧室发生的是纵向自激式振荡。振荡模式是燃烧室与预混段之间的耦合的共振现象,振荡频率由整个系统决定,预混段的振荡是由燃烧室引起的受迫振荡。另外当量比对燃烧的稳定性有重要影响,扩张段结构会与旋流会共同影响燃烧不稳定频率和脉动压力。这些工作为进一步研究影响热声振荡特性的诸因素及其控制规律,同时也为航空发动机加力燃烧室的振荡燃烧控制积累了有价值的经验。
     第三是利用CFD方法对模型燃烧室及某型航空发动机加力燃烧室中的不稳定燃烧进行了数值模拟。对模型燃烧室预混燃烧的数值模拟解释了实验中的现象,并发现在燃烧室进口突扩面处形成以中心回流区和角回流区与混气射流形成的内外两个剪切层决定火焰的结构和运动。应用不同的数值模型对航空发动机加力燃烧室在最大加力状态时出现的振荡燃烧的数值模拟表明:火焰稳定器后的涡脱落现象是引起加力蜂鸣的重要原因,而燃油分布、雾化等因素会影响到火焰稳定器唇口附近的剪切层形态,从而对火焰面的脉动产生影响。数值模拟的结果还表明采用的数值方法对对勾画燃烧室中的涡系结构、燃烧形态以及对振荡燃烧的判断有很大的影响,因此对模型的选择仍然是利用CFD方法研究燃烧室流场的难点之一。通过CFD的模拟得到了加力燃烧室的平均流动参数,为圆管热声振荡理论模型在加力燃烧室中的具体应用提供了条件。非定常数值模拟的结果也从一个侧面考察了加力燃烧室中发生振荡燃烧的机理和影响因素。
     第四是利用圆管热声振荡理论模型计算了航空发动机加力燃烧室中的热声振荡现象,并探讨抑制热声振荡的机理及控制规律。这项工作的结果表明该模型在研究这类问题时的适用性,预测结果具用一定的准确性。同样对Rijke管的计算结果也证明了偏流的引入对于主被动结合控制热声振荡方法的重要性。在对航空发动机加力燃烧室中的热源位置、隔热屏等结构的模拟研究中,揭示了这些结构对热声振荡的影响规律,从而为发现新的控制方法提供理论依据和思路。
Oscillation combustion in the afterburner has been one of main concerns in the research and development of modern aero-engine. The relevant mechanism and physical process is neither totally clear for now, nor are the effective ways to suppress the occurrence of instability in the chamber.
     For the buzz of the aero-engine afterburner, this paper conducted a series of experimental study on thermoacoustic oscillation and combustion instability, by making use of the lean premixed gas combustor experiment for model chamber and thermoacoustic oscillation experiment of Rijke tube. The mechanism of combustion instability and control approaches were discussed, and the thermoacoustic theory method for afterburner of aero-engine was established. Based on the CFD numerical simulation analysis, the aero-engine was studied and analyzed on its thermoacoustic oscillation phenomenon and control mechanism, whose aim is to explore a new way of active and passive combination to control thermoacoustic oscillation.
     First, the three-dimensional theory method of thermoacoustic oscillation in a tube was developed. The model can be used to describe the sound propagation in a variable cross-section tube with complex acoustic lining structure, such as perforation plate. The method deals with the complex problems of variable cross-section or adding acoustic lining in use of mode matching approach, which includes the influence of heat release and boundary conditions. The model provides theoretical way for the research of the thermoacoustic oscillation in the aero-engine afterburner.
     Secondly, a series of experiments were conducted on thermoacoustic oscillation of Rijke tube and lean premixed gas combustor. The influence of heat release position on thermoacoustic oscillation character of such factors, open area ratio of perforated plate, acoustic lining length, and bias flow were investigated by means of the Rijke tube. The research results show that the factors of heat release position, open area ratio of perforated plate, acoustic lining length, and bias flow can introduce the variation of effective acoustic pressure, oscillating frequency and unstable region. From the results the control approaches and laws of suppressing thermoacoustic oscillation can be explored. In the experiments of lean premixed gas combustor instability research, the influence of equivalent rate, rotational flow, and expansion structure on oscillation combustion was emphasized. The experiments indicate that self-induced oscillation occurs in the chamber. The oscillation modal is a resonance phenomenon coupled between the chamber and premixed part. The oscillating frequency was determined by the whole system, and oscillation in premixed part was forced oscillation induced by the chamber. Besides, the equivalent rate has an important influence on combustion instability, and expansion with rotational flow together influences combustion instability frequency and oscillation pressure.
     Thirdly, the numerical simulation was performed on the unstable combustion in lean premixed gas combustor and the afterburner of aero-engine by CFD. The numerical simulation of lean premixed gas combustor explains the phenomenon in the experiments. It is found that the two shear layers of jets with central recirculation zone and corner recirculation zone at the sudden expansion inlet of chamber determine the structure and movement of flame. By applying different numerical models, the numerical simulation on the unstable combustion existing in the afterburner of the aero-engine at the maximum thrust state indicates that: vortex shedding after the flame holders is the important reason of inducing boost buzzing, and the fuel contribution and atomization can influence the configuration of shear layer near the lips of the flame holders as to influence the pulse of flame surface. The numerical simulation results also indicate that the numerical methods have remarkable influence on the structure and configuration of vortex; therefore it is one of difficulty to choose models for CFD research. Besides, the average flow parameters of the afterburner were obtained by CFD simulation, which provide the conditions for the application of thermoacoustic oscillation model of the afterburner.
