用户名: 密码: 验证码:
纳米二氧化硅粒径相关的细胞毒性作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米二氧化硅是纳米材料中的重要一员,其化学纯度高,分散性好,具有许多独特的理化性质,被广泛应用于生物医学、化妆品、建筑材料及化工生产的各个领域。随着纳米二氧化硅产量及应用范围的逐渐扩大,人群的接触机会日益增加。因此,有必要对纳米二氧化硅的生物效应和安全性进行研究。
     纳米颗粒的粒径越小,比表面积越大,处于颗粒表面的原子数就越多,其表面能会迅速增加。因此,纳米颗粒的粒径越小,自身的化学反应性就越高,但纳米颗粒所产生的生物学效应是否与粒径相关,目前还少有报道。
     本研究以体外培养细胞系人肝癌细胞HepG2作为模型,对四种不同粒径的二氧化硅颗粒(498 nm、68 nm、43 nm、19 nm)可能产生的生物学效应及其相关机制进行了初步的研究。采用透射电子显微镜(TEM)及动态光散射粒度分析仪(DLS)对二氧化硅颗粒的表征及稳定性进行检测;采用倒置生物显微镜观察HepG2细胞的生长情况;HE染色法观察细胞形态学改变;CCK-8试剂盒及MTT比色法检测二氧化硅颗粒对细胞增殖的影响;LDH释放法检测细胞膜完整性的改变;使用荧光显微镜观察细胞内ROS的产生及二氧化硅颗粒对细胞内DNA的损伤作用;并进一步采用流式细胞术(FCM)对细胞内的ROS、细胞周期及细胞凋亡进行检测。
     结果显示:二氧化硅颗粒的细胞毒性作用存在明显的剂量依赖性。并且随着二氧化硅颗粒粒径的减小,细胞形态改变逐渐明显,双核及多核发生率显著升高,细胞存活率逐渐下降,细胞膜完整性的改变逐渐明显。细胞内ROS的测定结果表明,Si498处理组细胞未出现明显改变,但三个纳米二氧化硅处理组,随颗粒粒径的减小,细胞内ROS的产生显著增加。四种二氧化硅颗粒均可引起DNA损伤及细胞周期分布的改变,并且随着颗粒粒径的减小,细胞内的DNA损伤程度逐渐增大,细胞凋亡率逐渐升高。结论:二氧化硅颗粒可对人肝癌细胞HepG2产生毒性作用,并且颗粒所产生的生物学效应与粒径有关,即二氧化硅颗粒的粒径越小,其对细胞的损伤作用越明显。
     本研究明确了二氧化硅颗粒与粒径相关的细胞毒性作用,并对其可能的机制作了初步探讨,为评价纳米二氧化硅颗粒的生物安全性提供实验依据。
In this study, we use human hepatoma cell line HepG2 cells study the size- dependent cytotoxicity of amorphous silica nanoparticles. Morphological change of HepG2 cells was observed under light microscopy after Haematoxylin and Eosin (HE) staining. Survival rate of HepG2 cells was measured by Cell Counting Kit(CCK-8) and MTT colorimetry, change of cytomembrane integrity was reflected by LDH kit, alteration of intracellular ROS was determined by fluorescence microscope and flow cytometry after DCF staining, DNA damage was detected by SCGE assay, cell cycle arrest was observed by flow cytometry after PI staining, and then cell apoptosis was examined by AO/EB double fluorescent dye staining and AnnexiⅤn -FITC/PI dying methods. The results of this study were shown as followed:
     1. Dose-dependent cytotoxicity of silica particles on HepG2 cells The effect of silica particles on cell viability was detected by Cell Counting Kit (CCK-8). After 24 h treatment, Si498 particle displayed a significant inhibitory effect at the concentration of 200μg/mL. Nano-Si68 and Nano-Si43 administration groups were observed reduction of cell viability at the concentration of 100μg/mL compared to the negative control group(P<0.05). And Nano-Si19 particle induced significantly increased in cytotoxicity at 12.5、25、50、100、200μg/mL groups compared to the negative control group(P<0.05).
