用户名: 密码: 验证码:
蔬菜(大蒜)加工废水资源化利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,伴随着我国工农业的快速发展,农产品加工业迅猛崛起。但是,随着农产品加工业的迅猛发展,污废水的排放量与日俱增,污染环境的问题日益突出。农产品加工企业以分散性的小型加工企业为主,对环境重视程度严重不足,含有大量有机物的农产品加工废水未经处理直接排入沟渠河道,造成农村河流和地下水系受到严重污染,致使河流池塘水质变黑变臭,鱼虾绝迹,生态环境受到严重破坏。农产品加工业的废水污染已经成为制约生态农业发展及社会经济可持续发展的“瓶颈”。
     本课题研究针对当前国内外蔬菜加工废水资源化利用研究方面的现状及存在问题,以节能减排水资源可持续利用和生态环境保护为主题,以可持续发展理论为指导,以河东区八湖镇为研究区域,以区域社会、经济、资源、生态环境协调发展为研究目标,从实地调查、收集、监测、实验等方式获取基本资料入手,从研究区域社会经济、生态环境和水资源这个复合大系统出发,运用系统科学的观点,应用社会科学和自然科学的理论、方法和技术,采用计算机等现代科学手段,深入系统地研究了八湖镇蔬菜加工企业废水资源化利用技术及相关对策等问题,通过系统分析和实验研究,在理论、技术、方法、模式及措施对策等方面取得的成果主要有:
     (1)通过对国内外关于废水处理及资源化利用的发展研究现状、实践应用情况、研究方向、发展趋势、存在问题以及我国的实际情况和社会经发展需求的研究分析,认为废水资源化利用是人类社会可持续发展的必然要求,是我国现实急需解决的重要课题。
     (2)通过对研究区域基本情况的调查研究和总结分析,揭示了研究区域的自然规律和经济社会发展尤其是蔬菜加工企业发展的演变规律及发展趋势,认为研究区域实施废水资源化利用是当务之急,且具备良好的基础条件和优势。
     (3)通过对蔬菜加工废水生态化处理及资源化利用的技术理论、方法措施、实践经验及应用模式的深入系统研究,在充分调查研究和总结分析当地农民利用蔬菜加工废水进行农业灌溉实践经验的基础上,首次提出了利用荷塘湿地净化利用蔬菜加工废水的理念,并从理论、技术、经济、方法、措施等方面进行了可行性论证,认为利用荷塘湿地净化利用蔬菜加工废水是可行的。
     (4)研究分析了大蒜加工废水的来源及特性,制定了可行的蔬菜(大蒜)加工废水处理利用的工艺流程,明确了实验内容及目的,确定了符合实际的实验作物栽培技术、生产管理措施及其他生产管理条件,进行了实验小区的划分和实验对比处理设计,提出了必要的实验观测项目及方法。
     实验研究成果显示:①大蒜加工废水主要来源于大蒜脱皮漂皮废水和脱皮后的大蒜漂洗废水、切片甩干脱水废水和车间冲洗废水,属有机废水,有机质和营养物质含量较高,基本不含有毒性物质及重金属物质。②大蒜加工废水中COD浓度较高,若直接排放必然造成环境污染,采用荷塘湿地直接进行生物净化利用,也会对莲藕生长产生不利影响,因此,必须经过简单预处理后再通过荷塘湿地进行生态净化利用,才能达到生态化效果。③本次实验所构建的预处理设施,投资少,见效快,简单易行,使大蒜加工废水得到了有效的初步净化,为荷塘湿地进一步生物净化利用奠定了基础。④荷塘湿地对大蒜加工废水中的COD、BOD、SS等有机污染物质和悬浮物具有显著的降解净化作用,去除率较高;对NH3-N的吸收利用作用较大,效果显著;PH值较稳定,达到了较好的净化利用效果。⑤大蒜加工废水灌入荷塘湿地后,废水中的营养物质得到了转化,增加了底泥氮、磷、钾营养成分和有机质含量,提高了荷塘底泥肥力,有利于莲藕生长;荷塘底泥中的有效铜、锌、铁、锰、硼和全铜、全锌、全铅、全镉等金属元素含量基本没有变化,利用大蒜加工废水灌溉荷塘不会造成荷塘底泥的重金属污染。⑥经过预处理的大蒜加工废水对莲藕生长无任何不利影响,与不灌废水相比更加旺盛,在整个生育期中未发生病虫害,充分说明含有较高有机质和营养物质的大蒜加工废水,不但有利于莲藕的生长,还对防治莲藕的病虫害有一定作用。⑦在荷塘湿地适时适量的灌溉大蒜加工废水,不但能够增加莲藕的产量,其营养价值均达到较好的水平,且未检出对人体有害的重金属,在食用方面是安全的。⑧利用荷塘湿地净化利用大蒜加工废水,能够改良土壤结构成分,提高土壤肥力,利于植被生长,防止水土流失,改善生态环境,维持生态平衡。⑨在利用荷塘湿地净化利用大蒜加工废水时,灌入的废水必须适时适量,方能达到最佳效果。
     (5)对对荷塘湿地净化利用蔬菜加工废水进行了效益分析计算,结果显示废水利用荷塘湿地处理经济效益显著,且产生的间接经济效益、社会效益和生态环境效益十分可观。
     (6)在充分研究论证的基础上,根据我国社会的发展要求,结合八湖镇的实际情况,研究提出了以发展生态循环经济为目标实现废水资源化及水资源循环利用的技术模式以及切实可行实施对策。
     总之,通过本项目的研究,扩宽了人工湿地处理废水的领域,进一步探求了高浓度废水湿地处理的作用机理,为农产品加工企业(特别是分散于广大农村的小企业)废水处理和农村环境作了科学实践,为八湖镇开展废水资源化利用和建设生态乡镇提供科学决策依据。
In recent years, with the rapid development of our agriculture, the agricultural product processing rise rapidly. However, with the rapid development of agricultural product processing, a rapid release of sewage wastewater occurs day by day and environmental pollution problems are growing increasingly prominent. The agricultural products processing enterprises are consisting mainly of dispersion small processing enterprises, they are in a serious shortage of environmental attention. The agricultural products processing wastewater with a large number of organic discharged to canals and rivers without treatment., so the river and underground water are seriously polluted, water quality of rivers and ponds is in the black, stinking change, fish and shrimp disappeared, the ecological environment is destroyed seriously. Agricultural product processing waste pollution has become the "bottleneck" of ecological agriculture development and sustainable social and economic development.