     Fourthly, the thermoacoustic oscillation in the afterburner of aero-engine was calculated using the present thermoacoustic model, and the mechanism and control laws of suppressing thermoacoustic oscillation were discussed. The results of the research indicate that the method has applicability in studying such problems and the predicted thermoacoustic frequency has enough accuracy. The calculation results for Rijke tube indicate show the importance of bias flow injection on thermoacoustic oscillation control method of active and passive combination. The review of heat release positions and heat shield structures indicates the influence laws for such structures, which provides the theory evidence for finding new control ways to supress the oscillation in afterburner of aero-engine.
引文
[1] Williams F.A. Combustion Theory-The Fundamental Theory of Chemically Reacting Flow Systems Second Edition[M], Second Edition.庄逢辰,杨本濂[译].北京:科学出版社, 1990: 289-368.
    [2] Candel S. Combustion Dynamics and Control: Progress and Challenges[R], Proceedings of the Combustion Institute, 2002, Vol.29(1): 1-28.
    [3] Zinn B.T. Pulsating Combustion[M]. Weinberg, F: Advanced Combustion Methods, AcademicPress, 1986.
    [4] Price E.W. Combustion Instabilities in Solid Propellant Rocket Motors[R]. Astronautic Acta, 1959, Vol.5.
    [5] Zinn B.T., Powell E.A. Nonlinear Combustion Instability in Liquid Propellant Rocket Engines[R]. 13th Symposium (International ) on Combustion, The Combustion Institutute, 1965: 491-503.
    [6] Crocco L., Cheng, S. Theory of Combustion Instability in Liquid Propellant Rocket Motors[M]. London, Butterworths Scientific Publications, 1956.
    [7] Tsuji H., Takeno T. An Experimental Investigation on High Frequency Combustion Oscillations[R]. 10th Symposium (International) on Combustion, The Combustion Institutute, 1965: 1327-1335.
    [8] Schadow K.C., Gutmark E. Combustion Instabilities Related to Vortex Shedding in Dump Combustors and Their Passive Control[J]. Prog. Energy Combust. Sci, 1992, Vol. 18: 117-132.
    [9] Yang V., Culick F.E.C. Analysis of Low Frequency Combustion Instabilities in a Laboratory Ramjet Combustor[R]. Comb. Sci. and Tech., 1986, Vol.45: 1-25.
    [10] Zinn B.T. Pulsating Combustion[M]. Weinberg, F. (ed.): Advanced Combustion Metnods, Academic Press, 1986.
    [11] Schadow K.C., Wilson K.J., Gutmark, E. Characterization of Large Scale Structures in a Forced Ducted Flow with Dump[R]. AIAA Journal, 1987, Vol. 25(9):1164-1170.
    [12] Hegde U.G., Reuter D., Daniel B.R., Zinn B.T. Flame Driving of Longitudinal Instabilities in Dump Type Remjet Combustors.[J]. Comb. Sci. and Tech., 1987, Vol.55: 125-138.
    [13] Rayleigh, The Theory of Sound. II. MACMILLAN, 1929: 226.
    [14] Higgins,B. Journal of Natural Philosophy and Chemical Arts, Vol.1: 129.
    [15] Cohen J.A., Torger. Experimental Investigation of Near–blowout Instabilities in a Lean Premixed Combustor[R]. AIAA Paper, 1996-0819.
    [16] Kendrick, Donald.W, Anderson, Torger.J., Sowa, William.A. Acoustic Sensitivities of Lean -Premixed Fuel Injectors in a Single Nozzle Rig[R]. ASME Paper, 1998-GT-382.
    [17] Kendrick, Donald W., Hertzberg, Jared B., Anderson, Torger J., Sowa, William A. Acoustic Effectsof Lean-Premixed Fuel Injectors in a Single Nozzle Rig[R]. AIAA Paper, 1999-0713.
    [18] Anderson, Torger J., Morford, Stephen A. Dynamic Flame Structure in a Low NOx Premixed Combustor[R]. ASME Paper, 1998-GT-568.
    [19] Lee, Darren S., Anderson, Torger J. Measurements of Fuel/Air-Acoustic Coupling in Lean Premixed Combustion Systems[R]. AIAA Paper, 1999-0450.
    [20] Mongia, Rajiv, Dibble, Robert, Lovett, Jeff. Measurement of Air-Fuel Fluctuations Caused by Combustor Driven Oscillations[R]. ASME Paper, 1998-GT-304.
    [21] Janus, Michael C., Richards, George A., Yip, Joseph.M. Effects of Ambient Conditions and Fuel Composition on Combustion Stability[R]. ASME Paper, 1997-GT-266.
    [22] Straub D., Richards G., Yip M.J. Importance of Axial Swirl Vane Location on Combustion Dynamics for Lean Premix Fuel Injectors[R]. AIAA Paper, 1998-3909.
    [23] Straub, Douglas L., Richards, George A. Effect of Fuel Nozzle Configuration on Premix Combustion Dynamics[R]. ASME Paper, 1998-GT-492.