     2. Morphological change of HepG2 cells induced by silica particles
     Morphological observations under phase contrast microscope show that, cells of negative control group were mostly polygonal with little particles in cytoplasm. But in the administration group, with the decrease of particle size, the morphological change of HepG2 cells became more and more significant. Cell shape changed from polygonal to fusiform or irregular shape, more particulate matter were observed resulting in cell transparency decline, and cell number decreased significantly.
     Photograph of HE staining showed that, after incubated with 100μg/mL of silica particles, HepG2 cells exhibited morphological changes: cell number decrease, cell turning round and presenting vacuolar degeneration, cell connection disappeared. And trachychromatic chromatin and chromatin margination could also be observed. Compared with the negative control group and Si498 administration group, the rate of binucleated and multinucleated cells increased significantly after treated with three silica nanoparticles.
     3. Size-dependent cytotoxicity of silica particles on HepG2 cells
     Cell Counting Kit and MTT colorimetry were performed to examine the viability of HepG2 cells treated with 100μg/mL silica particles. Our results revealed that cell survival rate declined significantly(P<0.05)with the decrease of nanoparticle size, however, in the Si498 administration group there was no obvious change of the cell survival rate compared with counterpart in negative control group.
     4. Cytomembrane integrity change of HepG2 cells induced by silica particles
     LDH kit was used to detect the cytomembrane integrity change of HepG2 cells after exposure to 100μg/mL silica particles for 24 h. The results suggested that four types of silica particles could damage the membrane of HepG2 cells. LDH activity in cell culture medium apparently increased with the decrease of particle size(P<0.05) compared with that in the negative control group.
     5. Intracellular ROS alteration of HepG2 cells induced by silica particles
     The effects of silica particles on the generation of intracellular oxyradicals were reflected by flow cytometry. HepG2 cells were treated with 100μg/mL silica particles with different size for 24h, it was showed that in the Si498 administration group there was no obvious change of the intracellular ROS compared with the negative control group.But in the nanoparticle administration group, intensity of DHE fluorescence increased with the decrease of particle size(P<0.05).
     6. DNA damage of HepG2 cells induced by silica particles
     DNA damage was measured by the single cell gel electrophoresis (SCGE). Our results showed that after treating HepG2 cells with 100μg/mL silica particles with different size for 24 h, with the decrease of particle size the rate of DNA damage was significantly increased(P<0.05), and the length of comet tail was elevated. It indicated that the rate of DNA damage induced by silica particles was in a size-dependent manner.
     7. Cell cycle arrest of HepG2 cells induced by silica particles
     HepG2 cells were stained with PI and then analyzed the cell cycle by flow cytometry. We analyzed the cell cycle phases by collecting more than 10 000 cells and classified them into G0/G1, S or G2/M phases. The result showed that cells treated with 100μg/mL silica particles for 24h, all four administration group appeared S phase arrest(P<0.05)compared with the negative control group, and what was more, Nano-Si19 administration group also appeared G2/M phase arrest(P<0.05).
     8. Apoptosis of HepG2 cells induced by silica particles
     AO/EB double fluorescent dye staining and FCM with AnnexⅤin -FITC/PI dying methods were performed to examine apoptosis. After treating HepG2 cells with 100μg/mL silica particles with different size for 24 h, The results suggest that all the four silica particles could induce apoptosis in HepG2 cellscompared with the negative control group(P<0.05), and cell apoptotic rate increased obviously as the particle size decreased.
     In conclusion, silica particles could induce morphological change of HepG2 cells, inhibit cell viability, damage the integrity of cytomembrane, elevate intracellular ROS level, induce DNA damage, cause cell cycle arrest and result in cell apoptosis.
引文
[1] ROCO MC, BROADER. Societal issues of nanotechnology [J]. J. Nanopart. Res.,
    [20]马小艺,陈海斌.纳米材料在生物医学领域的应用与前景展望[J].中国医药导报, 2006, 2003, 5(3-4):181-189.
    [2]白春礼.纳米科技及其发展前景[J].科学通报. 2001, 46: 89-92.
    [3] COLVIN V L.The potential environmental impact of engineered nanomaterials [J]. Nature Biotechnology, 2003, 21(10): 1166-1170.
    [4] MASCIANGIOLI TM, ZHANG WX.Environmental Technologies at the nanoscale:potential & pitfalls [J].Environmental Science and Technology. 2003, 37(5): 102-108.
