用户名: 密码: 验证码:
网格基单目和立体视频编码及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,随着H.264/AVC技术的日益成熟,许多学者认为基于统计的去冗余的编码压缩潜力已不大,今后的视频编码技术应当从计算机视觉、计算机图形学和人类视觉系统中寻找答案。网格模型基视频编码技术是新型的视频编码技术之一,其技术的核心是利用计算机视觉和计算机图形学相关理论和算法,用结构化的数据表示图像序列。这项技术早在十年前在解决甚低码率视频通信问题时成为研究热点。
     网格模型基视频编码技术有许多问题亟待解决,如计算复杂度高、鲁棒性差,运动遮挡/视差遮挡问题还没有找到公认有效的方法,因此过去对它的研究基本上局限于简单背景和简单运动的应用场合,如视频会议。
     针对以上问题,本文所做的工作和主要贡献包括:
     1.以三角形元素:顶点、边、三角形及Delaunay三角形网格(DTM)为基本类建立了DTM生成算法的基本数据结构,使生成算法的速度在不降低描述精度的前提下提高了1/3。
     2.通过分析已有的两种DTM生成准则鲁棒性差和不稳定的原因,导出了一种灰度误差平方和最小化准则(MSSD准则),用于生成内容自适应的DTM。优化和改进了基于运动区域增长限制及节点接近性限制的经典网格生成算法---简称光流法,用于生成运动自适应网格。
     3.提出了基于网格节点跟踪的运动估计四步快速算法,考虑了运动遮挡区域的去节点和去遮挡区域的加节点问题,以保证节点跟踪的有效性。根据去点或加点数量或模型失效感知运动遮挡区域大小,然后根据遮拦区域大小构成自适应GOP结构。最后提出了一种适合复杂背景/复杂运动的网格基混合编码方案。实验结果显示,在H.263参考模型框架下搭建的网格编码实现上,对于复杂背景和复杂运动视频的压缩性能优于H.263高级运动模式。
     4.提出了一种基于块的最大后验概率(MAP)的立体视差估计算法,可在相关法和MSE法的基础上引入先验知识,从而更好地提高匹配性能。
     5.针对视频会议应用场合,提出了基于网格节点跟踪的视差估计四步快速算法,算法中考虑了视点间亮度补偿、全局遮挡边界检测,还考查了中间虚拟视点图像的合成。实验结果表明,由于算法的快速收敛性,使其在速度上和精度上均优于其它相应算法。此外,在合成中间虚拟视点图像时,网格在速度和算法简单性上也有一定的优势。
     6.为了显式地在视差图上标记出遮挡区域,在计算视差空间的基础上,利用动态规划算法搜索出最佳视差曲线。计算所得的视差曲线上有三种状态标记:匹配状态和两种遮挡状态。为了保证视差曲线通过路径控制点,提出了一种分段式动态规划算法。算法将视差空间影像划分为路径控制区和非路径控制区。在路径控制区强制路径通过路径控制点,在非路径控制区采用动态规划进行路径最优搜索。为保证路径控制点高度可靠,提出了选择路径控制点的4个准则。实验结果表明,新算法比传统的动态规划算法在遮挡检测和匹配精度上都有一定的提高,算法可靠性强,运算量小。
Nowadays, with the increasingly maturity of H.264/AVC-based video coding techniques, many scholars believe that the statistics-based redundancy removal compression has tended to reach its limit. Future video coding techniques should find solutions in computer vision, computer graphics and human vision system. The mesh model-based video coding technique is one of new video coding techniques in which computer vision and computer graphics techniques is employed to represent image sequence in a structural way. It had been a research hotspot more than ten years ago for solving video communication problems in very low bitrates.
     The mesh model-based video coding techniques remain many problems to solve, such as its high computing complexity, its poor robustness, and that no effective solutions has not been found for the motion occlusion and the stereo occlusion problems. Previous studies in this field were only limited to simple background and simple motion applications, such as videoconference, etc.