    [24] Broda J.C., Seo S., Santoro R.J., Shirhattikar G., Yang V. An Experimental Study of Combustion Dynamics of a Premixed Swirl Injector[R]. 27th International Symp. On Combustion (The Combustion Institute), Pittsburgh, PA, 1998.
    [25] Paschereit C.O,Gutmark E., Weisenstein W. Control of Thermoacoustic Instabilities and Emissions in an Industrial Type Gas Turbine Combustor[R]. 27th Symposium (International) on Combustion, 1998,Vol.1 & 2: 1817-1824.
    [26] Thomas Scarinci, Christopher Freeman. The Propagation of A Fuel-Air Ratio Disturbance In a Simple Premixer and its Influence On Pressure Wave Amplification[R]. ASME Pape, 2000-GT-0106.
    [27] Lieuwen T., Zinn B.T. The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low Nox Gas Turbines[R]. 27th Int. Symp. Comb., The Combustion Institute, 1998, August 2-7.
    [28] Lieuwen T., Torres H., Johnson C., Zinn B.T. A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors[R]. ASME Paper, 1999-GT-003.
    [29] Straub D.L., Richards G.A. Effect of Fuel Nozzle Configuration on Premix Combustion Dynamics[R]. ASME Paper, 1998-GT-492.
    [30] Mongia R., Dibble R., Lovett J. Measurement of Air-Fuel Ratio Fluctuations Caused by Combustor Driven Oscillations[R]. ASME Paper, 1998-GT-304.
    [31] Alexander Ni, WolCgang Polifke, Franz Joos. Ignition Delay Time Modulation As A Contribution to Thereto-Acoustic Instability in Equential Combustion[R]. ASME Paper, 2000-GT-0103.
    [32] Vivek K. Khanna, Uri Vandsburger. Dynamic Analysis of Swirl Stabilized Turbulent Gaseous Flames[R]. ASME Paper, 2002-GT-30061.
    [33] Fleifil M., Annaswamy M., Ghoneim Z.A., Ghoniem A.F. Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results[J]. Combustion and Flame, 1996, Vol.106: 487-510.
    [34] Fleifil M., Hathout J.P., Annaswamy A.M., Ghoniem A.F. The Origin of Secondary Peaks With Active Control of Thermoacoustic Instability. Combustion[J]. Sci. Technol., 1998, Vol.133: 227-265.
    [35] Annaswamy M., El-Rifai O., Fleifil M., Hathout J.P., Ghoniem A.F. A Model-Based Self-Tuning Controller for Thermoacoustic Instability[J]. Combustion Sci. Technol., 1998, Vol.135: 213-240.
    [36] Fleifil M., Annaswamy A.M., Ghoniem Z., Ghoniem. A.F. Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Result[R]. Combust. Flame, 1996, Vol.106: 487-510.
    [37] Dowling A.P. A Kinematic Model of a Ducted Flame[J]. Journal of Fluid Mechanics, 1999, Vol.394: 51-72.
    [38] Reuter D.M., Hegde U.G., Zinn B.T. Flowfield Measurements in an Unstable Ramjet Burner[J]. Journal of Propulsion and Power, 1990, Vol.6(6): 680-689.
    [39] Venkataraman K.K., Preston L.H., Simons D.W., Lee B.J., Lee J.G., Santavicca D.A. Mechanism of Combustion Instability in a Lean Premixed Dump Combustor[J]. Journal of Propulsion and Power, 1999, Vol.15(6).
    [40] Langghorne P. J., Rebuzz. An acoustically coupled combustion instability[J]. J.Fluid Mech., 1988, Vol.193: 417-243.
    [41] Bloxsidege G.J., Dowling A.P., Langhorne P.J. Reheat buzz. an Acoustically Coupled Combustion Instability[J]. J. Fluid Mech., 1988, Vol.193: 417-243.
    [42] Dowling A.P. Nonlinear Self-Excited Oscillation of a Ducted Flame[J]. J. Fluid. Mech., 1997, Vol.346: 271-290.
    [43] Lee S.Y., Seo S., Broda J.C., Pal S., Santoro R.J. An Experimental Estimation of Mean Reaction Rate and Flame Structure During Combustion Instability in a Lean Premixed Gas Turbine Combustor[J]. Proceedings of the Combustion Institute, 2000, Vol.28: 775–782.
    [44] Meier W. Weigand P. Detailed Characterization of the Dynamics of Thermoacoustic Pulsations in aLean Premixed Swirl Flame[J]. Combustion and Flame, 2007, Vol.150: 2-26.
    [45] Perry L., Blackshear J.R.4th Symposium (International) on Combustion The Williams and Wilkins Company, Baltimore, 1993, 553-557.
    [46] Bourehla A., Baillot F. Appearance and Stability of a Laminar Conical Premixed Flame Subjected to an Acoustic Perturbation[R]. Combustion and Flame, 1998, Vol.114: 303-318.
    [47] Durox D., Baillot F., Searby G, Boyer L. On the Shape of Flames Under strong Acoustic Forcing: A Mean Flow Controlled by an Oscillating Flow[J]. J. Fluid Mech., 1997,Vol.350: 295-310.
