用户名: 密码: 验证码:
人N-乙酰半乳糖胺转移酶Ⅲ(huGALNT3)的异源表达及抗体制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖链及其缀合物具有重要的生理作用和病理意义。肿瘤细胞中的糖链与正常细胞相比有明显变化。糖链的合成没有模板,而是通过一系列定位有序的糖基转移酶完成的,糖基转移酶表达差异将直接导致糖链结构的变化。因此,从糖基转移酶入手可以从本质上阐明糖链在肿瘤发生和发展过程中的变化规律及调控作用。N-乙酰半乳糖胺转移酶3(UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3, ppGalNAc-T3, GALNT3)是GalNAc转移酶家族成员之一。该家族催化O-糖链形成过程中的第一步反应,即将GalNAc转移到多肽链的Ser/Thr残基上。家族成员之间在活性高低和底物选择性上有所不同。其中,GALNT3的活性与富含O-糖链的粘蛋白的形成关系密切,后者的异常是发生于多种上皮来源肿瘤的普遍现象。
     本论文首先从人胃癌细胞MKN45扩增出GALNT3的cDNA,构建了大肠杆菌表达载体,并进行了表达。在大肠杆菌中使用可溶性和包涵体两种形式,成功实现了GALNT3可溶性区域(GALNT3-sol)的高效表达,并进行了纯化。经过活性测定发现,两种形式表达得到的GALNT3均无活性,原因可能是大肠杆菌缺少真核生物的蛋白合成后的修饰机制,而GALNT3是来源于人的一个复杂糖蛋白,异源表达产物未能形成有活性的天然构象。
     另外,本实验还使用大肠杆菌表达的GALNT3-sol作为免疫原制备了抗GALNT3的抗体。将包涵体变性复性并纯化后SDS-PAGE分离,切胶免疫BALB/C小鼠,分别取第二次和第四次免疫后的血清,采用酶联免疫吸附检测方法(ELISA)检测抗体效价,二免的抗血清终点滴度为1:3200,而四免的抗血清终点滴度为1:25600。然后使用Western Blot方法鉴定所获抗体,阳性抗血清能够结合GALNT3-sol,使其显色,而阴性对照不能结合显色。以上结果显示,本实验所做的抗GALNT3-sol抗体具有较高的效价并能用于Western Blot检测,为进一步开发抗GALNT3的单克隆抗体,并进行临床材料的研究奠定了基础。
     为了获得有活性的GALNT3蛋白,本论文又尝试了在巴斯德毕赤氏酵母(Pichia pastoris)中表达GALNT3。将GALNT3可溶性蛋白部分的基因(GALNT3-sol)克隆到pPIC9k质粒上,电转化进入Pichia pastoris GS115菌株。经过缺陷培养基,酵母菌体PCR和梯度抗生素(G418)等方法筛选获得高拷贝重组菌株。经过甲醇诱导GALNT3的表达,Western Blot结果证明GALNT3在毕赤酵母中成功表达,最佳表达条件为20℃,诱导72小时。对获得的GALNT3-sol进行活性检测,断定毕赤酵母表达的GALNT3-sol具有转糖基活性,这为进一步研究GALNT3对糖核苷酸或受体多肽的选择性奠定了基础。
     总之,本论文在两种微生物体系中成功地表达了huGALNT3-sol,并首次使用大肠杆菌表达的GALNT3-sol制备了高效的抗体,同时首次在微生物中表达出了有活性的GALNT3,为在酵母真核表达体系中生产人类其他N-乙酰半乳糖胺转移酶,甚至其他类型糖基转移酶提出了可能。GALNTs活性蛋白的表达将为体外起始O-糖基化提供新的手段,为在药物蛋白上添加具有特殊生物学功能或活性的化合物提供框架。
Glycans and glycoconjugates play an important role in the occurrence and development of diseases. Great changes can be seen in glycans between Cancer cell and normal cells. There are no templates for the glycans synthesis, but through a series of orderly arranged glycosyltransferases completed. Differences in glycosyltransferase expression will directly result in changes in the structure of glycans. Therefore, the research about the glycosyltransferase could essentially clarify the glycan changes and the regulation of glycans in the process of tumor occurrence and development. UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (ppGalNAc-T3, GALNT3) has been proposed to be one memeber of the GalNAc transferase family. This family catalyses the transference of GalNAc to Ser/Thr residues in peptide, which is the first step in the formation of O-glycan. Different members of the family have various enzyme activity and substrate selectivity. And the activity of GALNT3 is closely related with the formation of mucin-type O-glycans, whose abnormity is found universally in epithelium-derived tumors.