     This research addresses the research status and some existing problems in the vegetable processing wastewater reuse ,it is themed with energy conservation and emission reduction, and sustainable utilization of water resources and ecological environment protection, guided by the sustainable development theory, it chose eight lake town hedong district as areas of interest. In order to study coordinated and balanced program of development of the regional society, economy, resources and ecological environment, this paper starts with obtaining firsthand material by means of field survey, collection, monitoring and experiment. It’s based on the composite system containing the social economy and ecological environment and water resources of the research area, using modern science and technology method, systematically studies wastewater utilization technology and related countermeasures in the vegetables processing enterprise of eight lake town. Through systematic analysis and experimental research, the main achievements in theory, technology , method, mode and measures countermeasures are as follows:
     (1) Through the analysis of the wastewater treatment and utilization situation in the world, the practice application, the research direction ,development trend, the existing problems and the actual conditions of our country and social development needs, it points that wastewater reuse is the inevitable requirement of society sustainable development, and it’s one of the urgent items to be resolved in our reality.
     (2) Through the study and analysis of regional basic research, it reveals the order of nature and economic and social development, especially the vegetable processing enterprise’s development evolution discipline and development trend, it gets that it’s an urgent affair to carry out water reuse in regional areas, and it’s already have good basic conditions and superiority.
     (3) Based on the systematic research on technical theory , method, practical experience and performance model of vegetables processing wastewater treatment and utilization, and analysis on the practical experience of local farms using vegetables processing wastewater to irrigate. It for the first time puts forward the idea that using the lotus pond wetland to purify and use vegetables processing wastewater, and tests it’s possibility from theory, the theory, technology, economy , method and measures, and it gets that the idea is feasible.