    [48] Lieuwen Tim. Theoretical Investigation of Usteady Flow Interactions with a Premixed Planar Flame[J]. J.Fluid Mech., 2001, Vol.435: 289-303.
    [49] Doh Hyoung, Lee Tim, Lieuwen C. Acoustic Nearfield Characteristics of a Premixed Flame in a Longitudinal Acoustic Field[R]. ASME–GT-0040.
    [50] Marble F.E., Candel S.M. An Analytical Study of the Non-Steady Behavior of Large Combustor[R]. Proceeding of Combustion Institute, 1978, Vol.17: 761-769.
    [51] Subbaiah M.V. Non-steady Flame Spreading in Two-Dimensional Ducts[R]. AIAA, 1983, Vol.21(11): 1557-1564.
    [52] Culick, F.E.C., Yang V. Prediction of the Stability of Unsteady Motions in Solid Propellants Rockets Motors Non-steady Burning and Combustion Stability of Solid Propellants[J]. Progress in Astronautics and Aeronautics, DeLuca L., Price E.W., Summerfield M. 1992, Vol.143: 719-779.
    [53] Smith D.A., Zukoski E.E. Combustion Instability Sustained by Unsteady Vortex Combustion[R]. AIAA Paper, 1985-1248.
    [54] Sterling J.D., Zukoski E.E. Longitudinal Mode Combustion Instabilities in a Dump Combustor[R]. AIAA Paper, 1987-0220.
    [55] Poinsot T.J., Trouve A.C. Veynante D.P., Candel S. Esposito E. Vortex-driven Acoustically Coupled Combustion Instabilities[J]. Journal of Fluid Mechanics, 1987, Vol.177: 165-292.
    [56] Schadow K.C., Gutmark E. Combustion Instability Related to Vortex Shedding in Dump Combustor and their Passive Control[J]. Progress in Energy and Combust. Science, 1992, Vol.18: 117-132.
    [57] Anderson T.J., Morford S.A. Dynamic Flame Structure in a Low NOx Premixed Combustor[R]. ASME Paper, 1998-GT-568.
    [58] Marble F.E., Candel S.M. An Analytical Study of the Non-Steady Behavior of Large Combustors[R]. 17th International Symposium on Combustion (The Combustion Institute), Pittsburgh, 1978: 761-769.
    [59] Dowling A.P. Nonlinear Self-Excited Oscillations of a Ducted Flame[J]. J.Fluid Mech., 1999-346: 271-290.
    [60] Chu B.T. On the Generation of Pressure Waves at a Plane Flame Front[R]. 4th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1953: 603-612.
    [61] Ducruix S., Durox D., Candel S. Theoretical and Experimental Determinations of the Transfer Function of a Laminar Premixed Flame[R]. 28th International Symposium on Combustion, The Combustion Institute, Pittsburgh, 2000.
    [62] Shih W. P., Lee J., Santavicc D. A Stability and Emissions Characteristics of a Lean Premixed Gas Turbine Combustor[R]. 26th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1996: 2771-2778.
    [63] Boyer L., Quinard J. On the Dynamics of Anchored Flames[R]. Combust and Flame, 1990, No.82: 51-65.
    [64] Yang V., Culick F.E.C. Linear Theory of Pressure Oscillations in Liquid-Fueled Ramjet Engines[R]. AIAA Paper, 1983-0574.
    [65] McIntosh C. Pressure Disturbances of Different Length Scales Interacting with Conventional Flames[R]. Combust. Sci. Tech., 1991(75): 287-309.
    [66] Peters N., Ludford G.S.S. The Effect of Pressure Variations on Premixed Flames[R]. Combust. Sci. Tech]., 1983(34): 331-344.
    [67] Ledder G., Kapila A.K. The Response of Premixed Flames to Pressure Perturbations[R]. Combust. Sci. Tech., 1991(76): 21-44.
    [68] Searby G., Rochwerger D. A Parametric Acoustic Instability in Premixed Flames[J]. J. Fluid Mech., 1991(231): 529-543.
    [69] Pelce P. ., Rochwerger D. Vibratory Instability of Cellular Flames Propagating in Tubes[J]. J. Fluid Mech., 1992(239): 293-307.
    [70] Clavin P., Pelce P., He L. One-Dimensional Vibratory Instability of Planar Flames Propagating in Tubes[J]. J. Fluid Mech., 1990(216): 299-322.
    [71] Landau, L.On the Theory of Slow Combustion[R]. Acta Physicochim, URSS, 1944, Vol.19(77).
    [72] Sivashinsky G.I. Nonlinear Analysis of Hydrodynamic Instability in Laminar Flames, Derivation of Basic Equations[R]. Acta Astronautic, 1977,Vol.4: 1177-1206.
    [73] Akamatsu, Dowling A.P. Three Dimensional Thermoacoustic Oscillation in a Premix Combustor[R]. ASME Paper, 2001-GT-0034.
    [74]季鹤鸣,张孝先,刘凤翔,王洪卓.热阻塞与燃烧不稳定问题的实验研究[J].航空动力学报, 1987, Vol.2(3).
    [75]张屹,赵云,王家骅. V型稳定器下游旋涡强制脱落规律初探(冷态)[R].中国航空学会第十届燃烧与传热传质学术讨论会, CSAA-96-PC-052.
