用户名: 密码: 验证码:
应用稳定同位素进行牛肉溯源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稳定同位素技术在地质学、考古学、医学、环境科学中很早就得到研究和应用,由于其特有的优点,近年来又被用于食品产地溯源的研究中。为了推动稳定同位素技术在我国食品科学中的应用和发展,本研究对其在牛肉溯源中的应用进行了探讨。
     为研究牛不同组织器官中不同稳定同位素的组成情况以及品种对同位素组成的影响,采集西门塔尔牛和夏洛来牛的里脊、外脊、腿部肌肉、臀部肌肉、牛尾毛、血液、肝脏、饲料等样品。利用同位素比率质谱仪测定了上述组织及饲料中的δ~(13)C、δ~(15)N、δ~2H、δ~(34)S,肉品水中δ~2H和δ~(18)O,并借助SAS软件对检测结果进行了方差分析、多重比较分析。结果表明,牛组织中δ~(13)C、δ~(15)N、δ~(34)S值不受品种因素的影响,但δ~2H值在牛两品种之间有差异;粗脂肪中的δ~(13)C值远远低于其它组织,不同部位粗脂肪间差异不显著(P>0.05),δ~(13)C值在其它组织间也无显著差异(P>0.05);肝脏中的δ~(15)N值远高于其它组织;牛尾毛中的δ~2H和δ~(34)S值与肌肉组织相比有极显著差异(P<0.01),说明同位素在牛不同组织中的分馏效应是不一致的。肉品水中δ~2H值和δ~(18)O值存在着较强的相关关系(R2=0.83),但各组织间的δ~(13)C、δ~(15)N、δ~(34)S、δ~2H值相关关系不明显。因此在进行牛肉溯源的研究时,应根据研究目的、研究对象选择适宜的组织和成分。
     饲料碳同位素和氮同位素组成不同,影响动物组织中的δ~(13)C和δ~(15)N值。选择36头12-14月龄的青年牛作为试验动物,分为两个大组,分别饲喂C3、C4植物含量不同的日粮,探讨牛组织中δ~(13)C值和膳食中C3、C4植物比例间的剂量响应关系。132天后将试验动物屠宰。利用同位素比率质谱仪测定牛尾毛、脱脂牛肉、粗脂肪、各种饲料原料的δ~(13)C和δ~(15)N值。结果表明,牛组织中碳同位素组成主要受饲料的影响,牛尾毛、脱脂肌肉、粗脂肪中的δ~(13)C值随着C4植物含量在牛饲料中的比例增加而升高,随着C3植物含量在牛饲料中的比例增大而降低,并且均与C4、C3植物含量呈极显著的相关性(P<0.01),用牛组织中的δ~(13)C值可以调查牛饲料中的主要成分;牛组织中的氮同位素一定程度上受饲料因素的影响,但未随饲料组成成分的改变而呈现规律性变化;牛尾毛、脱脂肌肉相对饲料对13C的富集比例两组试验结果不一致,牛尾毛对15N的富集比例大于脱脂肌肉,富集比例约在3‰- 5‰,饲料种类、牛个体等因素对富集比例均有一定影响;牛尾毛、脱脂肌肉、粗脂肪中的δ~(13)C值三者之间相关性达到极显著水平(P<0.01)。牛尾毛、脱脂肌肉、粗脂肪均可作为牛肉溯源的材料。
     为了探讨稳定同位素技术对我国牛肉产地溯源的可行性,采集不同来源的牛肉及饮水样品,分别测定脱脂牛肉中的δ~(13)C和δ~(15)N,牛粗脂肪中的δ~(18)O及饮水中的δ~(18)O。结果表明,不同地域来源脱脂牛肉中碳、氮同位素组成有显著差异,粗脂肪中的δ~(18)O值也有显著差异,并且与各地饮水中的δ~(18)O值高度相关,说明利用同位素技术可以区分不同产地来源的牛肉,同时用牛肉中的δ~(13)C值可推断牛饲料的主要成分。
     本论文利用稳定同位素质谱技术研究了牛不同组织中δ~(13)C、δ~(15)N、δ~2H、δ~(34)S、δ~(18)O的组成变化情况,通过饲养试验确立了牛组织中δ~(13)C值与饲料中C_4、C_3植物比例的关系,通过分析不同来源的牛肉样品,证明了利用同位素技术进行牛肉产地溯源是可行的,为稳定同位素技术在食品中的应用奠定了基础。
Stable isotope technology was applied in the fields of geology, archeology, medical and environmental science in early time. In recent years, stable isotope analysis is applied in the traceability of food geographical origin thanks to its virtue. The objective of this article was to push forward its application and development into food science and it was studied in beef traceability.