     (4) This paper analyzes the source and features of the garlic processing wastewater, makes the feasible process flow of vegetables(garlic) processing wastewater treatment and utilization, identifies experiment content and purpose, fixes the actual experiment crop cultivation technique, production management measures, and other production management conditions, divides the experimental area, designs the contrast experiments and puts forward the necessary experimental observation and methods.
     The results of the experiment indacated that: (1) the wastewater of garlic processing are mainly produced during peeling garlic skins ,rinsing the peeled garlic, dehydrating the slices, and rinsing the workshop.It’s kind of organic wastewater, contents higher level of organic matter and nutrient, whth almost none toxic substance or heavy metal material. (2)the wastewater of garlic processing contains higher concentrations of COD, if were discharged into the environment,it will cause environment pollution. Also it was harmful to lotus root by uesing biological purification in wetland directly, so, to achieve certain ecological effect, the wastewater must be disposed, then it can be uesed in the wetland.(3) the pretreatment facilities of this experiment, was invested small, handled easily, with yield faster results, the wastewater was preliminary and effectively purified for the lotus pond, laid groundwork for further biological purify using.(4)the lotus wetland can efficient get rid of organic pollutants,such as COD,BOD,SS.The function of absorpting NH3-N was effectivity, PH value was stable.(5)When wastewater infuse into wetland, nutrient component such as N,P,K and organic matter content was increased, improving the lotus pond sediment fertility.The content of metallic elements in the lotus pond sediment,such as effectively copper, zinc, iron, manganese, boron and the whole boron, zinc, lead, cadmium,was scarcely changed.It proved that using garlic processing wastewater to irrigate lotus will not cause heavy metal pollution.(6)The pretreatmented garlic processing wastewater was innocent to lotus root, lotus root that irrigated by wastewater were growing more luxuriantly. During the whole growth period no insect damage happened. It proved that wastewater content more nutrients and organic matter, was not only benefit to the growth of the lotus, also uesful for the pest control.(7)Irrigating the wetland with right amout of wastewater of garlic processing, can increase the yield, the nutritional value also achieve a good level. and the no harmful heavy metal was checked out, so it’s safe to consumption. (8) Purifing garlic processing wastewater by using the lotus pond, can improve soil structure and composition, improve soil fertility, beneficial to the growth of vegetation, prevent soil erosion, improve the eco-environment,and maintain ecological balance. 9when purifing garlic processing wastewater by using the lotus pond, the right amount of wastewater must be irrigated at right time.
     (5)In this paper benefits of purifing garlic processing wastewater was analysed and calculated, the results showed that economic benefits was notable ,and the indirect economic benefit,the social effect and environmental benefits was considerable.
     (6)based on sufficient research and argument and according to the requirements of the development of the society, also,combining the actual situation of the Bahu Town, this paper has put forward technology mode of wastewater resourcesing and water resource recycling ,aimed to develope ecocycle economy.
     In conclusion, this research widened the field of constructed wetland purifying wastewater, and this research make further efforts on the mechanism of action about high density wastewater treatment, scientifically practiced on wastewater and rural environment for agricultural product processing enterprise (especially those small ones scattered in the rural).Also, this researchi provide scientific basis for decision-making for Bahu Town in wastewater reuse and the ecological towns construction.
引文
[1]北京水环境技术与设备研究中心主编.三废处理工程技术手册(废水卷)[M]北京:化学工业出版社,2000
    [2]曹向东,王宝贞,蓝云兰,刘鸿亮.氧化塘-人工湿地复合生态塘系统中氮和磷的去除规律[J]环境科学研究,2000,(02) .
    [3]陈长太,王雪,祁继英.国外人工湿地技术的应用及研究进展[J].中国给水排水, 2003,(12) .
    [4]陈启华,罗冬浦,梁江浩,等.磷酸铵镁法脱除废水中氨氮的技术现状[J].工业水处理,2008,28(6):5-8.
    [5]崔程颖,马利民,赵建夫.人工湿地——一种新型生态污水处理系统[A]2005中国可持续发展论坛——中国可持续发展研究会2005年学术年会论文集(下册),2005 .