    [5]张立德,牟季美.纳米材料与纳米结构[M].北京:科学出版社.2001,6.
    [6]汪冰,丰伟悦,赵宇亮,等.纳米材料生物效应及其毒理学研究进展[J].中国科学B辑化学, 2005, 35(1): 1-10.
    [7]朱小山,朱琳.人工纳米材料生物效应研究进展[J].安全与环境学报, 2005, 5(4): 86-90.
    [8]张莉芹,袁泽喜.纳米技术和纳米材料的发展及其应用[J].武汉科技大学学报(自然科学版), 2003, 26(3): 234-238.
    [9]冯异,赵军武,齐晓霞,等.纳米材料及其应用研究进展[J].工具技术, 2006, 40(10): 10-14.
    [10]NEL A., XIA T., MIDLER L., et al. Toxic Potential of Materials at the Nanolevel [J]. Science, 2006, 311:622-627.
    [11]H.GLEITER. Nanostructured materials: Basic concepts and miceostructure [J]. 2000,48:1-29.
    [12]MALIK MA, REVAPRASADU N, BRIEN P, et al. A novel route for the preparation of CuSe and CuInSe-nanoparticles [J]. Adv. Mater, 1999, 11(17): 1441-1444.
    [13]LEGGET AJ, CHAKRAVARTY S, DORSEY AT, et al. Dynamic of the Disspative Two-State System [J]. Rev. Modphys,1987,59:1-4.
    [14]谢济仁,邵刚勤,易忠来,等.纳米材料应用[J].武汉理工大学学报,2006,26(2):17-20.
    [15]YOON TJ, KIM JS, KIM BG, et al. Multifunctional nanoparticles possessing a“magnetic motor effect”for drug or gene delivery [J]. Angew Chem Int Ed Engl, 2005, 44:1068-1071.
    [16]ZHANG FF, WAN Q, LI CX, et al. Simultaneous assay of glucose, lactate, L-glutamate and hypoxanthine levels in a rat striatum using enzyme electrodes based on neutral red-doped silica nanoparticles [J]. Anal Bioanal Chem, 2004, 380(4): 637-642.
    [17]MINTOROVITCH J, SHAMSI K. Eovist injection and resovisit injection: tow new liver-specific contrast agents for MRI [J]. Oncology, 2000,14(63): 37-40.
    [18]陈伙德,贾振斌,邱敏,等.纳米材料在医药领域中的应用与展望[J]. 2008, 35(10):93-95.
    [19]李霞.纳米材料在医学中的妙用[J].世界科学, 2004, 11:24-25.3(32): 13-15.
    [21]金海龙,王新宇,王洪森,等.纳米材料在生物医学领域的应用与发展[J].仪器仪表学报. 2006, 27(6): 986-988.
    [22]谭葆春,杨明华.纳米材料在骨缺损治疗中的应用开发[J].国外医学·生物医学工程分册. 2005, 28(1): 27-29.
    [23]金华芳,袁琳,邱乐,等.纳米材料在医学领域的应用及安全性研究进展[J].生物骨科材料与临床研究. 2009, 6(5): 33-35.
    [24]席玉生.浅谈纳米材料在化工领域中的应用[J].科技创新导报. 2008, (2): 91-92.
    [25]姚卿佐.纳米技术及其对微电子学的影响[J].安徽电子信息职业技术学院学报. 2003, 2(1): 34-38.
    [26]何秀玲,郭腊梅.纳米材料在纺织领域的应用[J].棉纺织技术. 2003, 31(11): 670-673.
    [27]郑大中,郑若锋,王惠萍.纳米材料在环保与检测领域的应用研究进展[J].盐湖研究. 2008, 16(4): 66-70.
    [28]SERVICE RF. Nanomaterials signs of toxicity [J]. Science, 2003, 300(11): 243.
    [29]BRUMFIEL G. Nanotechnology: A little known knowledge [J]. Nature, 2003, 424: 246-248.
    [30]SERVICE RF. Nanotoxicology: Nanotechnology grows up [J]. Science, 2004,304:1732-1734.
    [31]DREHER KL. Toxicological highlight: health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles [J]. Toxicological Sciences, 2004, 77:3-5.