     In order to research on different stable isotope composition in the different beef tissues, as well as the breed, longissimus muscle, psoas major muscle, leg muscle, buttock muscle, cattle tail hair, blood, liver and feed were collected, which were belonging to simmental and charolais cattle under the same culture conditions. Theδ~(13)C,δ~(15)N,δ~2H,δ~(34)S values of above tissues,andδ~2H,δ~(18)O of muscle tissue water were determined using isotope ratio mass spectrometry(IRMS). Then the data were performed using multivariate analysis including ANOVA with the help of SAS Package for windows. The results showed thatδ~(13)C,δ~(15)N,δ~(34)S values of cattle tissues exceptδ~2H values were not different between breed. Theδ~(13)C values of crude fat were far lower than those of other tissues, but it had not significant difference between different fat sources and the same as other defatted tissues (P>0.05). However,δ~(15)N values of defatted liver, andδ~2H,δ~(34)S values of cattle tail hair were significantly higher than those of muscle tissues (P<0.01). So these results indicated that isotope fractionation in the various tissue was discrepant. Theδ~2H andδ~(18)O values of muscle tissue water were positively correlated (R2=0.83, P<0.01 ), but these values varied in a large range. Theδ~(13)C,δ~(15)N,δ~(34)S,δ~2H values between each tissue were not significantly correlated, so the proper tissue or component should be selected according to the purpose and object in the beef traceability study.
     Previous studies had shown that the stable carbon and nitrogen composition of diets influenced theδ~(13)C andδ~(15)N values of animal tissue. 36 (12 to14 months old) young bulls were selected and assigned to 2 large groups fed with a diet consisting of different content of C3、C4 plant with the aim of developing a quantitative relationship between the dietary C4 and C3 plant intake andδ~(13)C of bovine tissues. All animals were slaughtered after feeding for 132 days. Theδ~(13)C andδ~(15)N values of cattle tail hair, defatted muscle, crude fat and each feed material were determined by isotope ratio mass spectrometry (IRMS). It was shown that the stable carbon isotope composition of beef tissue was primarily dependent on the diet the animals were fed,meanwhile theδ~(13)C values of cattle tail hair, defatted muscle and crude fat all enhanced with the increment of the proportions of C4 constituents in diet, but those values were on the contrary with the enhancement of the proportions of C3 constituents. Moreover, allδ~(13)C values of different tissues were significantly correlated with the content of C4 and C3 plant material. So, the main component of cattle feed could be investigated with the help ofδ~(13)C values. Theδ~(15)N values of beef tissues were affected by feed composition to some extent, but it had no regularity. The cattle tail hair and defatted muscle enriched in 13C to their feeds gave different results between the two groups, but cattle tail hair enriched in 15N much more than defatted muscle and in the proportion of 3‰- 5‰, plus, cattle variety and individual had effect on the proportion of enrichment. Theδ~(13)C values between cattle tail hair, defatted muscle, crude fat were significantly correlated (P< 0.01), which suggested that all of them could be used for beef traceability.
     For exploring the feasibility of stable isotope technique for cattle geographical origin, the beef samples and drinking water samples were collected from different regions, then theδ~(13)C,δ~(15)N values of defatted muscle andδ~(18)O values of crude fat and drinking water were determined. The results showed that the stable carbon and nitrogen isotope composition of beef were significantly different, and the same as theδ~(18)O values of crude fat, but also they were highly correlated with theδ~(18)O values of drinking water. Therefore, stable isotope technique can distinguish cattle from different regions, and also the main component of cattle feed can be inferred using theδ~(13)C values of beef.
