用户名: 密码: 验证码:
福建省长汀县森林C库动态变化及雪灾的影响分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选取长汀县不同时期的森林植被和2008年初受冰雪灾害影响损失严重的乔木林分为研究对象,结合5期森林资源二类清查统计数据、受灾实地踏查和典型抽样数据,分析长汀县及河田镇森林乔木层C贮量和C密度的动态变化规律,及雪灾造成的C贮量损失并分析其主要影响因素。
     分析结果表明:1)长汀县1957、1987、1997、2003、2007年各期森林乔木层C贮量分别为5.3869、5.6239、5.3620、5.7272、6.8126Tg C,总体呈上升趋势,50a来森林植被表现出C汇功能;5期C密度分别为22.04、20.12、19.11、19.95、23.11Mg C·hm~(-2),近10年C密度呈加速上升趋势,森林植被的C汇功能逐步增强。2)各树种组的C贮量变化趋势不尽相同,阔叶树组C贮量所占比重近10年明显提高,将极大地增强长汀县森林植被的固C功能;树干的C贮量远大于其他器官,是构成乔木层C贮量的主体;林龄结构差异是导致森林C汇能力差异的主要原因之一,中龄林是主要的C贮区,长汀县森林林龄结构趋向年轻型,随着目前中龄林、近熟林的进一步成熟,其固C潜能将得到进一步释放,将大大增强长汀县森林C汇功能。3)阔叶林组平均C密度最大,其固C能力比针叶林组强;C密度随着林龄的增长而增加,且整个生长期内干、枝、叶、根各器官C密度所占比例相对稳定。4)河田镇5期森林乔木层C贮量呈先缓后急的曲线单边上升走势,5期C密度分别为20.48、19.15、16.79、17.67、20.95 Mg C·hm~(-2),其森林植被固C能力比全县平均水平要低,但近10年森林植被固C能力增强的幅度要大于全县平均水平。5)雪灾造成的长汀县蓄积损失95.69×10~4 m~+,折合C贮量损失34.54×10~4 Mg C,且受损最为严重的四都、红山、古城等6个乡(镇、场)都靠近武夷山脉南麓。6)同一区域相同的立地条件下,针叶树种比阔叶树种受灾严重;中龄林C贮量损失12.84×10~4MgC,相对损失比最大,幼龄林最小;海拔越高,C贮量损失比例越大;迎风坡面和山脊西北侧的乔木林受灾相对严重;位于中上部坡位的乔木林受灾相对严重,且坡位越高,C贮量损失越大。
This paper analysed the dynamics of carbon storage and carbon density with forest layer in Changting Country and hetian Town, and the impacted factors of carbon storage loss, by using the the forest layer data in different periods and seriously damaged by ice-snow disaster in early 2008, and combined with forest resourced inventory data of five periods, direct field measurment and typical sampled.
     The results showed : 1) carbon storage of the forest layer were 5.3869, 5.6239, 5.3620, 5.7272, 6.8126Tg C during 1957, 1987, 1997, 2003 and 2007 in Changting county, respectively, indicating a carbon sink for forests of this area. The carbon density first decreased and then increased, and averaged 22.04, 20.12,19.11, 19.95, 23.11 Mg C·hm~(-2), respectively, showing a gradual enchance of carbon sink for forests of this area. 2) The dynamics of forest layer carbon storage was different in each tree species, the proportion of hardwood was increased gradually in recent 10 years, and it will increased the potential of forest carbon assimilated greatly in future of Changting Country. Carbon storage of trunk was the main composed of forest layer carbon storage and higher than other tissue. Differences in stand age structure was the main reason for difference in carbon sink among forest types, and the middle-age stands were the main carbon reservior. Based on the current stand age structure, it can be expected that forest of this area are approaching younger and may serve as a large carbon sink when forest maturing. 3) The carbon density of hardwood forest was higher than coniferous, the carbon density increased with the tree age, and the proportion of each compose of carbon density maintaining stability. 4) The carbon storage of forest layer in different inventorys were 20.48, 19.15, 16.79, 17.67, 20.95 Mg C·hm~(-2) in hetian Town, respectively, the potential carbon assimilated was lower than other Towns but was higher than the average level of Changting county in recent 10 years. 5) The damaged area was 40178.87 hm~2 by ice-snow disaster, and was lost 95.69×10~4m~3 forest accumulation, with carbon storage of 34.54×10~4 Mg C. In whole county, the serously damaged six Towns were all located on the southern slope of Wuyi Mountain such as Sidu、Hongshan、Gucheng and so on. 6) In the same site condition, the lost of coniferous was more serious than hardwood; the carbon storage of Middle-aged Plantation lost serious and amounted to 34.54×10~4 Mg C and the least was young; the higher altitude, the less lost of carbon storage; the forest layer which growth in windward slope or the northwest of mountain ridge were damaged seriously than others by ice-snow disaster; there was a positive correlation between slope position and the carbon storage.