    [32]赵宇亮,柴之芳.纳米生物效应研究进展[J].中国科学院院刊, 2005, 20(3): 194-199.
    [33]姜桂兴.世界纳米科技发展态势分析[J].世界科技研究与发展, 2008, 2(30): 237-240.
    [34]GERLOFS NJ, BOERE AJF, LESEMAN DL, et a1. Effects of particulate matter on the pulmonary and vascular system: time course in spontaneously hypertensive rats [J]. Particle and Fibre Toxicology, 2005, 2: 2.
    [35]DONALDSON K, TRAN L, J IMENEZ LJ, Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure [J]. Particle and Fibre Toxicology, 2005, 2: 10.
    [36]BARLOW PG, CLOUTER-BAKER A, DONALDSON K, et al. Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages [J]. Particle and Fibre Toxicology, 2005, 2: 11.
    [37]袭著革.纳米尺度物质对生态环境影响及生物安全性研究进展与展望.全国环境卫生学术研讨会.
    [38]OBERD?RSTER G, OBERD?RSTER E, OBERD?RSTER J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles [J]. Environ Health Persp, 2005, 113(7): 823-839.
    [39]GEISER M, ROTHEN R B, KAPP N, et a1. Ultrafine particles cross cellularmembranes by nonphagocytic mechanisms in lungs and in cultured cells [J]. Environ Health Perspect, 2005,113(11): 1555-1560.
    [40]ANI P, HALBERT GW, LANGRIDGE J, et a1. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency [J]. J Pharm Pharmaeol, 1990, 42: 821-826.
    [41]SZENTKUTI L. Light microscopical observations on luminally administered dyes, dextrans, nanospheres and microspheres in the pre-epithelial mucus gel layer of the rat distal colon [J]. J Control Release, 1997, 46: 233-242.
    [42]FEIKERT T, MERCER P, CORSON N, et al. Inhaled solid ultrafine particles (UFP) are efficiently translocated via neuronal naso-olfactory pathways [Abstract]. Toxicologist, 2004, 78 (suppl 1): 435-436.
    [43]OBERDORSTER G, SHARP Z, ATUDOREI V, et a1. Transloeation of inhaled ultrafine particles to the brain.Inhal Toxieol,2004, 16(6/7): 437-445.
    [44]WANG HF. Preparation and biological behaviors of L-1 abeled water soluble single-wall carbon nanotubes [J]. Nanosic Nan otech, 2004, 4: 1-6.
    [45]TAKENAKA S, KARG E, ROTH C, et al. Pulmonaryand systemic distribution of inhaled ultrafine silver particlesin rats [J]. Environ Health Persp, 2000, 109: 547-551.
    [46]YAMAWAKI H, IWAI N. Mechanisms underlying nano-sized air-pollution-mediated pro- gression of atherosclerosis: carbon black causes cytotoxic injury/Inflamation and inhibits cell growth in vascular endothelial cells [J]. Cirvulation, 2006, 70(1): 139-140.
    [47]ZHAO X, STRIOLO A, CUMMINGS P. C60 binds to and deforms nucleotides [J]. Biophys 2005, 89(6): 3856-3862.
    [48]金一和,孙鹏,张颖花.纳米材料对人体的潜在性影响问题[J]. 2001, 23(5): 306-307.
    [49]OBERDORSTER E. Manufactured nanomaterials (fullerence, C60
    [54]GEYS J, NEMMAR A, VERBEKEN E, et al. Acute toxicity and prothrombotic effects of quantum dots :impact of surface charge [J]. Environ Health Perspect, 2008, 116(12): ) induce oxidative stress in the brain of juvenile large-mouth bass [J]. Environ Health Perspect, 2004, 112(10):1058
    [50]XING GENGMEI, ZHAO YULIANG, LEI HAO, et al. Biologically accelerated chemical aggregation of magnetic nanoparticles in blood vessel of mice [J]. J Am Chem Soc, 2005, 22:104-109.
    [51]AFAQ F, ABIDI P, MATIN R, et a1. Cytotoxieity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macmphages exposed to ultrafine titanium dioxide. J Appl Toxieol, 1998,18: 307-312.
    [52]CHIUWING LAM, JOHN T JAM, et al. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation [J]. Toxicological Sci, 2004, 77:126.