    [76]赵震,郭志辉,黄勇,刘刚.模型燃烧室低频不稳定燃烧的初步探讨[J].航空动力学报, 2003, Vol.118(16).
    [77]王帅.贫燃预混旋流火焰燃烧不稳定性的实验研究和数值模拟[D].硕士学位论文,北京航空航天大学, 2008.
    [78]郭志辉,李磊,张澄宇,孙晓峰.关于热声不稳定性现象的一种控制方法[J].工程热物理学报, 2008, Vol.29(6).
    [79] Habiballah, Dubois M. High Frequency Combustion Instability In Liquid Rocket an Review of Studies Carried out at ONERA for Airline launcher[R]. AIAA, 1992-0774.
    [80] Wang S, Yang V. Vertical Flow Dynamics and Acoustic Response of Swirl-Stabilized Injector[R]. AIAA, 2000-0434.
    [81]刘卫东,王振国,周进,庄逢辰.液体火箭发动机径向不稳定燃烧数值分析模型[J].推进技术, 1997, Vol.18(12).
    [82]曹红加,聂超群.燃烧不稳定性主动控制的冷态实验研究[J].电站系统工程, 2004, Vol.20(8): 14-16.
    [83]曹红加.预混火焰燃烧不稳定性及其主动控制[D].博士学位论文,北京:中国科学院工程热物理研究所, 2004.
    [84]聂万胜,庄逢辰.声腔应用于液体火箭发动机不稳定燃烧抑制中的特性研究[J].国防科技大学学报, 1998, Vol.20(2).
    [85]黄玉辉,王振国.火箭发动机高频燃烧不稳定非线性分析[J].推进技术, 2000, Vol.21(5).
    [86]黄玉辉.液体火箭发动机燃烧稳定性理论、数值模拟和实验研究[M].长沙:国防科学技术大学出版社, 2005.
    [87]张欣刚,任静,徐治皋.湍流预混燃烧器燃烧自激振动的数值研究[J].燃气轮机技术, 2007,Vol.20(3): 23-28.
    [88] [澳]汉森C.H.,斯奈德S.D.噪声和振动的主动控制[M].北京:科学出版社, 2002: 1-20.
    [89] Bloxsidge G.J., Dowling A.P., Hooper N., Langhorne P. J. Active Control of an Acoustically Driven Combustion Instability[J]. J. Theoretical, 1987, Vol.6(Appl.).
    [90] Fung Y.T., Yang V., Sinha A. Active Control of Combustion Instabilities with Distributed Actuators. Combust[R]. Sci. Tech., 1991, Vol.78: 217-245.
    [91] Fung Y.T., Yang V. Active Control Of Nonlinear Pressure Oscillations in Combustion Chambers[J]. J. Propulsion Power, 1992, Vol.8(6): 1282-1289.
    [92] Neumeier Y., Zinn B.T. Active Control of Combustion Instabilities Using Real Time Identification of Unstable Combustor Modes[R]. Proc. IEEE Conf. Contr. Applicat., Albany, NY, 1995: 691-698.
    [93] Fleifil M., Hathout J.P., Annaswamy A.M., Ghoniem A.F. The Origin of Secondary Peaks with Active Control of Thermoacoustic Instability. Combustion[R]. Sci. Tech., 1998, Vol.133: 227-265.
    [94] Annaswamy M., El-Rifai O., Fleifi M., Hathout J.P., Ghoniem A.F. A Model-Based Self-Tuning Controller for Thermoacoustic Instability. Combustion. Sci. Tech., 1998, Vol.135: 213-240.
    [95] Fleifil M., Annaswamy A.M., Ghoniem Z., Ghoniem A.F. Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Result[R]. Combust. Flame, 1996, Vol.106: 487-510.
    [96] Dines P. J. Active Control of Flame Noise[D], Ph.D. thesis, England: Cambridge University, 1984.
    [97] Sreenivasan K.R., Raghu S., Chu B.T. The Control of Pressure Oscillations in Combustion and Fluid Dynamical Systems[R]. AIAA Shear Flow Conference, AIAA, 1985-0540.
    [98] Heckl M.A. Active Control of the Noise From a Rijke Tube[C]//. Comte-Bellot G., Williams J.E.F. Aero-and Hydro-Acoustic. Berlin, Germany: Springer-Verlag, 1986: 211-216.
    [99] Lang W., Poinsot T., Candel S. Active Control of Combustion Instability[J]. Combustion and Flame, 1987, Vol.70: 281-289.
    [100] Poinsot T., Bourienne F., Candel S., Esposito E. Suppression of Combustion Instabilities by Active Control[J]. J. Propulsion Power, 1989, Vol. 5(1): 14-20.
    [101] Langhorne P.J., Dowling A.P., Hooper N. Practical Active Control System for Combustion Oscillations[J]. J. Propulsion Power, 1990, Vol.6(3): 324-333.
    [102] Gulati, Mani R. Active Control of Unsteady Combustion-Induced Oscillations[J]. J. Propulsion Power, 1992, Vol.8(5): 1109-1115.
    [103] McManus K.R., Vandsburger U., Bowman C.T. Combustor Performance Enhancement Through Direct Shear Layer Excitation[R]. Combustion Flame, 1990, Vol.82: 75-92.