     Aiming at the above problems, the main contributions in our works presented in the dissertation include:
     1. Base data structures are built for Delaunay triangular meshes (DTM) generation algorithm using triangular element classes, which include the vertex class, the segment class, the triangle class and the DTM class. They lead to speed increase in the mesh generation by one third without decreasing the approaching precision of DTM.
     2. Through the analysis of the poor robustness and the instability of two existed DTM generation algorithm, a new criterion termed with minimize sum of squared differences (MSSD criterion) in gray is derived for generating content adaptive DTM. The classical algorithm with nodal proximity constraints in temporal activity region, which is name as optic-flow method for short here, is optimized and improved for the generation of the motion adaptive DTM.
     3. A four-stage fast motion estimation algorithm is proposed based on nodal trajectories, in which nodes in motion occlusion region are removed and new nodes are added in uncovered background to guarantee effective nodal trajectories. In terms of the amount of added nodes or deleted nodes or mesh model failure, the sizes of regions to be occluded and uncovered is perceived, according to which adaptive GOP is constructed. Finally, a mesh-based hybrid video coding scheme is present. Experimental results show that the mesh-based video coding scheme outweighs the advanced motion estimation mode of H.263 in compression efficiency for complex background and motion videos in the mesh-based coding implementation built on H.263 reference model.
     4. A new algorithm for stereo disparity estimation by employing maximum a posteriori (MAP) criterion is proposed. It can introduce prior knowledge to the normalized correlation and MSE methods to increase matching performance.
     5. For videoconferencing applications, a fast four-stage disparity estimation algorithm based on nodal trajectory is proposed, in which illumination compensation between views and global occluded boundary region detection are studied. Furthermore, the virtual viewpoint synthesis is also investigated. Experimental results show in detail that the proposed algorithm overweighs other corresponding algorithms not only in speed but also in precision due to its fast convergence. In addition, meshes have advantages in speed and simpleness for the virtual viewpoint synthesis.
     6. In order to mark occluded regions explicitly on the disparity map, dynamic programming is employed to search optimal disparity curve on base of calculating disparity space at first. Each point on the optimal disparity curve must be in one of three states: matching state or other two occlusion states. To guarantee the disparity curve passing through ground control points (GCP), an algorithm of dynamic programming in segments is proposed, that is, the disparity space image is divided into ground control regions and non-ground control regions. In the ground control region, searching path is forced to pass GCPs. In the non-ground control region, optimal path searching is under dynamic programming. For the reliability of the GCP, four criterions are presented to choose a point as a GCP. Experimental results show that the new algorithm has certain enhancement in the precision of occlusion detection and matching, and is more reliable and faster than conventional dynamic algorithms.
引文
[1] (美)Yao Wang, Jorn Ostermann,Ya-Qin Zhang.视频处理与通信[M].北京:电子工业出版社, 2003.6:130-137.
    [2] ISO/IEC JTC1/SC29/WG11. ISO/IEC 14496-5:2001/PDAM 19 Information technology—Coding of audio-visual objects—Part 5: Reference software, AMENDMENT 19: Reference software for Scalable Video Coding[S]. July 2007.
    [3] H.264/AVC JM Reference Software,http://iphome.hhi.de/suehring/tml/.
    [4]高文.信息科学技术概论--多媒体技术的演进与待解问题. 2008.
    [5] Iain E. G. Richardson.H.264 and MPEG-4 Video Compression:Video Coding for Next-generation Multimedia[M].Chichester:John Wiley and Sons,2003.
    [6] K. AIZAWA, T. S. HUANG. Model-Based Image Coding: Advanced Video Coding Techniques for Very Low Bit-Rate Applications[C] //PROCEEDINGS OF THE IEEE 83.83. IEEE, 1995:259-270.
    [7] Haibo Li, Astrid Lundmark,Robert Forchheimer. Image Sequence Coding at Verv Low Bitrates: A Review[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1994, 3 (5): 589-606.
    [8] JTC 1/SC 29/WG11. Information Technology– Generic Coding of Audio-visual Objects–Part 2: Visual[S]. 1999.(MPEG-4).
    [9] Yuichiro Nakaya, Hiroshi Harashima. Motion Compensation Based on Spatial Transformations[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 1994, 4 (3): 339-367.