    [53]WARHEIT D.B., LAURENCE B.R., REED K.L., et.al. Comparative Pulmonary Toxicity Assessment of Single-wall Carbon Nanotubes in Rats [J]. Toxicological Sciences, 2004, 77: 117-125.1607-1613.
    [55]INMAN A.O., SAYES C.M., COLVIN V.L., et al. Nano C60 and derivatized C60 toxicity in human epidermal keratinocytes. The Toxicologist CD: An official Journal of the Society of Toxicology. 2006. 90, S-1,825, p.167.
    [56]SAYES C.M., FORTNER J.D., GUO W., et al. The differential cytotoxicity of water-soluble fullerenes [J]. Nano Lett. 2004, 4: 1881–1887.
    [57]SAYES C.M., GOBIN A.M., AUSMAN K.D.,et al. Nano-C60
    [70]毛彩霞,田熙科,杨光涛,等.纳米MnOcytotoxicity is due to lipid peroxication [J]. Biomaterials, 2005, 26: 7587–7595.
    [58]GUPTA AK, GUPTA M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles [J]. Biomaterials, 2005, 26(13): 1565-1573.
    [59]MONTEIRO-RIVIERE N.A., NEMANICH R.A., INMAN A.O., et al.. Multi-walled carbon nanotube interactions with human epidermal keratinocytes [J]. Toxicol. Lett., 2005, 155: 377–384.
    [60]ZHANG L.W., ZENG L., BARRON A.R., et al. Biological interactions of functionnalized single wall carbon nanotubes in human epidermal keratinocytes [J]. Int. J. Toxicol. 2007, 26: 103–113.
    [61]HUSSAIN SM, HESS KL, GEARHAN JM, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells [J]. Toxicol In Vitro, 2005, 19(7): 975.
    [62]RENWICK LC, DONALDSON K., CLOUTER A. Impairment of alveolar macrophage phagoeytosis by uhrafine particles [J]. Toxicol Appl Pharmacol, 2001, 172:1 19-127.
    [63]ZHANG QW, KUSAKA Y. Comparative injurious and proinflammatory effects of three uhrafine metals in macrophages from young and old rats [J]. Inhal Toxieol, 2000, 12: 267-273.
    [64]MOELER W, HOFER T, ZIESENIS A, et a1. Uhrafine particles cause cytoskeletal dysfunctions in macrophages [J]. Toxicol Appl Pharmacol, 2002, 182: 197-207.
    [65]LOVRIC J, CHO S J, WINNIK F M, et al. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death [J]. Chem Biol, 2005, 12(11): 1227-1234.
    [66]R SINGH, D PANATAROTTO, D MCCARTHY O, et al. Binding and condenstation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nano- tubebased gene delivery vectors [J]. Am. Chem. Soc., 2005, 127: 4388-4396.
    [67]Y PAN, A LEIFERT, W JAHNEN-DECHENT, et al. Size-dependent cytotoxicity of gold nanoparticles [J]. Small, 2007, 3:1941-1949.
    [68]LYNCH I, DAWSON KA, LINSE S. Detecting cryptic epitopes created by nanoparticles. Sci STKE 2006, (327): 14.
    [69]中国科学院国家科学图书馆武汉分馆科学研究动态监测快报[R].生物安全专辑, 2007. 2与常规MnO2粉末对Hela细胞DNA损伤的对比研究[J].生态毒理学报, 2007, 2(2): 191-194.
    [71]WANG JJ, SANDERSON BJ, WANG H, et al. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells [J]. Mutat. Res., 2007, 628: 99-106.
    [72]PV ASHARANI, GRACE.LOW.KAH.MUN, MANOOR.PRAKASH.HANDE., et al. Cyto- toxicity and genotoxicity of Silver Nanoparticles in Human Cells [J]. ACS Nano., 2009, 3(2): 279-290.
    [73]YOON TJ, KIM JS, KIM BG, et al. Multifunctional nanopartieles possessing a magnetic motor effect for drug or gene delivery [J]. Angew Chem Int Ed Engl, 2005, 44: 1068-107.
    [74]VENKATESAN N, YOSHIMITSU J, ITO Y, et al. Liquid filled nanoparticles as a drug delivery tool for protein therapeuties [J]. Biomaterials, 2005, 26: 7154-7163.