    [104] Bloxsidge G.J., Dowling A.P., Hooper N., Langhorne P.J. Active Control of an Acoustically Driven Combustion Instability[J]. J. Theoretical, 1987, Vol.6(Appl).
    [105] Kemal, Bowman C.T. Active Adaptive Control of Combustion. in Proc[J]. IEEE Conf. Contr. Application, Albany, NY, 1995: 667-672.
    [106] Billoud G., Galland M.A., Huu C.H., Candel S. Adaptive Active Control of Combustion Instabilities. Combust[R]. Sci. Technol., 1992, Vol. 81: 257-283.
    [107] Sivasegaram S., Whitelaw J.H. Active Control of Oscillations In Combustors with Several Frequency Modes[R]. ASME Winter Annual Meeting, Anaheim, CA, 1992.
    [108] Gutmark E., Parr T.P., Wilson K.J., Hanson-Parr D.M., Schadow K.C. Closed-Loop Control in a Flame and a Dump Combustor[R]. IEEE Contr. Sys. Mag., 1993, Vol.13(3): 73-78.
    [109] Dowling A.P. Active Control of Combustion Oscillations[R], AIAA, 1999-3571.
    [110] Evesque S., Park S., Riley A.J., Annaswamy A.M., Dowling A.P. Adaptive Combustion Instability Control with Saturation: Theory and Validation[J]. Journal of Propulsion and Power, 2004, Vol.20(6).
    [111] Evesque S., Dowling A.P. Adaptive Control of Combustion Oscillations[R], AIAA. Inc, 1998.
    [112] Danning You, Vigor Yang, Xiaofeng Sun. Three-Dimensional Linear Stability Analysis of Gas Turbine Combustion Dynamics[C]// Timothy C.L., Vigor Yang. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. American Institute of Aeronautics and Astronautics, Inc., 2005: 415-443,
    [113] Danning You, Xiaofeng Sun, Vigor Yang, Three-Dimensional Linear Acoustic Analysis of Gas Turbine Combustion Instability[R]. AIAA, 2003-0118.
    [114] Xiaofeng Sun, Xiaoyu W, Du Lin, etal, A new nodel for the prediction of turbofan noise with the effect of locally and non-locally veacting lines[J], Journal of sound and vibration, 2008, 316: 50-68
    [115] Namba.M., Fukushige.K. Application of the Equivalent Surface Source Method to the Acoustics of Duct Systems with Non-uniform Wall Impedance[J]. Journal of Sound and Vibration, 1980, Vol.73(1): 741-750.
    [116]景晓东.多孔板波涡相互作用的理论和实验研究[D].北京航空航天大学博士学位论文, 1999.
    [117] Howe.M.S. On the Theory of Unsteady High Reynolds Number Flow Through a Circular Aperture[A]. Proc. Roy. Soc. Lond., 1979, A366[C]: 205-223
    [118] Rayleigh.J.W.S. The Theory of Sound[M]. Dover. Re-issue, 1945. Vol.I & II
    [119] Howe M.S. On the Theory of Unsteady High Reynolds Number Flow through a Circular Aperture[A]. Proc. Roy. Soc. Lond. 1979, A366[C]: 205-223.
    [120] Hughes.I.J., Dowling.A.P. The Absorption of Sound by Perforated Linings[J]. Journal of Fluid Mechanics, 2000, Vol.22: 299-335
    [121]孙晓峰,周盛.气动声学[M].北京:国防工业出版社, 1994.
    [122]赵松龄.噪声的降低与隔离[M].上海:同济大学出版社, 1985.
    [123] Rijke P.L. Notiz ueber eine neue Art: die einer an beiden Enden offnen Rohre enthaltene Luft Schwingung zu uersetzen . Ann Phy(Leipzig), 1859, 107: 339.
    [124] Zinn Ben T., Timothy C., Lieuwen T. Combustion Instabilities: Basic Concepts. Combustion Instabilities in Gas Turbine Engines[M]. 2005: 3-26.
    [125]朱永波,刘克,程明昆. Rijke管的实验研究和理论分析[J].工程热物理学报, 2001, Vol.22(6): 706-708.
    [126] Matveev K.I., Culick F.E.C. A Study of the Transition to Instability in a Rijke Tube with AxialTemperature Gradient[R], 2003, Vol.264: 689-706.
    [127] Maria A., Heckl. Active Control of the Noise From a Rijke Tube, Journal of Sound and Vibration, 1988 Vol.124(1): 117-133.
    [128] Eldredge Jeff D. On the Interaction of Higher Duct Modes with a Perforated Liner System with Bias Flow, J. Fluid Mech., 2004, Vol.510: 303–331.
    [129] Jing, X., Sun, X. Experimental Investigation of Perforated Liners with Bias Flow. J. Acoust Soc., Am., 1999, Vol.106: 2436-2441.
    [130] Dowling A.P. The Calculation of Thermoacoustic Oscillations[J] Journal of Sound and Vibration, 1995, Vol.180(4): 557-581.
    [131] Greenwood S. Lean Premixed Combustion Issues in the Advanced Turbine System Program at Solar Turbines[R]. Proceedings of AGTSR Combustion Workshop IV, Atlanta, GA, March S-7, 1997.