    [10] Yucel Altunbasak, A. Murat Tekalp. Occlusion-Adaptive, Content-Based Mesh Design and Forward Tracking[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (9): 1270-1279.
    [11] Yao Wang, Ouseb Lee. Use of Two-Dimensional Deformable Mesh Structure for Video Coding-Part I The Synthesis Problem: Mesh-Based Function Approximation and Mapping[J]. IEEE Trans. Circuits Syst. Video Tech., 1996, 6 (6): 636-646.
    [12] Yao Wang, Ouseb Lee.Use of Two-Dimensional Deformable Mesh Structures for Video Coding, Part II-The Analysis Problem and a Region-Based Coder Employing an Active Mesh Representation[J]. IEEE Trans. Circuits Syst. Video Tech., 1996, 6 (6): 647-659.
    [13]卢朝阳.深度数据的表面描述及其在图象编码中的应用[D]: [博士学位论文].西安:西安电子科技大学, 1990.
    [14]卢朝阳,吴成柯.基于表面描述的图象编码方法[J].通信学报, 1991, 12 (3): 17-21.
    [15]卢朝阳,吴成柯,陆心如.用DELAUNAY三角形化实现的矩形边界表面描述算法[J].计算机学报, 1992, 15 (3): 161-170.
    [16]卢朝阳.模型优化及其在DT模型基图像编码中的应用[J].通信学报, 1997, 18 (6): 1-7.
    [17]颜尧平,卢朝阳,吴成柯.基于DT模型的运动估计和补偿[J].西安电子科技大学报, 1997, 24 (3): 357-362.
    [18]颜尧平,王养利,卢朝阳等.基于图像特征点的运动估计和补偿[J].西安电子科技大学学报, 1998, 25 (2): 142-145.
    [19]卢朝阳,颜尧平,吴成柯.多分辨率DT模型基图像表示方法[J].西安电子科技大学学报, 1999, 26 (3): 278-285.
    [20]卢朝阳,周幸妮,高西全.三角形网格基活动图像编码研究基本框架和I帧编码[J].通信学报, 2002, 23 (10): 66-70.
    [21]卢朝阳,周幸妮,高西全.三角形网格基活动图像编码研究---运动估计、运动补偿和残差图像处理[J].通信学报, 2002, 23 (11): 65-73.
    [22]韩军功,卢朝阳.一种新的用于立体图像编码的视差估计算法[J].计算机学报, 2003, 26 (12): 1717-1721.
    [23]韩军功,卢朝阳.基于Delaunay三角形网格的立体图像编码算法[J].计算机辅助设计与图形学学报, 2004, 16 (12): 1708-1712.
    [24]焦卫东,卢朝阳,何华君等.基于Delaunay三角形网格的彩色视频帧间编码方法[J].通信学报, 2007, 28 (9): 119-124.
    [25]焦卫东,卢朝阳,何华君等.基于Delaunay三角形网格的彩色视频帧内编码方法[J].西安电子科技大学学报, 2007, 34 (4): 543-548.
    [26]郭大波,卢朝阳,焦卫东.自适应图像三角化法的新改进[J].中北大学学报, 2007, 28 (4): 360-365.
    [27]郭大波,卢朝阳,何华君等.一种新的立体视差估计算法[J].西安电子科技大学报, 2007, 34 (3): 337-341.
    [28]郭大波,卢朝阳,焦卫东等.立体图像的遮挡边界区域检测技术[J].中国体视学与图像分析, 2008, 13 (1): 17-19.
    [29] Han Jungong, Lu Zhaoyang, Tian Yike, et al. AN IMPROVED DT-MESH CODING ALGORITHM ADAPTIVE TO MPEG-4[C] //6th International Conference on Signal Processing.vol.2. 2002:949- 952.
    [30] ,王海霞.眼睛结构图[EB/OL]. (2008-12-19). http://image.baidu.com/i?tn= baiduimage& ct=201326592&lm=-1&cl=2&fm=ps&word=%D1%DB%BE%A6 %BD%E1%B9%B9%CD%BC.