    [6]邓福生,杨友强,廖利.超高浓度有机废水处理工程简介[J].安全与环境工程, 2005,(03) .
    [7]丁玲,沈耀良.人工湿地处理技术及其研究进展[J].江苏环境科技,2006,(02).
    [8]丁疆华,舒强.人工湿地在处理污水中的应用[J]农业环境保护,2000,(05).
    [9]范旭红.人工湿地污水处理系统及其应用[D]东南大学,2006 .
    [10]冯培勇,陈兆平,靖元孝.人工湿地及其去污机理研究进展[J].生态科学,2002,21(3):264-268.
    [11]高剑平,闻晓波.高浓度有机废水治理和资源化利用范例[J].能源研究与利用,2006,(02).
    [12]顾夏声,赏铭荣,王占生等.水处理工程[MI.北京:清华大学出版社,1985.
    [13]郝大明,谢进宁.高氨氮污水处理技术的应用[J].石油化工安全环保技术,2008,24(3):39-42.
    [14]郝卓莉,王爱军,朱振中,等.膜吸收法处理焦化厂剩余氨水中氨氮及苯酚[J].水处理技术,2006,32(6):16-20
    [15]华涛,周启星,贾宏宇.人工湿地污水处理工艺设计关键及生态学问题田.应用生态学报,2004,157:1289-1293
    [16]籍国东,孙铁珩,李顺.人工湿地及其在工业废水处理中的应用[J].应用生态学报,2002,13(2):224-228.
    [17]贾滨洋,刘宜.人工湿地处理污水的机理与其应用前景[J].四川环境,2008,27(l):81-86
    [18]刘春常,夏汉平.人工湿地处理生活污水研究[J].生态环境,2005,14(4):536-539.
    [19]刘雯,崔理华.人工湿地在处理污水中的应用研究进展[J]嘉应大学学报, 2002,(03) .
    [20]刘自莲,施永生,李鹏.人工湿地在污水处理中的应用[J].云南化工, 2005,(06) .
    [21]刘芳.芦苇湿地对污水中氮磷的净化能力研究[D].河北农业大学,2004
    [22]刘衍君.人工湿地在污水处理中的应用及其展望[]J.云南环境科学,2003,22(4):42-43.
    [23]李键.高浓度有机废水治理新技术研究[J].安徽化工, 2007,(03) .
    [24]李汝琪,钱易,孔波等.曝气生物滤池去除污染物的机理研究IJ].环境科学,1999,20(6):49-2.
    [25]李丽,王全金.人工湿地在污水处理中的研究进展[J].华东交通大学学报, 2007,(01) .
    [26]李羚.人工湿地处理污水技术及其在我国的应用现状和对策[J].现代城市研究, 2004,(12).
    [27]梁继东,周启星,孙铁布.人工湿地污水处理系统研究及性能改进分析[]J.生态学杂志2003,22(2):49-55.
    [28]梁威,吴振斌.人工湿地对污水中氮磷的去除机制研究进展[]J.环境科学动态,2000,3:32-37.
    [29]穆大刚,孟范平,赵莹,等.化学沉淀法净化高浓度氨氮废水初步研究[J].青岛大学学报(工程技术版),2004,19(2):1-5.
    [30]沈耀良,赵丹等.ABR处理高浓度淀粉制品加工废水运行特性的研究.工业给排水,2002,28(9):33-5.
    [31]沈耀良,赵丹等.ABR处理高浓度淀粉制品加工废水运行特性的研究.工业给排2002,28(9):33-5.
    [32]宋志文,毕学军,曹军.人工湿地及其在我国小城市污水处理中的应用[J].生态学杂志,2003,22(3):74-78.
    [33]孙桂琴,董瑞斌,潘乐英,王见华.人工湿地污水处理技术及其在我国的应用[J].环境科学与技术,2006,(S1) .
    [34]唐受印,戴友芝.废水处理工程[M].北京:化学工业出版社,2004:24-144
    [35]王东,李岚波.人工湿地技术在北方城市污水处理中的应用[J].山西建筑, 2006,(02)
    [36]王爱萍,周琪.人工湿地处理污水的研究[J]四川环境,2005,(02)
    [37]王娟,范迪.微电解法预处理大蒜废水试验研究闭.环境工程学报,2008,2(7):951-954.