引文
Aubinet M, A Grelle, A Ibrom, et al. Estimates of the annual net carbon and water exchange of forests: The EuroFlux Methodology. Advances in Ecological Research. 2000,30:113-175.
    Baldocchi DD, Falge LH, Gu R, et al. FLUXNET:A new tool to study the temporal and spatial ariability of ecosystem -scale carbon dioxide, water vapor, and energy flux densities. Bulletin of American Meteorological Society. 2001, 82: 2415-2434.
    Baldocehi DD. Assessing the eddy eovariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology. 2003, 9: 479-492.
    Barnes BV, Zak R, Denton SR, et al. Forest ecology. New York: John Wiley and Sons, 1998.
    Brown, Lugo A E. Biomass of tropical forests: A new estimate based on forest volumes. Science. 1984,(223): 1290-1293.
    Brown SL, Schroeder PE. Spatial paterns of aboveground production and mortality of woody biomass for eastern US. Forests Ecol Appl. 1999, 9: 968-980.
    Businger JA,Oncley SP. Flux measurement with conditional sampling. Atmosph Ocean Tech. 1996, 7: 349-352.
    Ciais P. Large Northern Hemisphere terrestrial CO_2 sink indicated by the ~(13)C/~(12)C ratio of atmospheric CO_2. Science. 1995, 269: 1098-1102.
    Clark DA, Brown S, Kicklighter DW, et al. Measuring net primary production in forests concepts and field measurements. Ecological Applications. 2001, 11: 356-370.
    De Kovel CGF, Van Mierlo AJEM, Wilms YJO, et al. Carbon and nitrogen in soil and vegetation at sites difering in successional age. Plant Ecology. 2000, 149: 43.
    Detwiler RP, Charles AS.Tropical forests and the global carbon budget.Science. 1988, 239: 42-47.
    Dixon R K, Brown S, Houghton R A, et al. Carbon pool and flux of global forest ecosystems. Science. 1994. 263: 185-190.
    Goulden ML, Munger JW, Fan SM, et al. Measurements of carbon acquisition by long-term eddy covariance:methods and critic evaluation of accuracy. Global Change Biology, 1996b, 2: 169-182.
    Houghton RA, Hackler JL, et al. The US carbon budget contributions from land-use change. Scicence. 1999, 285: 574-578.
    Keeling C D, Chin J F S, Whorf T P. Increased activity of northern vegetation in inferred from atmospheric CO_2 measurements. Nature, 1996, 382: 146-149.
    Kramer PJ. Carbon dioxide concentration photosynthesis and dry mater production. BioScience. 1981,31:29-33.
    Lan R N, Rodolfo D. Forest as Human-Dominated Ecosystems. Science, 1997, 277:522-525.
    Laurent A, Carlo B, Piers R F, et al. Eight glacial cycles from an Antarctic ice core. Nature. 2004, 429: 623-625.
    
    Lee X H. On micrometeorological observations of surfaceair exchange over tall vegetation. Agricultural and Forest Meteorology, 1998, 91: 39-49.
    Lloyd J, O Shibistova, N Tchebokova, et al. The carbon balance of a central Siberian forest. In Proceedings of International workshop for Advanced Flux Network and Flux Evaluation. Sapporo, ASAHI Printing CO.2001, Ltd: 39-45.
    Oliver L, Phillips. Sandra Brown. Changes in the carbon balance of tropical forests, evidence from long-term plots.Science. 1998, 282: 439-442.