    [75]HIRSCH LR, STAFOERD RJ, BANKSON JA, et al. Nanoshell-mediated nearinfrared thermal therapy of tumors under magnetic resonance guidance [J]. Proc Natl Aead Sci, 2003, 100: 13549-13554.
    [76]QHOBOSHEANE M, SANTRA S, ZHANG P, et al. Bioehemieally funetionalized silica nanoparticles [J]. Analyst, 2001, 126: 1274-1278.
    [77]刘俊渤,藏玉春,吴景贵,等.纳米二氧化硅的开发与应用[J].长春工业大学学报, 2003, 24(4): 9-12.
    [78]吴春蕾,段先健,杨本意,等.高分散的气相法二氧化硅在医学领域的应用[R].有机硅氟咨讯, 2002, 12: 45-49.
    [79]CULLUM BM, GRIFFIN GD, MILLER GH, et al. Intracellular meseurements in mammary carcinoma cells using fiber-optic nanosensors [J]. Anal. Biochem.,2000, 277: 25-32.
    [80]陈春华,魏丽乔.医用导尿管的表面抗菌改性研究[J].第六届中国功能材料及其应用学术会议论文集, 2007: 1826-1827.
    [81]BUI JD, ZELLES T, LOU HJ, et al. Probing intracellular dynamics with near-field optics [J]. J. Neuro-sci. Methods.,1999,89: 9-15.
    [82]STOCKLE R, FOKAS L, DECKERT V, et al. High-qualiy near-field optical probes by tube etching [J]. Appl. Phys. Lett.,1999, 75:160-162.
    [83]JASON EF, GREGORY TZ, LINO SF, et al. Intracellular delivery of core-shell fluorescent silica nanoparticles [J]. Biomaterials, 2008, (29): 1526-1532.
    [84]苏学军,郑典模.纳米SiO2的应用研究进展[J].江西化工, 2002,(1): 6-10.
    [85]张一平.纳米材料安全性与纳米二氧化硅毒性研究进展[J].浙江教育学院学报, 2009, 4:85-89.
    [86]KIM JS, YOON TJ, KIM HW, et al. Toxicity and Tissue Distribution of Magnetic Nanoparticles in Mice [J]. Toxicol Sci., 2006, 89(1): 338-347.
    [87]应杏秋,曾群力,祝慧娟,等.纳米SiO2与标准SiO2致大鼠急性肺损伤的作用[J].中华劳动卫生职业病杂志, 2006, 24(2): 116-117.
    [88]王静.纳米级与微米级二氧化硅粉体对大鼠急性肺毒性的比较研究[D].北京:中国医科大学, 2007.
    [89]林本成,袭著革,杨丹凤,等.纳米级SiO2对雄性大鼠睾丸组织的氧化损伤作用[J].环境与健康杂志, 2007, 24(8): 574-576.
    [90]CHEN M, MIKECZ A. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles [J]. Exp Cell Res, 2005, 305:51-62.
    [91]MARGRIET V.D.Z.PARK, WIJTSKE ANNEMA, ANNA SALVATI, et al. In vitro developmenttal toxicity test detects inhibition of stem cell differentiation by silica nanoparticles [J]. Toxicology and Applied Pharmacology, 2009, 240: 108-116.
    [92]李艾斯,黄永平,刘建文,等.药用纳米SiO2
    [103]CHAVANPATIL MD, KHDAIR A, PANYAM J. Nanoparticles for cellular drug delivery:对人正常肺细胞的氧化损伤[J].中国临床药理学与治疗学, 2009, 14(10): 1115-1120.
    [93]YU KO, GRABINSKI C M, SCHRAND A M, et al. Toxicity of amorphous silica nanoparticles in mouse keratinocytes [J]. J Nanopart Res, 2009, 11:15-24.
    [94]NAPIERSKA D, THOMASSEN L CJ, RABOLLI V, et al. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells [J]. Small, 2009,5 (7): 846-853.
    [95]GEISER M, ROTHEN R B, KAPP N, et a1. Ultrafine particles cross cellularmembranes by nonphagocytic mechanisms in lungs and in cultured cells[J].Environ Health Perspect, 2005, 113(11): 1555-1560.