     Due to the initial study on the function of GalNAc transferases, firstly our research isolated cDNA of GALNT3 from MKN45 cell line, and then constructed expression vectors and expressed the protein in E. coli and Pichia Pastoris respectively.In E. coli the soluble region of GALNT3 without the hydrophobic transmembrane domain (GALNT3-sol) was expressed efficiently and purified as both soluble protein and inclusion body. The result of activity assay showed that GALNT3 obtained as both two forms had no activity, and the reason may lie in E. coli which lacks the protein modification mechanism of Eukaryotes (such as glycosylation, acetylation, phosphorylation, and disulfide bond formation). GALNT3 is a complex glycoprotein derived from Homo sapiens containing several disulfide bonds, so the GALNT3 expressed in E. coli cannot form natural and active conformation.
     Besides, Our research also used GALNT3-sol inclusion body as immunogen to produce anti-GALNT3 antibody. After protein denaturation, refolding and purification, we isolated GALNT3-sol trough SDS-PAGE and cut off the gel containing the protein to inject BALB/C mice. Then the serum after the second and forth immunization was collected respectively, and the antibody titer was tested by ELISA. The antibody titer after the second immunization was 1:3200, and the titer after the forth was 1:25600. Subsequently the antibody was tested by Western Blot, and the positive serum could combine and show the protein GALNT3-sol, while the negative serum couldn't. These results reveal that the anti-GALNT3-sol antibody has high titer and could be used in Western Blot, which may prove important in the development of commercial anti-GALNT3 monoclonal antibody used in clinical assay.
     To obtain active GALNT3, we tried to express it in Pichia pastoris. The gene of GALNT3-sol was cloned into the plasmid pPIC9K, and the recombinant plasmid was transformed into Pichia pastoris GS115 strain through electroporation. The high copy recombinant strains were screened out after defect medium, yeast PCR and gradient antibiotic (G418) and so on. The expression of GALNT3-sol was confirmed through Western Blot after methanol induction. The expression of GALNT3-sol was best induced for 72 hours at 20℃in Pichia pastoris. After the concentration of culture medium, the enzyme activity was tested. The results show that GALNT3-sol expressed in Pichia pastoris has the activity of transferring GalNAc to Ser/Thr residues in peptide, which provide support for the further research on the substrate specificity (sugar nucleotide or acceptor peptide) of GALNT3.
     Our research expressed massive GALNT3-sol protein in microbes successfully. The efficient polyclonal antibody was prepared using GALNT3-sol expressed in E. coli as immunogen for the first time, and furthermore it is also the first active GALNT3 protein expressed in microbes which make the production of other human ppGalNAc-Ts and ever other various glycotransferases in Pichia pastoris possible. The expression of active GALNTs will provide new means for initiating O-glycosylation and new platform for attaching compounds with special biological function or activity to therapeutic proteins.
引文
1. Hakomori S:Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res 1985,45(6):2405-2414.
    2. Sell S:Cancer-associated carbohydrates identified by monoclonal antibodies. Hum Pathol 1990,21(10):1003-1019.
    3. Schachter H, Jaeken J:Carbohydrate-deficient glycoprotein syndrome type Ⅱ. Biochim BiophysActa 1999,1455(2-3):179-192.
    4. 陈惠黎主编:糖复合物的结构与功能.上海:上海医科大学出版社1997:1-30.
    5. Montreuil J VF:Glycoproteins. Amsterdam:Elsevier Science Publishing Company, INC 1995.
    6. 朱科学,周惠明,郭晓娜:植物来源糖蛋白的结构与功能.食品与发酵工业2002,28(12):57-61.
    7. 吴东主编:糖类的生物化学.北京:高等教育出版社1987:687-675.
    8. Haltiwanger RS, Lowe JB:Role of glycosylation in development. Annu Rev Biochem 2004,73:491-537.
    9. 莫琳.E.泰勒 库德马张:糖生物学导论.化学工业出版社2006.