    [38]翁美娅,刘鹏,徐根娣,蔡妙珍.人工湿地进行污水处理的研究进展[J].安徽农业科学, 2005,(07) .
    [39]吴建强,阮晓红,王雪.人工湿地中水生植物的作用和选择[J].水资源保护, 2005,(01).1-6
    [40]吴建磊.污水处理新工艺.中国给水排水,2003,19(l):103-104
    [41]吴晓磊.人工湿地废水处理机理[J]环境科学,1995,(03) .
    [42]夏汉平等.人工湿地处理炼油废水的生态效益研究.生态学报,2003,23(7):1344-1355.
    [43]夏汉平.人工湿地处理污水的机理与效率,生态学杂志,2002,21(1):51-59
    [44]徐光来,徐晓华.人工湿地污水处理技术的应用初探[J].云南地理环境研究, 2006,(03) .
    [45]杨京平,卢建波主编.生态恢复工程技术〔M〕.北京:化学工业出版社,2002.61-66.
    [46]杨晓奕,蒋展鹏,潘咸峰.膜法处理高浓度氨氮废水的研究[J].水处理技术,2003,29(2):85-88.
    [47]叶红,邓仕槐,李远伟,吴晓莉.人工湿地在畜禽养殖废水处理中的应用研究[A]农村污水处理及资源化利用学术研讨会论文集,2008 .
    [48]于少鹏,王海霞,万忠娟,等.人工湿地污水处理技术及其在我国的发展现状与前景[J].地理科学进展,2004,23(1):22-29.
    [49]赵书平,李国全,贾俊贵等.大蒜的加工工艺及应用方法[l],生产技术2007,24(17):26-7.
    [50]赵婷,周康根,王昊,等.磷酸氢镁吸附法处理氨氮废水的工艺条件[J].水处理技术,2008,34(4):69-72.
    [51]招文锐,杨兵,朱新民等.人工湿地处理凡口铅锌矿金属废水的稳定性分析「]J.生态科学,2001,20(4):16-20.
    [52]张奎,曹文平,朱伟萍.人工湿地污水处理技术的研究[J]工业水处理, 2007,(08).
    [53]张毅敏,张永春.利用人工湿地治理太湖流域小城镇生活污水可行性探讨[J].农业环境保护,1998,17(5):232-234.
    [54]张黎,王延松.人工湿地对污水中氮磷的去除机理[A]中国环境科学学会2006年学术年会优秀论文集(中文卷),2006 .
    [55]张军、周琪.人工湿地的生态休闲与设计,四川环境,2004(3).23-26 .
    [56]张梅玲,蔚东升,顾国锋,等.离子膜电解去除味精废水中氨氮的研究[J].膜科学与技术,2007,27(2):61-65.
    [57]郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工程实例「M].北京:化学工业出版社.2002.
    [58]朱正斌.有机废水的处理方法现状及进展[J].化学工业与工程技术, 2004,(05) .
    [59]钟金松,闵育顺,肖贤明.浅谈高浓度氨氮废水处理的可持续发展方向[J].环境科学与技术,2008,31(2):92-94,147.
    [60]钟玉鸣.sBR在废水处理中的研究及应用明.广东化工,2006,33(163):57-59
    [61] Amelia K. Kivaisi. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecological Engineering, Volume 16, Issue 4, 1 February 2001, Pages 545-560.
    [62] Baisali Sarkar, P.P. Chakrabarti,etc. Wastewater treatment in dairy industries—possibility of reuse. Desalination, Volume 195, Issues 1-3, 5 August 2006, Pages 141-152.
    [63] Bruce Durham, Marie Marguerite Bourbigot, Tom Pankratz. Membranes as pretreatment to desalination in wastewater reuse. Membrane Technology, Volume 2002, Issue 3, March 2002, Pages 8-12.
    [64] B. Janosova, J. Miklankova, P. Hlavinek, T. Wintgens. Drivers for wastewater reuse: regional analysis in the Czech Republic. Desalination, Volume 187, Issues 1-3, 5 February 2006, Pages 103-114.