    [31] Shou-Qian Ding. The Analysis on Induced Stereo, Following Focus and Free View[C] //第二届立体图象技术及其应用(国际)研讨会论文集.天津:中国图象图形学会, 2007.10:1-6.
    [32] Christoph Fehn, Eddie Cooke, Oliver Schreer, et al. 3D analysis and image-based rendering for immersive TVapplications[J]. Signal Processing: Image Communication, 2002, 17 (9): 705–715.
    [33]颜少明.我国新一代《数字化立体视觉检查图》[C] //第二届立体图象技术及其应用(国际)研讨会论文集.天津:中国图象图形学学会, 2007.10:7-8.
    [34] P. Kauff, N. Atzpadin, C. Fehn, et al. Depth map creation and image-based rendering for advanced 3DTV services providing interoperability and scalability[J]. Signal Processing: Image Communication, 2007, 22 (2): 217–234.
    [35] Manfred Ziegler, Lutz Falkenhagen, Roel ter Horst, et al. Evolution of stereoscopic and three-dimensional video[J]. Signal Processing: Image Communication, 1998, 14 (1): 173-194.
    [36] Marc Op de Beeck (Philips), Etienne Fert (Philips), Christoph Fehn(HHI), et al.Broadcast Requirements on 3D Video Coding, ISO/IEC JTC1/SC29/WG11, MPEG02/M8040[R].March 2002.
    [37] JTC 1/SC 29/WG 11. Call for Comments on 3DAV, 66th MPEG meeting , N6051[R].October 2003.
    [38] Jongryool Kim, JongWon Kim. Real-Time Synchronous Multi-View Video Transport System over IP Networks[J]. IEEE Transactions on ConsumerElectronics, MAY 2008, 54 (2): 460-467.
    [39] ISO/IEC JTC1 SC29 Working Group 1. Progressive Bi-level Image Compression [S]. 1991.
    [40] ISO/IEC. 10918-1 DIGITAL COMPRESSION AND CODING OF CONTINUOUS-TONE STILL IMAGES–REQUIREMENTS AND GUIDELINES[S]. Nov. 1991.
    [41] ISO/IEC JTC 1/SC 29/WG 1. FCD15444-1 JPEG 2000 Part I Final Committee Draft Version 1.0[S]. March 2000.
    [42] ISO/IEC JTC1/SC29/WG11.11172-2 Information Technology-Coding of Moving Pictures and Associated Audio for Digital Storage Media Up to About 1.5Mbit/s-Part2: Video [S]. Aug. 1993.(MPEG-1).
    [43] ISO/IEC JTC1/SC29/WG11. 13818-2 INFORMATION TECHNOLOGY-GENE RIC CODING OF MOVING PICTURES AND ASSOCIATED AUDIO INFORMATION: VIDEO[S]. 1995.(MPEG-2).
    [44] ITU - T. Recommendation H. 261 Video Codec for Audio visual Services at p×64kbit/s[S]. 1993.
    [45] ITU-T. DRAFT ITU-T Recommendation H.263 Video coding for low bit rate communication[S]. May, 1996.
    [46] ITU-T,ISO/IEC JTC1. Rec. H.264-ISO/IEC 14496-10 Advanced video coding for generic audiovisual services[S]. 2003.
    [47]石迎波.无线信道中的视频编码与传输技术研究[D]: [博士学位论文].西安:西安电子科技大学, 2007.
    [48]霍俊彦.提高多视点视频编码效率的技术研究[D]: [博士学位论文].西安:西安电子科技大学, 2008.
    [49] L. Hanzo, P. J Cherriman,J. Streit. Video Compression and Communications: From Basics to H.261, H.263, H.264, MPEG4 for DVB and HSDPA-Style Adaptive Turbo-Transceivers[M]. Chichester: John Wiley & Sons, Ltd, 8-17.
    [50] ITU-T,ISO/IEC JTC1. Rec. H.264-ISO/IEC 14496-10 Advanced video coding for generic audiovisual services[S]. 2005.3.
    [51] ITU-T,ISO/IEC JTC1. Rec. H.264-Amendment 1 Advanced video coding for generic audiovisual services-Amendment 1:Support of additional color spaces and removal of the High 4:4:4 Profile[S]. 2005.