    Olson JS, Wacts JA, Allison LJ. Carbon in live vegetation of Major World Ecosystems. Report ORNL-5862, Oak Ridge National Laboratory, Oak Ridge, Tenn, 1983, 23: 15-25.
    Post WM,Emanuel WR,Zinke PJ,et al.Soil pools and world life zone.Nature 1982,298:156-159.
    Schimel DS,House JI,Hibbard KA,et al.Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems.Nature,2001,414:169-172.
    Skole D S.Interannual Variation in the Terrestrial Carbon Cycle.Significance of Asian Tropical Forest Conversion to Imbalances in the Global Carbon Budget(in press),1997.
    Spencer R D,Green M A,Blggs P H.Integrating Eucalypt Forest Inventory and GIS In Westem Australia.Photogram metric Engineering & Remote Sensing,1997,63(12):1345-1351.
    Valentini R,DeAngelis P,Matteucci G;et al.Seasonal net carbon dioxide exchange of a beech forest with the atmosphere.Global Change Biology.1996,2:199-207.
    Waxing RH,Schlesinger WH,Forest Ecosystems Concepts and Management.Inc.Orlando,FL,USA Academic Press.1985,313-335.
    Yadvinder,Malhi,John Grace.Tropical forests and atmospheric carbon dioxide.Tree.2000,5(8):332-337.
    Yamamoto S,N Saigusa,S Mumyama,et al.Long-term results of flux measurement from a temperate deciduous forest site(Takeyama).In Proceedings of International Workshop for Advanced Flux Network and Flux Evaluation.Sapporo:ASAHI Printing CO,2001,Ltd,5-10.
    程鹏,张金池.2008年重大冰雪灾害对安徽森林的影响与反思.南京林业大学学报(自然科学版).5:1-4.
    程堂仁,冯菁,马钦彦,等.甘肃小陇山森林植被C库及其分配特征.生态学报.2008,28(1):33-44.
    程堂仁.甘肃小陇山森林生物量及C贮量研究.北京林业大学.2007.
    方精云,陈安平.中国森林植被C库的动态变化及其意义.植物学报,2001,43(9): 967-973.
    方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量.生态学报.1996.16(5):497-508.
    方精云.北半球中高纬度的森林C库可能远小于目前的估算.植物生态学报.2000,24(5):635-638.
    冯宗炜,王效科,吴刚著.中国森林生态系统的生物量和生产力.科学出版社,1999.
    管东生,M R Peart.华南南亚热带不同演替阶段植被的环境效应.环境科学.2000,21(5):1-5.
    何英.森林固C估算方法综述.世界林业研究.2005,18(1):22-27.
    焦秀梅,项文化,田大伦.湖南省森林植被的C贮量及其地理分布规律.中南林学院学报.2005,25(1):4-8.
    焦燕,胡海清.黑龙江省森林植被C贮量及其动态变化.应用生态学报.2005,16(12):2248-2252.
    康惠宁,马钦彦,袁嘉祖.中国森林C汇功能基本估计.应用生态学报.1996.7(3):230-234.
    李东升,裴东,杨振寅,等.低温雨雪冰冻灾害对湖北森林资源的影响与思考.林业经济.2008,4:15-17.
    李克让,王绍强,曹明奎.中国植被和土壤C贮量.中国科学.2003(33):72-80.
    李铭红,于明坚,陈启瑺,等.青冈常绿阔叶林的C素动态.生态学报,1996,16(6):645-651.
    李土生,邱瑶德,高洪娣,等.浙江省公益林雨雪冰冻灾情评估及恢复重建对策.林业科学.2008,44(11):168-171.
    李秀芬,朱教君,王庆礼,等.辽东山区天然次生林雪/风灾害成因及分析.应用生态学报.2004,15(6):941-946.
    李秀芬,朱敦君,王庆礼,等.森林的风/雪灾害研究.生态学报.2005,25(1):148-157.
    李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林群落生产和二氧化C通话净增量的初步研究.植物生态学报.1998,22(1):127.
    李意德,曾庆波,吴仲民,等.我国热带天然林植被C存贮量的估算.林业科学研究.1998,11(2):156-162.
    林鹭榕,施管城.福建光泽毛竹林冻灾恢复措施与建议.世界竹藤通讯.2008,6(2):37-38.