    [96]LI N, SIOUTAS C, CHO A, et al. Ultrafine Particulate Pollutants Induce Oxidative Stress and Mitochondrial Damage [J]. Environ Health Persp, 2003, 111(4): 455-460.
    [97]RAHMAN Q, LOHANI M, DOPP E, et al. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts [J]. Environ Health Perspect, 2002, 110: 797.
    [98]赵宇亮,白春礼.纳米安全性:纳米材料的生物效应[J].世界科学技术-中医药现代化, 2005, 7(4): 114-117.
    [99]OBERDORSTER G, SHARP Z, ATUDOREI V, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats [J]. Toxicol Environ Health A, 2002, 65(20): 1531-1543.
    [100]GURR JR, WANG AS, CHEN CH, et al. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells [J]. Toxicology, 2005, 213(1-2): 66-73.
    [101]THOMAS M, KLIBANOW AM. Conjugation to gold nanoparticles enhances polyethylene mine's transfer of plasmid DNA into mammalian cells [J]. Proc. Natl Acad Sci, 2003, 100(16): 9138-9143.
    [102]JIA G, WANG H, YAN L, et al. Cytotoxicity of carbon nanomaterials:single-wall nanotube, multi-wall nanotube, and fullerene [J]. Environ Sci Technol, 2005, 39: 1378-1383.mechanisms and factors ?inuencing delivery [J]. J Nanosci Nanotechnol , 2006, 6(9-10): 2651-2663.
    [104]PENN A, MURPHY G, BARKER S, et al. Combustion-derived ultra?ne particles transpo rt organic toxicants to target respiratory cells [J]. Environ Health Perspect, 2005, 113:956-963.
    [105]GUTIERREZ-CASTILLO ME, ROUBICEK DA, CEBRIAN-GARCIA ME, et al. Effect of chemical composition on the induction of DNA damage by urban airborne particulate matter [J]. EnvironMol Mutagen, 2006, 47(3): 199-211.
    [106]ORMEROD MG, SUN XM, BROWN D, et al. Quantification of apoptosis and necrosis by flow cytometry [J]. Acta Oncol, 1993, 32(4): 417-424.
    [107]JONH M, ANDREW D. MAYNARD, VICKI L. COVIN, et al. Meeting Report: Hazard Assessment for Nanoparticles-Report from an Interdisciplinary Workshop [J]. Environ- mental Health Perspectives,2007, 115(11): 1654-1659.
    [108]WEISHENG LIN, YUE-WERN HUANG, XIAO-DONG ZHOU, et al. In vitro toxicity of silica nanoparticles in human lung cancer cells [J].Toxicology and applied pharmacology 2006, 217: 252-259.
    [109]WARHEIT D.B., REED K., WEBB K., et al. Pulmonary toxicity screening studies with nano vs. fine-sized quartzand TiO2 particles in rats [J]. Toxicologist, 2005,84(S-1): A1043.
    [110]WANG ZIYU, LU XINLI, YAN SHIYAN, et al. Prepara tion and eva lua tion of As2O3
    [117]WILS MR, STONE V, CULLEN RT, et al. In vitro toxicology of respirable Montserrat nanoparticles for treatment of human liver cancer cells in vitro [J]. J. Southeast University, 2005, 21(1): 58-62.
    [111]杨辉,杨丹凤,袭著革,等. 4种典型纳米材料对小鼠胚胎成纤维细胞毒性的初步研究[J].生态毒理学, 2007, 2(4): 428-434.
    [112]CALCABRINI A, MESCHINI S, MARRA M, et al. Fine environmental particulate engenders alterations in human lung epithelial A549 cells [J]. Environ Res, 2004, 95(1): 82-91.
    [113]W?RLE-KNIRSCH J.M., PULSKAMP K., KRUG H.F.. Oops they did it again! Carbon nanotubes hoax scientists in viability assays [J]. Nano Lett. 2006,32:1-1268.
    [114]MONTEIRO-RIVIERE N.A., INMAN A.O., ZHANG L.W., et al. Limitations and Relative Utility of Screening Assays to Assess Engineered Nanoparticle Toxicity in a Human Cell Line [J]. Toxicology and Applied Pharmacology (2008), doi:10.1016/j.taap.2008.09.030
    [115]CHANG JS, CHANG KL B, HWANG D F, et al. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line [J]. Environ Sci Technol, 2007, 41(6): 2064-2068.