    [52] J.V.T. JVT-X201 Joint Draft ITU-T Rec. H.264 | ISO/IEC 14496-10 / Amd.3 Scalable video coding[S]. June,2007.
    [53] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG. JVT-O079 Text Description of Joint Model Reference Encoding Methods and Decoding Concealment Methods[S]. 2008.5.
    [54]国家标准化管理委员会. GB/T 20090.2-2006先进音视频编码第2部分:视频[S]. 2006.
    [55] MPEG Convener Subgroup.AHG on 3D video coding in MPEG, 58th MPEG meeting, w4524[R].2001.
    [56] ISO/IEC JTC1/SC29/WG11. Applications and Requirements for 3DAV, 65th MPEG meeting, N5877[R].July 2003.
    [57] ISO/IEC JTC1/SC29/WG11. Report on 3DAV Exploration, 65th MPEG meeting, N5878[R].July 2003.
    [58] ISO/IEC JTC 1/SC 29/WG 11. Draft Call for Evidence on Multiple Video Coding, 68th MPEG meeting, w6374[R].Mar. 2004.
    [59] ISO/IEC JTC1/SC29/WG11.Survey of Algorithms used for Multi-view Video Coding (MVC), 71th MPEG meeting, MPEG2005/N6909[R].January 2005.
    [60] ISO/IEC JTC1/SC29/WG11. Report of the Subjective Quality Evaluation for Multi View Coding Cfe, 71th MPEG meeting, w6999[R].January 2005.
    [61] ISO/IEC JTC1/SC29/WG11. Draft Call for Proposal on Multi-View Video Coding, 71th MPEG meeting, W6910[R].January 2005.
    [62] ISO/IEC JTC1/SC29/WG11. Description of Core Experiments in MVC, 75th MPEG meeting, W7798 [R].January 2006.
    [63] Joint Video Team (JVT).Joint Multiview Video Model (JMVM) 1.0, 20th JVT Meeting, JVT-T208[R].July, 2006.
    [64] Joint Video Team (JVT). Joint Draft 1.0 on Multiview Video Coding, 21st Meeting, JVT-U209 [R]. October, 2006.
    [65] JVT. Joint Draft 8.0 on Multiview Video Coding, 28th JVT Meeting, JVT- AB204[R].July, 2008.
    [66] Seung-Uk Yoon,Yo-Sung Ho. Multiple Color and Depth Video Coding Using a Hierarchical Representation[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, NOVEMBER 2007, 17 (11): 1450-1460.
    [67]焦卫东. Delaunay三角形模型基视频及立体视频编码算法研究[D]: [博士学位论文].西安电子科技大学, 2008.
    [68] Shao -Yi Chien, Shu-Han Yu, Li-Fu Ding, et al. Fast Disparity estimation algorithm for mesh-based stereo image/video compression with two-stage hybrid approach[C] //VCIP.Lugano, Switzerland: 2003:1521-1530.
    [69]吴枫,高鹏,高文.基于网格模型的运动估计技术[J].电子学报, 2000, 28 (5): 47-51.
    [70] Ru-Shang Wang,Yao Wang. Multiview Video Sequence Analysis, Compression, and Virtual Viewpoint Synthesis[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2000, 10 (3): 397-410.
    [71] Daniel Scharstein,Richard Szeliski. A Taxonomy and Evaluation of Dense Two- Frame Stereo Correspondence Algorithms[J]. International Journal of Computer Vision 2002, 47 (1): 7-42.
    [72] AARON F. BOBICK, STEPHEN S. INTILLE. Large Occlusion Stereo [J]. International Journal of Computer Vision, 1999, 33 (3): 181–200.
    [73] P. J. Green,R. Sibson. Computing Dirichlet Tessellation in the plane[J]. The Computer J., 1987, 21 (2): 168-173.
    [74] D. T. Lee, B. J. Schachter. Two Algorithms for Constructing a Delaunay Triangulation [J]. Inte. J. of Computer and Info. Sci., 1980, 9 (3): 219-242.