     This article studied the stable carbon, nitrogen, sulfur, hydrogen and oxygen composition of beef different tissues with IRMS, and established the relationship between the dietary C4, C3 plant proportion andδ~(13)C of bovine tissues by the animal experiment. At the same time, the stable isotope technique was proved for cattle geographical origin by analyzing beef samples from different regions.These results provided theoretical basis in the food traceability for the stable isotope technology.
引文
1.蔡德陵,张淑芳,张经.稳定碳、氮同位素在生态系统中的应用.青岛海洋大学学报, 2002,32(2): 287~295.
    2.陈红华,田志宏.国内外农产品可追溯系统比较研究.商场现代化,2007, (7):5~6.
    3.崔亚平,胡耀武,陈洪海,董豫,管理,翁屹,王昌燧.宗日遗址人骨的稳定同位素分析.第四纪研究, 2006,26(4): 604~611.
    4.杜巍. RFID在食品安全追踪系统中的应用.食品科技, 2007, 2:25~28.
    5.方炎,高观,范新鲁,陈华宁.我国食品安全追溯制度研究.农业质量标准, 2005, (2):37~39.
    6.管恩平.部分国家食品可追溯性管理实施研究.中国食品卫生杂志, 2006, 18(5): 449~452.
    7.郭波莉.牛肉产地同位素与矿物元素指纹溯源技术研究[博士学位论文].北京:中国农业科学院, 2007.
    8.郭波莉,魏益民,潘家荣.同位素溯源技术在食品安全中的应用.核农学报, 2006, 20(2):148~153.
    9.郭波莉,魏益民,潘家荣.同位素指纹分析技术在食品产地溯源中的应用进展.农业工程学报,2007, 23(3): 284~289.
    10.郭波莉,魏益民,潘家荣,李勇.碳、氮同位素在牛肉产地溯源中的应用研究.中国农业科学, 2007:40(2):365~372.
    11.郭波莉,魏益民,潘家荣,李勇.多元素分析判别牛肉产地来源研究.中国农业科学, 2007: 40(12): 2842~2847.
    12.郭波莉,魏益民,潘家荣,李勇,张福松.牛不同组织中稳定性碳同位素组成及变化规律研究.中国农业科学, 2006, 39(9) :1885~1890.
    13.郭旭鹏,李忠义,金显仕,戴芳群.应用稳定同位素技术对南黄海两种鳀科鱼类食物竞争的研究.杭州师范学院学报:自然科学版, 2007, 6(4): 283~287.
    14.国伟,储晓刚. RFID技术及其在食品安全领域中的应用.食品科技,2007, 9: 5~7.
    15.何勇,李晓丽.用近红外光谱鉴别杨梅品种的研究.红外与毫米波学报, 2006, 25(3):192~194.
    16.何勇,李晓丽,邵咏妮.基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究.2006, 26(5): 850~853.
    17.胡耀武,何德亮.山东腾州西公桥遗址人骨的稳定同位素分析.第四纪研究, 2005,25(5):561~567.
    18.康海燕. RFID在食品流通环节中的应用.商场现代化,2008, 543:97~98.
    19.孔洪亮,李建辉.全球统一标识系统在食品安全跟踪与追溯体系中的应用.食品科学, 2004, 25(6):188~194.
    20.兰洪杰,黄锋仅,林自葵. 2008年北京奥运会食品可追溯系统设计.中国储运, 2008, (5): 86~89.
    21.李广明,黄立平,詹锦川,朱轶峰,闵新力. RFID在食品安全追溯中的应用.科技与管理,2007,41(1): 57~59.
    22.刘季花,石学法,卜文瑞译, J.ochen Hoefs[德]著.稳定同位素地球化学.第四版,海洋出版社.2002.
    23.刘英,陈历程.欧盟及美国的“溯源性”牛肉生产系统简介.食品科学, 2003, 24(8):182~185.
    24.马希汉,尉芹.鉴别果汁真假的稳定同位素比率分析法.西北林学院学报, 1994, 9(2): 99~102.