    刘国华,傅伯杰,方精云.中国森林C动态及其对全球C平衡的贡献.生态学报.2000,20(5):733-740.
    刘红辉,资源遥感一从区域调查到全球变化研究.资源科学.2000,22(3):34-38.
    马钦彦,陈遐林,王娟,等.华北主要树林类型建群种的含C率分析.北京林业大学学报,2002,24(5):97.
    潘维侍,田大伦.森林生态系统第一性生产量的测定技术与方法.湖南林业科技,1981(2):11-12.
    桑卫国,马克平,陈灵芝.暖温带落叶阔叶林C循环的初步估算.植物生态学报.2002,26(5):543-548.
    汤景明,宋丛文,戴均华,等.湖北省主要造林树种冰雪灾害调查.林业科学.2008,44(11):2-11.
    王绍强,周成虎,罗承文.中国陆地自然植被C量空间分布特征探讨.地理科学进展.1999,18(3):238-244.
    王淑君,管东生,黎夏,等.广州森林C贮量时空演变及异质性分析.环境科学学报.2008,(4):778-785.
    王效科,冯宗炜,欧阳志云.中国森林生态系统的植物C贮量和C密度研究.应用生态学报.2001,12(3):13-16.
    王效科,冯宗炜.中国森林生态系统中植物固定大气C的潜力.生态学杂志.2000,19(4):72-74.
    王秀云,孙玉军.森林生态系统C贮量估测方法及其研究进展.世界林业研究.2008.21(5):24-29.
    王义祥.福建省主要森林类型C库与杉木林C吸存.福州:福建农林大学.2004.
    王玉辉,周广胜,蒋延玲,等.基于森林资源清查资料的落叶松生物量和净生长量估算模式.植物生态学报.2001,25(4):420-425.
    魏文俊,江西省暨大岗山林区森林C密度与C贮量的研究.内蒙古农业大学,2007.
    吴家兵,张玉书,关德新.森林生态系统CO_2通量研究方法与进展.东北林业大学学报.2003,31(6):49-51.
    吴庆标,王效科,段晓男,等.中国森林生态系统植被固C现状和潜力.生态学报.2008.2:517-524.
    吴仲民,曾庆波,李意德,等.尖峰岭热带森林土壤C贮量和CO_2排放量的初步研究.植物生态学报.1997,21:416.
    肖文发.由亚热带常绿阔叶林雨雪冰冻灾情引发的思考.林业科学.2008,44(4):2-3.
    徐凤兰,钱国钦,杨伦增.冰冻灾害造成森林生态服务价值损失的经济评估--以福建省受灾森林为例.林业科学.2008,44(11):193-201.
    薛建辉,胡海波.冰雪灾害对森林生态系统的影响与减灾对策.林业科学.2008,44(4):1-2.
    杨存建,刘纪远,张曾祥.热带森林植被生物量遥感估算探讨.地理与地理信息科学.2004,6(20):22-25.
    杨玉盛,陈光水,王义祥,等.格氏栲人工林和杉木人工林C库及分配.林业科学.2006,42(10):43-47.
    叶笃正.中国的全球变化预研究.北京:气象出版社.1992,36-37.
    曾杰.南岭山地冰雪灾后珍优阔叶树种的补救措施.林业实用科技.2008,3:31-32.
    张佳华,符涂斌.生物量估测模型中遥感信息与植被光合参数的关系研究.测绘学报.1999,28(2):128-129.
    张建国,段爱国,童书振,等.冰冻雪压对杉木人工林近成熟林分危害调查.林业科学.2008,44(11):18-22.
    张志达,刘永敏,张平.重庆市林业灾后重建的若干问题与建议.林业经济.2008,4: 18-20.
    赵海珍,王德艺,张景兰,等.雾灵山自然保护区森林的C汇功能评价.河北农业大学学报.2001,24(4):43-47.
    赵敏,周广胜.中国森林生态系统的植物C贮量及其影响因子分析.地理科学.2004,24(1):50-54.
    赵敏.中国主要森林生态系统C贮量和C收支评估.中国科学院研究生院(植物研究所).2004年.
    周玉荣,于振良,赵士洞.我国主要森林生态系统C贮量和C平衡.植物生态学报.2000,24(5):518-522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700