    10. Ujita M, McAuliffe J, Schwientek T, Almeida R, Hindsgaul O, Clausen H, Fukuda M: Synthesis of poly-N-acetyllactosamine in core 2 branched O-glycans. The requirement of novel beta-1,4-galactosyltransferase IV and beta-1,3-n-acetylglucosaminyltransferase. J Biol Chem 1998,273(52):34843-34849.
    11. Maemura K, Fukuda M:Poly-N-acetyllactosaminyl O-glycans attached to leukosialin. The presence of sialyl Le(x) structures in O-glycans. JBiol Chem 1992, 267(34):24379-24386.
    12. Tarp MA, Clausen H:Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim Biophys Acta 2008,1780(3):546-563.
    13. Dennis JW:Changes in glycosylation associated with malignant transformation and tumor progression. In'Cell surface carbohydrates and cell development'(ed. Fukuda M.). CRC Press, Boca Raton 1992:161-194.
    14. Brockhausen I, Yang J, Lehotay M, Ogata S, Itzkowitz S:Pathways of mucin O-glycosylation in normal and malignant rat colonic epithelial cells reveal a mechanism for cancer-associated Sialyl-Tn antigen expression. Biol Chem 2001,382(2):219-232.
    15. Patenaude SI, Seto NO, Borisova SN, Szpacenko A, Marcus SL, Palcic MM, Evans SV: The structural basis for specificity in human ABO(H) blood group biosynthesis. Nat Struct Biol 2002,9(9):685-690.
    16. 周嘉梁,吴士良:肿瘤细胞O-GalNAc聚糖的生物合成途径.生命的化学2004, 24(4):350-353.
    17. 刘可人,金美芳,吴士良:O-糖基化位点预测及糖基化酶催化特点.生命的化学2006,26(1):25-27.
    18. Silverman HS, Sutton-Smith M, McDermott K, Heal P, Leir SH, Morris HR, Hollingsworth MA, Dell A, Harris A:The contribution of tandem repeat number to the O-glycosylation of mucins. Glycobiology 2003,13(4):265-277.
    19. McGuire EJ, Roseman S:Enzymatic synthesis of the protein-hexosamine linkage in sheep submaxillary mucin. JBiol Chem 1967,242(16):3745-3747.
    20. Ten Hagen KG, Fritz TA, Tabak LA:All in the family:the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology 2003,13(1):1R-16R.
    21. Bennett EP, Hassan H, Mandel U, Hollingsworth MA, Akisawa N, Ikematsu Y, Merkx G, van Kessel AG, Olofsson S, Clausen H:Cloning and characterization of a close homologue of human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase-T3, designated GalNAc-T6. Evidence for genetic but not functional redundancy. JBiol Chem 1999,274(36):25362-25370.
    22. Mika K, Shoko, N., Hisashi, N., and Naruya, S.:The evolutionary history of glycosyltransferase genes. Trends Glycosci Glycotech 2001,13:147-155.
    23. Kingsley PD, Hagen KG, Maltby KM, Zara J, Tabak LA:Diverse spatial expression patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferase family member mRNAs during mouse development. Glycobiology 2000,10(12):1317-1323.
    24. Ten Hagen KG, Hagen FK, Balys MM, Beres TM, Van Wuyckhuyse B, Tabak LA: Cloning and expression of a novel, tissue specifically expressed member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family. JBiol Chem 1998, 273(42):27749-27754.
    25. Fritz TA, Raman J, Tabak LA:Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-2. JBiol Chem 2006,281(13):8613-8619.
    26. Kubota T, Shiba T, Sugioka S, Furukawa S, Sawaki H, Kato R, Wakatsuki S, Narimatsu H:Structural basis of carbohydrate transfer activity by human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10). J Mol Biol 2006, 359(3):708-727.
    27. Imberty A, Piller V, Piller F, Breton C:Fold recognition and molecular modeling of a lectin-like domain in UDP-GalNac:polypeptide N-acetylgalactosaminyltransferases. Protein Eng 1997,10(12):1353-1356.