    [132] Cowell L.H. Experience at Solar Turbines with Combustion Oscillations in Lean Premixed Combustion[R], Proceedings of AGTSR Combustion Workshop, Penn. State, Sept. 10-11, 1995.
    [133] Shih W.P., Lee J., Santavicca D. Stability and Emissions Characteristics of a Lean Premixed Gas Turbine Combustor[R], 26th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1996: 2771-2778.
    [134] Venkataraman K.K, Simons D.W, Preston L.H., Lee J., Santavicca D.A., Lee B.J. An Optical and Parametric Study of Unstable Combustion[R]. Proceedings of the Combustion Institute Eastern States Meeting, 1997: 313-316.
    [135] Broda J.C., Seo S., Pal S., Santoro R.J. Recent Experimental Results in High Pressure Gas Turbine Cornbustor Instabilities[R]. Proceedings of the Combustion Institute Eastern States Meeting, 1997: 317-320.
    [136] Smith D.A., Frey S.F., Abhishek K., Razdan M.K. Low Emissions Combustion System for the Allison ATS Engine[R]. Proceedings of AGTSR Combustion Workshop IV, Atlanta, GA, 1997, March 5-7.
    [137] Richards G.A., Janus M.C. Characterization of Oscillations During Premix Gas Turbine Combustion[R]. ASME Paper, 1997-GT-244.
    [138] Culick F.E. Combustion instabilities-Mating Dance of Chemical, Combustion and Combsution Dynamics[R]. AIAA, 2000-3178
    [139] Culick F.E. Some recent result for nonlinear acoustics in combustion chambers[J]. AIAA journal. 1994, Vol.32(1).
    [140] Culick F.E. Combustion instabilities in Liquid propulsion system[J]. AGARD-CP-450, 1989.
    [141] Ying Huang,Vigor Yang. Modeling and Simulation of Combustion Dynamics in Lean-Premixed Swirl-Stabilized Gas-Turbine Engines[D].USA: The Pennsylvania State University,2003
    [142] Culick F.E.C., Yang, V. Overview of Combustion Instabilities in Liquid-Propellant Rocket Engines[C]//. Yang V. Anderson W.E. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, Progress in Astronautics and Aeronautics, 1995: 3-37.
    [143] Sarpkaya T.. Vortex Breakdown in Swirling Conical Flows[R]. AIAA, 1971, Vol.9:.1792-1799.
    [144] Faler J.H., Leibovich S. An Experimental Map of the Internal Structure Breakdown[J]. Journal of Fluid Mechanics, 1978,Vol.86: 313-315.
    [145] Spalding D.B, General A. Computer Program for Fluid Flow, Heat Transfer and Chemical Processes[R],Imperial College Report, 1981, HT5/81/10.
    [146] Deardorff J.W. A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers[J]. Journal of Fluid Mechanics, 1970, Vol.41(2): 452-480.
    [147] Deardorff J.W. A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers[J]. Journal of Fluid Mechanics, 1970, Vol.41 (2): 452-480.
    [148] Fureby C. A Comparison of Flamelet LES Models for Premixed Turbulent Combustion[R]. AIAA, 2006-155.
    [149] Robert M, Stubbs, NanSuey Liu. Previewe of the National Combustion Code[R]. AIAA, 1997-3114.
    [150] Crocker D.S, Smith C.E. Numerical Investigation of Angled Dilution Jets in Reverse Flow Gas Turbine Combustors. AIAA, 1994-2771.
    [151] MahiasO., Bastin F, Ravet F, et al., Lean Premixed Combustor Emissions Performance Modeling Using 3D CFD Codes[R]. AIAA, 2000-3199.
    [152] Paskin M.D. Compliant Metal Enhanced Convection Cooled Reverse-Flow Annular Combustor [R], AIAA, 1994-2710.
    [153] Martino P.D, Cinque G, Colantuoni S, Cirillo, et.al. Experimental and Computational Results from an Advanced Reverse-Flow Gas Turbine Combustor[R], AIAA, 1995-2999.
    [154] Adel Mansour, Michael Benjamin. A New Hybrid Air Blast Nozzle for Advanced Gas Turbine Combustors[R]. 2000-GT-0117.
    [155] Noll B, Kessler R, Theism P, et al. Flow Field Mixing characteristics of an Aero-Engine Combustor Part II: Numerical Simulation[R]. AIAA, 2002-3708.
    [156] Mongia H.C., Hsiao G., Burrus D. Combustor Diffuser Modeling, Part I: Inlet Profiles & 2D Calculations[R]. AIAA, 2004-4168.
    [157] Mongia H.C., Hsiao G., Burrus D. Combustor Diffuser Modeling, Part II: Inlet Profiles&3D Calculations[R].AIAA, 2004-4169.
    [158] Mongia H.C., Hsiao G., Burrus D. Combustor Diffuser Modeling, Part III: Validation with Typical Separating Single Passage Diffusers Combustor Diffuser Modeling[R]. AIAA, 2004-4170.
    [159] Mongia H.C, Hsiao G., Burrus D. Combustor Diffuser Modeling, Part IV: Effect of Cowling Geometry, Mixer Size and Nozzle Blockage[R]. AIAA, 2004-4171.
    [160] Mongia H.C, Hsiao G., Burrus D, Combustor Diffuser Modeling, Part V: Validation with a Three Passage Diffuser Rig Data[R]. AIAA, 2004-4172.