    [65] Bashaar Y. Ammary. Wastewater reuse in Jordan: Present status and future plans. Desalination, Volume 211, Issues 1-3, 10 June 2007, Pages 164-176.
    [66] Diederik P. L. Rousseau, Peter A. Vanrolleghem, Niels De Pauw. Model-based design of horizontal subsurface flow constructed treatment wetlands: a review. Water Research, Volume 38, Issue 6, March 2004, Pages 1484-1493.
    [67] D. Bixio, C. Thoeye, J. De Koning, etc. Wastewater reuse in Europe. Desalination, Volume 187, Issues 1-3, 5 February 2006, Pages 89-101.
    [68] Gauri S. Mittal. Treatment of wastewater from abattoirs before land application—a review. Bioresource Technology, Volume 97, Issue 9, June 2006, Pages 1119-1135
    [69] Gerald J?dicke, Ulrich Fischer, Konrad Hungerbühler. Wastewater reuse: a new approach to screen for designs with minimal total costs. Computers & Chemical Engineering, Volume 25, Issues 2-3, 15 March 2001, Pages 203-215.
    [70] Gianluca Ciardelli, Nicola Ranieri. The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation. Water Research, Volume 35, Issue 2, February 2001, Pages 567-572.
    [71] Hong Yang, Karim C. Abbaspour. Analysis of wastewater reuse potential in Beijing. Desalination, Volume 212, Issues 1-3, 25 June 2007, Pages 238-250.
    [72] Jari Koivunen, Anja Siitonen, Helvi Heinonen-Tanski. Elimination of enteric bacteria in biological–chemical wastewater treatment and tertiary filtration units. Water Research, Volume 37, Issue 3, February 2003, Pages 690-698.
    [73] Jan Vymazal. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecological Engineering, Volume 18, Issue 5, June 2002, Pages 633-646.
    [74] L. Semerjian, G. M. Ayoub. High-pH–magnesium coagulation–flocculation in wastewater treatment. Advances in Environmental Research, Volume 7, Issue 2, January 2003, Pages 389-403
    [75] Lorenzo Liberti, Michele Notarnicola, Domenico Petruzzelli. Advanced treatment for municipal wastewater reuse in agriculture. UV disinfection: parasite removal and by-product formation. Desalination, Volume 152, Issues 1-3, 10 February 2003, Pages 315-324
    [76] L. Boutilier, R. Jamieson,etc. Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands. Water Research, Volume 43, Issue 17, September 2009, Pages 4370-4380.
    [77] M. Ortiz, R.G. Raluy, L. Serra. Life cycle assessment of water treatment technologies: wastewater and water-reuse in a small town. Desalination, Volume 204, Issues 1-3, 5 February 2007, Pages 121-131
    [78] Mauno Into, Ann-Sofi J?nsson, G?ran Lengdén. Reuse of industrial wastewater following treatment with reverse osmosis. Journal of Membrane Science, Volume 242, Issues 1-2, 15 October 2004, Pages 21-25
    [79] M. Rodgers, X.-M. Zhan, J. Prendergast. Wastewater treatment using a vertically moving biofilm system followed by a sand filter. Process Biochemistry, Volume 40, Issue 9, September 2005, Pages 3132-3136
    [81] M. F. Hamoda, I. Al-Ghusain, N. Z. Al-Mutairi. Sand filtration of wastewater for tertiary treatment and water reuse. Desalination, Volume 164, Issue 3, 15 April 2004, Pages 203-211
    [82] M. Pell, A. W?rman. Biological Wastewater Treatment Systems. Encyclopedia of Ecology, 2008, Pages 426-441
    [83] Maja Zupan?i? Justin, Danijel Vrhov?ek, etc. Treatment of wastewater in hybrid constructed wetland from the production of vinegar and packaging of detergents. Desalination, Volume 246, Issues 1-3, 30 September 2009, Pages 100-109
    [84] Mostafa Tizghadam, Christophe Dagot, Michel Baudu. Wastewater treatment in a hybrid activated sludge baffled reactor. Journal of Hazardous Materials, Volume 154, Issues 1-3, 15 June 2008, Pages 550-557