    28. Hazes B:The (QxW)3 domain:a flexible lectin scaffold. Protein Sci 1996, 5(8):1490-1501.
    29. Julenius K, Molgaard A, Gupta R, Brunak S:Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 2005,15(2):153-164.
    30. Thanka Christlet TH, Veluraja K:Database analysis of O-glycosylation sites in proteins. Biophys J2001,80(2):952-960.
    31. Hansen JE, Lund O, Engelbrecht J, Bohr H, Nielsen JO, Hansen JE:Prediction of O-glycosylation of mammalian proteins:specificity patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Biochem J1995,308 (Pt 3):801-813.
    32. Wilson IB, Gavel Y, von Heijne G:Amino acid distributions around O-linked glycosylation sites. Biochem J1991,275 (Pt 2):529-534.
    33. O'Connell B, Tabak LA, Ramasubbu N:The influence of flanking sequences on O-glycosylation. Biochem Biophys Res Commun 1991,180(2):1024-1030.
    34. O'Connell BC, Hagen FK, Tabak LA:The influence of flanking sequence on the O-glycosylation of threonine in vitro. JBiol Chem 1992,267(35):25010-25018.
    35. Bennett EP, Hassan H, Clausen H:cDNA cloning and expression of a novel human UDP-N-acetyl-alpha-D-galactosamine. Polypeptide N-acetylgalactosaminyltransferase, GalNAc-t3. JBiol Chem 1996,271(29):17006-17012.
    36. Wandall HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J et al: Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1,-T2, and-T3. JBiol Chem 1997,272(38):23503-23514.
    37. Nehrke K, Hagen FK, Tabak LA:Charge distribution of flanking amino acids influences O-glycan acquisition in vivo. JBiol Chem 1996,271(12):7061-7065.
    38. Nehrke K, Hagen FK, Tabak LA:Isoform-specific O-glycosylation by murine UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T3, in vivo. Glycobiology 1998,8(4):367-371.
    39. Gerken TA, Zhang J, Levine J, Elhammer A:Mucin core O-glycosylation is modulated by neighboring residue glycosylation status. Kinetic modeling of the site-specific glycosylation of the apo-porcine submaxillary mucin tandem repeat by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases T1 and T2. JBiol Chem 2002,277(51):49850-49862.
    40. Gerken TA, Tep C, Rarick J:Role of peptide sequence and neighboring residue glycosylation on the substrate specificity of the uridine 5'-diphosphate-alpha-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyl transferases T1 and T2: kinetic modeling of the porcine and canine submaxillary gland mucin tandem repeats. Biochemistry 2004,43(30):9888-9900.
    41. Mardberg K, Trybala E, Glorioso JC, Bergstrom T:Mutational analysis of the major heparan sulfate-binding domain of herpes simplex virus type 1 glycoprotein C.JGen Virol 2001,82(Pt 8):1941-1950.
    42. Mardberg K, Nystrom K, Tarp MA, Trybala E, Clausen H, Bergstrom T, Olofsson S: Basic amino acids as modulators of an O-linked glycosylation signal of the herpes simplex virus type 1 glycoprotein gC:functional roles in viral infectivity. Glycobiology 2004,14(7):571-581.
    43. Bennett EP, Hassan H, Mandel U, Mirgorodskaya E, Roepstorff P, Burchell J, Taylor-Papadimitriou J, Hollingsworth MA, Merkx G, van Kessel AG et al: Cloning of a human UDP-N-acetyl-alpha-D-Galactosamine:polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O-glycosylation of the MUC1 tandem repeat. JBiol Chem 1998, 273(46):30472-30481.
    44. Ten Hagen KG, Bedi GS, Tetaert D, Kingsley PD, Hagen FK, Balys MM, Beres TM, Degand P, Tabak LA:Cloning and characterization of a ninth member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family, ppGaNTase-T9. J Biol Chem 2001,276(20):17395-17404.
    45. Cheng L, Tachibana K, Iwasaki H, Kameyama A, Zhang Y, Kubota T, Hiruma T, Tachibana K, Kudo T, Guo JM et al: Characterization of a novel human UDP-GalNAc transferase, pp-GalNAc-T15. FEBSLett 2004,566(1-3):17-24.