    [161] Mongia H.C, Hsiao G., Burrus D. Combustor Diffuser Modeling, Part VI: Validation with a Four Passage Diffuser Rig Data[R], AIAA, 2004-4174.
    [162] Schluter J.L., Shankaran S., Kim S., Pitsch H. Integration of RAMS and LES Flow Solvers for Simultaneous Flow Computations[R]. AIAA, 2003-85.
    [163] Mongia H.C. GE Aircraft Engines, Cincinnati U.S.A; Perspective of Combustion Modeling for Gas Turbine Combustors[R]. AIAA, 2004-0156.
    [164]严传俊,模型燃气轮机燃烧室中三元两相反应流的数值计算[J].工程热物理学报, 1990, Vol.11(1): 91-97.
    [165]赵坚行,伍艳玲,周琳.先进燃烧室涡流杯流场计算[J].工程热物理学报, 2000, Vol.21(1): 110-114.
    [166]雷雨冰,谭辉平,赵坚行.数值模拟环形燃烧室两相反应流场[J].燃烧科学与技术, 2000, Vol.5(3): 222-225.
    [167]蔡文祥,赵坚行,张靖周.带圆筒头部火焰筒两相燃烧流场及性能计算[J].推进技术, 2007, Vol.28(2): 122-1260.
    [168]蔡文祥,环形燃烧室两相燃烧流场与燃烧性能数值研究[D].南京航空航天大学博士学位论文, 2007.
    [169]颜应文,赵坚行,张靖周等.环形燃烧室两相喷雾燃烧的大涡模拟[J].航空动力学报, 2006, Vol.21(5): 824-8300.
    [170] Naxayan J.R. Turbulent Reacting Flow Computation Including Turbulence Chemistry Interactions[R]. AIAA, 1992-0342.
    [171]王海峰,陈义良.采用考虑详细化学反应机理的火焰面模型模拟湍流扩散火焰[J].燃烧科学与技术, 2004, Vol..10(1): 77-810.
    [172] Gerlinger P., Bruggemann D. An Implicit Numerical Scheme for Turbulent Combustion Using an Assumed PDF Approach[R]. AIAA, 1999-3775.
    [173] Lia C., Liu Z., Zheng X., NOx Prediction in 3-D Turbulent Diffusion Flames by Using Implicit Multgrid Methods[R]. Combust. Sci. and Tech., 1996, Vol.119: 219-260.
    [174] Klimenko A.Y., Bilger R.F. Conditional Moment Closure for Turbulent Combustion Prog Energy[R]. Combust Sci., 1999, Vol.25: 595-687.
    [175]赵坚行,燃烧的数值模拟[M].北京:科学技术出版社, 2000.
    [176] Spalding D.B. Mixing and Chemical Reaction in Steady Confined turbulent Flames[R]. 13th Symposium (Int.) on Combustion, 1971: 649-657.
    [177] Mason,H.B, Spalding D.B. Prediction of Reaction Rates in Turbulent Premixed Boundary Layer Flows[M], Proc. European Symp. on Combustion, Sheffield, England, 1973: 601-606.
    [178] Chen X.L., Zhou L.X., Zhang J. Numerical Simulation of Methane-Air Turbulent Flame Lasing a New-Second-Order Moment Model[R]. Acts Mechanics Sinics, English Series, 2000, Vol.16(1): 41-47.
    [179] Crocker D.S., Smith C.E. Numerical Investigation of Enhanced Dilution Zone Mixing in a Reverse Flow Gas Turbine Combustor[R]. Engineering for Gas Turbines and Power, 1995, Vol.117(2): 272-281.
    [180]蔡文祥,赵坚行,张靖周.二阶矩-EBE模型用于两相反应流场的数值模拟[J].南京航空航天大学学报, 2006, Vol.38(5): 572-576.
    [181] Mingchun Dong, David G, Lilley. Prediction of Turbulent Swirling Reacting Flows[R].AIAA, 1995-285.
    [182]雷雨冰,数值模拟环形燃烧室整体流场[D].南京航空航天大学博士学位论文, 2000.
    [183] Crowe C.T. The Particle-Source-in-Cell Model for Gas-Droplet Flow[R]. ASME, 1975-WA/H: 7-25.
    [184] Yu K. Low Frequency Pressure Oscillations in a Model Ramjet Combustor[J]. the Journal of Frequency Selection, AIAA, 1989-0623.
    [185] Giles M.B. Non-Reflecting Boundary Conditions for Euler Equation Calculations[J]. AIAA Journal, 1990, Vol.28(12): 2050-2058.
    [186] Eldredge Jeff D., Dowling Ann P. The Absorption of Axial Acoustic Waves by a Perforated Liner with Bias Flow[J]. J. Fluid Mech., 2003, Vol.485: 307–335.
    [187] Cargill A.M. Low Frequency Acoustic Radiation from a Jet Pipe– a Second Order Theory[J]. J. Sound Vib., 1983, 339–354.
    [188] Cargill A.M. Low-Frequency Sound Radiation And Generation Due to the Interaction of Unsteady Flow with a Jet Pipe[J]. J. Fluid Mech., 1982, Vol.121: 59–105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700