    [85] Nathalie Vaillant, Fabien Monnet,etc. Treatment of domestic wastewater by an hydroponic NFT system. Chemosphere, Volume 50, Issue 1, January 2003, Pages 121-129
    [86] N.I. Galil, Y. Levinsky. Sustainable reclamation and reuse of industrial wastewater including membrane bioreactor technologies: case studies. Desalination, Volume 202, Issues 1-3, 5 January 2007, Pages 411-417
    [87] Norrie Hunter. Water reuse: Making use of wastewater. Filtration & Separation, Volume 44, Issue 7, September 2007, Pages 24-27
    [88] Pantip Klomjek, Suwanchai Nitisoravut. Constructed treatment wetland: a study of eight plant species under saline conditions. Chemosphere, Volume 58, Issue 5, February 2005, Pages 585-593
    [89] Rémy Buzier, Marie-Hélène Tusseau-Vuillemin,etc. Trace metal speciation and fluxes within a major French wastewater treatment plant: Impact of the successive treatments stages. Chemosphere, Volume 65, Issue 11, December 2006, Pages 2419-2426
    [90] Raquel Iglesias Esteban, Enrique Ortega de Miguel. Present and future of wastewater reuse in Spain. Desalination, Volume 218, Issues 1-3, 5 January 2008, Pages 105-119
    [91] Rosario Pastor, Chouaib Benqlilou, etc. Design optimisation of constructed wetlands for wastewater treatment. Resources, Conservation and Recycling, Volume 37, Issue 3, February 2003, Pages 193-204
    [92] Sardar Khan, Irshad Ahmad,etc. Use of constructed wetland for the removal of heavy metals from industrial wastewater. Journal of Environmental Management, Volume 90, Issue 11, August 2009, Pages 3451-3457
    [93] Steven G. Buchberger, George B. Shaw. An approach toward rational design of constructed wetlands for wastewater treatment. Ecological Engineering, Volume 4, Issue 4, June 1995, Pages 249-275
    [94] Toraj Mohammadi, Ashkan Esmaeelifar. Wastewater treatment of a vegetable oil factory by a hybrid ultrafiltration-activated carbon process. Journal of Membrane Science, Volume 254, Issues 1-2, 1 June 2005, Pages 129-137
    [95] Tja(?)a G. Bulc, Alenka Ojstr(?)ek. The use of constructed wetland for dye-rich textile wastewater treatment. Journal of Hazardous Materials, Volume 155, Issues 1-2, 30 June 2008, Pages 76-82
    [96] T.K. Graczyk, T.E. Chalew, Y. Maschinski, F.E. Lucy. Wastewater Treatment (not infectious hazards). Encyclopedia of Microbiology, 2009, Pages 562-568
    [97] U. Stottmeister, A. Wie(?)ner, etc. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances, Volume 22, Issues 1-2, December 2003, Pages 93-117
    [98] X. Feng, K.H. Chu. Cost Optimization of Industrial Wastewater Reuse Systems. Process Safety and Environmental Protection, Volume 82, Issue 3, May 2004, Pages 249-255
    [99] Young W. Kang, Karen M. Mancl, Olli H. Tuovinen. Treatment of turkey processing wastewater with sand filtration. Bioresource Technology, Volume 98, Issue 7, May 2007, Pages 1460-1466
    [100] Yuansong Wei, Renze T. Van Houten, etc. Minimization of excess sludge productionfor biological wastewater treatment. Water Research, Volume 37, Issue 18, November 2003, Pages 4453-4467.
    [101] Yoshiaki Kiso, Yong-Jun Jung, etc. Wastewater treatment performance of a filtration bio-reactor equipped with a mesh as a filter material. Water Research, Volume 34, Issue 17, December 2000, Pages 4143-4150.
    [102] Y. Q. Zhao, G. Sun, S. J. Allen. Anti-sized reed bed system for animal wastewater treatment: a comparative study. Water Research, Volume 38, Issue 12, July 2004, Pages 2907-2917.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700