    [116]AUFFAU M, DECOME L, ROSE J, et al. In Vitro Interactions between DMSA-Coated Maghemite Nanoparticles and Human Fibroblasts: A Physicochemical and Cyto- Genotoxical Study [J]. Environ Sci Technol. 2006, 40(14): 4367-4373.volcanic ash [J]. Occup Environ Med, 2000, 57(11): 727-733.
    [118]SUN MS. Effects of three kinds of inorganic dusts on lipid peroxidation of erythrocytes [J].中华预防医学杂志, 1990, 24(5): 271-276.
    [119]RAHMAN Q, LOHANI M, DOPP E, et al. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in syrian hamster embryofibroblasts [J]. Environ Health Perspect, 2002, 110(8): 797-800.
    [120]SHVEDOVA AA, CASTRANOVA V, KISIN ER, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells [J]. Toxicol Environ Health A, 2003, 66(20): 1909-1926.
    [121]吴凯,杨光涛,娄小华,等.甲醛致小鼠肺DNA蛋白质交联和DNA断裂效应的研究[J].公共卫生与预防医学, 2006, 17(2): 15-21.
    [122]郭媛媛.纳米材料的遗传毒性研究进展[J].国外医学卫生学分册, 2008, 35(5): 268-272.
    [123]MAOCAI-XIA, YANGGUANG-TAO, QIAOYONG-KANG, et al. Size-dependent toxicity of dioxide manganese particles on DNA damage in hela cells [J]. Asian Journal of Ecotoxicology, 2008, 3(5): 438-442.
    [124]李倩,唐萌,马明,等.纳米Fe2O3
    [126]FUJIWARA, H. SUEMATSU, E. KIYOMIYA, et al. Size-dependent toxicity of silica nano- particles to Chlorella kessleri [J]. J. Environ. Sci. Health A, 2008, 43: 1167-1173.
    [127]JOHNSTON CJ, DRISCOLL KE, FINKELSTEIN JN, et al. Pulmonary chemokine and mutagenic responses in rats after subchronic inhalation of amorphous and crystalline silica [J]. Toxicol Sci, 2000, 56(2): 405-413.
    [128]YUANYUAN SU, JING-YING XU, PINGPING SHEN, et al. Cellular up take and cytotoxic evaluation of fullerenol in different cell lines [J]. Toxicology, 2010, 269: 155-159.
    [129]YIYI YE, JIANWEN LIU, MINGCANG CHEN, et al. Invitro toxicity of silica nanoparticles in myocardial cells [J]. Environmental Toxicologyand Pharmacology, 2010, 29: 131-137.
    [130]李俊峡,张卓立,张莉代,等.超顺磁性氧化铁纳米粒子标记成肌细胞及其对细胞活性的影响[J].河北医药, 2007, 29(2): 102-104.
    [131]ZHUL, CHANG D W, DAI L, et al. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells [J]. Nano Lett, 2007, 7(12):3592-3597.
    [132]THOMAS CL, JULIANNE T, PREETHI S, et al. Nanosize Titanium Dioxide Stimulates Reactive Oxygen Species in Brain Microglia and Damages Neurons in Vitro [J]. Environ Health Persp, 2007, 115(11): 1631-1637.对小鼠的氧化损伤作用[J].毒理学杂志,2006, 20(6): 380-382.
    [125]K.L. LIMBACH, Y. LI, R.N. GRASS, et al. Oxide nanoparticle uptake in human lung fibroblast: effects of particle size, agglomeration, and diffusion at low concentrations [J]. Environ. Sci. Technol., 2005,39: 9370–9376.
    [133]WARHEIT DB, WEBB TR, SAYES CM, et al. Pulmonary instillation studies with nanoscale TiO2rods and dots in rats: toxicity is not dependent upon particle size and sur face area [J]. Toxicol Sci, 2006, 91(1): 227-236.
    [134]应杏秋.超微颗粒毒性研究进展[J].国外医学卫生学分册, 2005, 32(1): 6-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700