    [75] DS Wang, O Hassan, K Morgan, et al. Efficient surface reconstruction from contours based on two-dimensional Delaunay triangulation[J]. International Journal for Numerical Methods in Engineering, 2006, 65 (5): 734-751.
    [76]曾薇,孟祥旭,杨承磊.平面多边形域的快速约束Delaunay三角化[J].计算机辅助设计与图形学学报, 2005, 17 (9): 1933-1940.
    [77] Yongyi Yang, Miles N. Wernick,Jovan G. Brankou. A Fast Approach for Accurate Content-Adaptive Mesh Generation[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (8): 866-881.
    [78]周培德.计算几何:算法分析与设计(第2版)[M].北京:清华大学出版社, 2005.4:162-172.
    [79]马颂德,张正友.计算机视觉--计算理论与算法基础[M].北京:科学出版社,2003.
    [80] Bruce D. Lucas,Takeo Kanade. An Iterative Image Registration Technique with an Application to Stereo Vision[C] //Proceedings of Imaging Understanding Workshop.1981:121-130.
    [81] ,Berthold K. P. Horn,Brian G. Schunck. Determining Optical Flow [J]. ARTIFICIAL INTELLIGENCE, 1981, 17: 185-204.
    [82]毕厚杰.新一代视频压缩编码标准——H.264/AVC[M].北京:人民邮电出版社,2005.
    [83]卢朝阳,周幸妮. DT模型基图像编码方法[J].计算机学报, 1997, 20 (9): 769-774.
    [84] Ronald A. DeVore. Nonlinear approximation[J]. Acta Numerica, 1998: 51-150.
    [85] D. Marr,T. Poggio. Cooperative Computation of Stereo Disparity[J]. Science, 1976, 194 (4): 209-236.
    [86] O. Parlaktuna, S. On,M. Akcay. A feature-based stereo matching algorithm[C] // Proceedings on 7th Mediterranean Electrotechnical Conference vol.1. 1994:153– 155.
    [87] Z. Zhang, Y. Shan. A Progressive Scheme for Stereo Matching[C] //Springer LNCS 2018: 3D Structure from Images.Berlin: Springer-Verlag, 2001:68-85.
    [88] T.Kanade,M. Okutomi. A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment[J]. IEEE Trans. on PAMI, 1994, 16 (9): 920-932.
    [89] C. L. Zitnick, T. Kanade. A cooperative algorithm for stereo matching and occlusion detection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 (7): 675-684.
    [90] Kolmogorov V.,Zabih R. Computing visual correspondence with occlusions using graph cuts[C] //Eighth International Conference on Computer Vision (ICCV 2001).vol.2. Vancouver, Canada: IEEE Computer Society:Conference Publishing Service (CPS) 2001:508–515.
    [91]陈君,戚飞虎.一种新的基于特征点的立体匹配算法[J].中国图象图形学报, 2005, 10 (11): 1411-1414.
    [92] Y. Altunbasak, A. M. Tekalp. Simultaneous motion-disparity estimation and segmentation from stereo[C] //Proceedings of IEEE International Conference on Image Processing.Berlin: Springer-Verlag, 1994:73-77.
    [93] P. Burt,B. Julesz. A gradient limit for binocular fusion[J]. Science, 1980, 208 (9): 615-617.
    [94] S. Pollard, J. Porrill, J. Mayhew, et al. Disparity gradient, lipschitz continuity, and computing binocular correspondence[C] //Robotics Research: The Third International Symposium.Massachusetts: MIT Press, 1986:19-26.
    [95] W. Woo,A. Ortega. Overlapped block disparity compensation with adaptive windows for stereo image coding[J]. IEEE Trans. Circuits Syst. Video Tech., 2000, 10: 194-200.
    [96] Strintzis M G,Malassiotis S. Object-based coding of stereoscopic and 3D image sequences[J]. IEEE signal processing magazine, 1999, 16 (3): 14-28.
    [97] Joon Hong Park,Hyun Wook Park. Fast view interpolation of stereo images using image gradient and disparity triangulation[J]. Signal Processing: Image Communication, 2003, (18): 401-416.