    46. Rottger S, White J, Wandall HH, Olivo JC, Stark A, Bennett EP, Whitehouse C, Berger EG, Clausen H, Nilsson T:Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. JCellSci 1998,111 (Pt 1):45-60.
    47. Ishikawa M, Kitayama J, Kohno K, Nagawa H:The expression pattern of UDP-N-acetyl-alpha-D-galactosamine-polypeptide N-acetyl-galactosaminyltransferase-3 in squamous cell carcinoma of the esophagus. Pathobiology 2005,72(3):139-145.
    48. Onitsuka K, Shibao K, Nakayama Y, Minagawa N, Hirata K, Izumi H, Matsuo K, Nagata N, Kitazato K, Kohno K et al: Prognostic significance of UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-3 (GalNAc-T3) expression in patients with gastric carcinoma. Cancer Sci 2003, 94(1):32-36.
    49. Ishikawa M, Kitayama J, Nariko H, Kohno K, Nagawa H:The expression pattern of UDP-N-acetyl-alpha-d-galactosamine:polypeptide N-acetylgalactosaminyl transferase-3 in early gastric carcinoma. JSurg Oncol 2004,86(1):28-33.
    50. Inoue T, Eguchi T, Oda Y, Nishiyama K, Fujii K, Izumi H, Kohno K, Yamaguchi K, Tanaka M, Tsuneyoshi M:Expression of GalNAc-T3 and its relationships with clinicopathological factors in 61 extrahepatic bile duct carcinomas analyzed using stepwise sections-special reference to its association with lymph node metastases. Mod Pathol 2007,20(2):267-276.
    51. Topaz O, Bergman R, Mandel U, Maor G, Goldberg R, Richard G, Sprecher E:Absence of intraepidermal glycosyltransferase ppGalNac-T3 expression in familial tumoral calcinosis. Am J Dermatopathol 2005,27(3):211-215.
    52. Ichikawa S, Lyles KW, Econs MJ:A novel GALNT3 mutation in a pseudoautosomal dominant form of tumoral calcinosis:evidence that the disorder is autosomal recessive. J Clin Endocrinol Metab 2005,90(4):2420-2423.
    53. Araya K, Fukumoto S, Backenroth R, Takeuchi Y, Nakayama K, Ito N, Yoshii N, Yamazaki Y, Yamashita T, Silver J et al:A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis.JClin Endocrinol Metab 2005,90(10):5523-5527.
    54. Larsson T, Davis SI, Garringer HJ, Mooney SD, Draman MS, Cullen MJ, White KE: Fibroblast growth factor-23 mutants causing familial tumoral calcinosis are differentially processed. Endocrinology 2005,146(9):3883-3891.
    55. Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B:An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005, 14(3):385-390.
    56. Kato K, Jeanneau C, Tarp MA, Benet-Pages A, Lorenz-Depiereux B, Bennett EP, Mandel U, Strom TM, Clausen H:Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. JBiol Chem 2006,281(27):18370-18377.
    57. Sahdev S, Khattar SK, Saini KS:Production of active eukaryotic proteins through bacterial expression systems:a review of the existing biotechnology strategies. Mol Cell Biochem 2008,307(1-2):249-264.
    58. Brown WC, Campbell JL:A new cloning vector and expression strategy for genes encoding proteins toxic to Escherichia coli. Gene 1993,127(1):99-103.
    59. Doherty AJ, Connolly BA, Worrall AF:Overproduction of the toxic protein, bovine pancreatic DNasel, in Escherichia coli using a tightly controlled T7-promoter-based vector. Gene 1993,136(1-2):337-340.
    60. Daly R, Hearn MT:Expression of heterologous proteins in Pichia pastoris:a useful experimental tool in protein engineering and production. J MolRecognit 2005, 18(2):119-138.
    61. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM:Heterologous protein production using the Pichia pastoris expression system. Yeast 2005,22(4):249-270.
    62. 唐彩华:合成多肽疫苗的免疫原性.国际流行病学传染病学杂志2007,34(3):171-174.
    63. DeFrees S, Wang ZG, Xing R, Scott AE, Wang J, Zopf D, Gouty DL, Sjoberg ER, Panneerselvam K, Brinkman-Van der Linden EC et al: GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology 2006,16(9):833-843.
    64. Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams KL, Brunak S:NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 1998,15(2):115-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700