    [98] Hongyin Fan,King N. Ngan. Disparity map coding based on adaptive triangular surface modelling[J]. Signal Processing: Image Communication, 1998, 14 (1): 119-130.
    [99] W. Yanga, K. Ngan, J. Lim, et al. Joint Motion and Disparity Fields Estimation for Stereoscopic Video Sequences[J]. Signal Processing: Image Communication, 2005, 15: 265-276.
    [100] ,Joon Hong Park,Hyun Wook Park. Fast view interpolation of stereo images using image gradient and disparity triangulation[J]. Signal Processing: Image Communication, 2003, 18 (5): 401–416.
    [101] S.Malassiotis,M. G.Strintzis. Joint motion/disparity MAP estimation for stereo image sequences[C] //Proc. Inst. Electr.Eng.: Apr. 1996:101-108.
    [102] D. Tzovaras, N. Grammalidis,M. G. Strintzis. Disparity field and depth map coding for multiview 3D image generation[J]. Signal processing: Image Communication, 1998, 11 (3): 205-230.
    [103] Joon Hong Park,Hyun Wook Park. A Mesh-Based Disparity Representation Method for View Interpolation and Stereo Image Compression[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (7): 1751-1762.
    [104] Jens-Rainer Ohm, Ebroul Izquierdo M. An Object-Based System for Stereoscopic Viewpoint Synthesis[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 1997, 7 (5): 801-811.
    [105] X.K. Yang, W.S. Ling, Z.K. Lu, et al. Just noticeable distortion model and its applications in video coding[J]. Signal Processing: Image Communication, 2005, 20 (7): 662–680.
    [106] W.S. Lin X.H. Zhang, P. Xue. Improved estimation for just-noticeable visual distortion[J]. Signal Processing, 2005, 85 (4): 795–808.
    [107] ,Ping An, Jia Liu, Zhaoyang Zhang. Object Based Disparity Estimation and View Synthesis for Immersive Video Conferencing[C] //Picture coding symposium PCS2006.Beijing: Tsinghua University, April 2006:p2-25.
    [108] P. Belhumeur,D. Mumford. A bayesian treatment of the stereo correspondence problem using half-occluded regions[C] //IEEE Proceedings CVPR '92.IL, USA: Champaign, 1992:506-512.
    [109] U. R. DHOND,J. K. AGGARWAL. Structure from Stereo-A Review[J]. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, 1989, 16 (9): 1489-1510.
    [110] ,P. Belhumeur. Bayesian models for reconstructing the scene geometry in a pair of stereo images [C] //Proc. Info. Sciences Conf.Johns Hopkins University: 1993:
    [111] A binocular stereo algorithm for reconstructing sloping, creased, and broken surfaces in the presence of half-occlusion[C] //Proceedings of Fourth International Conference on Computer Vision.Berlin, Germany: 1993:431-438.
    [112] Nikos Grammalidis, Michael G. Strintzis. Disparity and Occlusion Estimation in Multiocular Systems and Their Coding for the Communication of Multiview Image Sequences[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, JUNE 1998, 8 (3): 328-344.
    [113]罗秋明,周敬利,余胜生.具备完整性与幻影敏感性的立体匹配与遮掩检测[J].计算机研究与发展, 2003, 40 (2): 297-303.
    [114]张之馷,李建德.动态规划及其应用[M].北京:国防工业出版社, 1994:1-73.
    [115]张润琦.动态规划[M].北京:北京理工大学出版社, 1981:1-56.
    [116]徐奕,周军,周源华.基于动态规划的相位匹配和遮挡检测[J].电子学报, 2004, 32 (4): 291-295.
    [117]周秀芝,文贡坚,王润生.自适应窗口快速立体匹配[J].计算机学报, 2006, 29 (3): 473-479.
    [118]林国余,张为公.基于控制点的分层双向动态规划立体匹配算法[J].信息与控制, 2006, 35 (3): 412-416.
    [119] ,S. Geman, D. Geman. Stochastic relaxation, gibbs distributions and the bayesian restoration of images[J]. IEEE Tran. on Pattern Analysis and Machine Intelligence, 1984, 6 (6): 721-741.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700