    25.孙丰梅,王慧文,杨曙明.稳定同位素碳、氮、硫、氢在鸡肉产地溯源中的应用研究,分析测试学报, 2008 ( 9 ): 925-929
    26.田启川,刘正光.虹膜识别综述.计算机应用研究, 2008, 25(5):1295~1314.
    27.王波,王顺喜,李军国,谢静.农产品和食品领域可追溯系统的研究现状.中国安全科学学报,2007, 17(10):108~113.
    28.王慧文.利用稳定同位素进行鸡肉溯源的研究[硕士学位论文].北京:中国农业科学院, 2007.
    29.王慧文,杨曙明,程永友.鸡肉中稳定同位素组成与饲料和饮水关系的研究.分析科学学报, 2008, 24(1):47~50.
    30.王慧文,杨曙明,吴伟.用稳定同位素质谱技术检测肉鸡色素的来源.分析测试学报, 2007, 26(5): 608~611.
    31.王建柱,林光辉,黄建辉.稳定同位素在陆地生态系统动-植物相互关系研究中的应用,科学通报, 2004, 49(21): 2141~2149.
    32.易现峰,李来兴,张晓爱,赵亮,李明财.人工食物对高原鼠兔稳定碳和氮同位素组成的影响.动物学研究,2004, 25(3): 232~235.
    33.于维军.建立质量安全追溯制提升我国农畜产品国际竞争力.动物科学与动物医学, 2004, 21(9): 46~48.
    34.赵燕,李建科.现代技术在食品真伪和产地鉴别中的应用.食品研究与开发, 2007, 28(9): 157~161.
    35. Al-Jowder O, Kemsley E K, Wiloson R H. Detection of adulteration in cooked meat products by mid-infrared spectroscopy. Journal of Agricultural Food Chemistry, 2002, 50(6):1325~1329.
    36. Almeida C M, Vasconcelos M T S D. ICP-MS determination of strontium isotope ratio in wine in order to be used as a fingerprint of its regional origin. Journal of Analytical Atomic Spectrometry, 2001, 16 (6): 607~611.
    37. Ampuero S, Bogdanov S, Bosset J O. Classification of unifloral honeys with an MS-based electronic nose using different sampling modes: SHS, SPME and INDEX. European Food Research and Technology, 2004, 218:198-207.
    38. Angerosa F, Bréas O, Contento S, Guillou C, Reniero F, Sada E. Application of Stable Isotope Ratio Analysis to the Characterization of the Geographical Origin of Olive Oils. Journal of Agricultural and Food Chemistry, 1999, 47 (3): 1013~1017.
    39. Angerosa F, Cumitini S, Gleixner G, Reniero F, Camera L.Carbon stable isotopes and isotopes and olive oil adulteration with pomace oil. Journal of Agricultural and Food Chemistry, 1997, 45(8): 3044~3048.
    40. Arana A, soret B, Lasa I, Alfonso L. Meat traceability using DNA markers: application to the beef industry. Meat Science, 2002, 61: 367~373.
    41. Aranda F, Gomez-Alonso S, Alamo R M R, Salvador M, Fregapane G. Triglyceride, total and 2-position fatty acid composition of Cornicabra virgin olive oil: Comparison with other Spanish cultivars. Food Chemistry, 2004: 86, 485~492.
    42. Arneson L S, MacAvoy S E. Carbon, nitrogen, and sulfur diet-tissue discrimination in mouse tissues. Canadian Journal of Zoology, 2005, 83(7): 989~995.
    43. Aurousseau B, Bauchat D, Calichon E, Micol D, Priolo A. Effect of grass of concentrate feeding systems and rate of growth on triglyceride and phospholipid and their fatty acids in the M. Longissimus thoracis of lambs. Meat Science, 2004, 66: 531~541.
    44. Bahar B, Monahan F J, Moloney A P, Padraig O’K, Charlie M S, Schmidt O. Alteration of the carbon and nitrogen stable isotope composition of beef by substitution of grass silage with maize silage. Rapid Communications in Mass Spectorometry, 2005, 19: 1937~1942.
    45. Bahar B, Schmidt O, Moloney A P, Scrimgeour C M, Begley I S, Monahan F J. Seasonal variation in the C, N and S stable isotope composition of retail organic and conventional Irish beef. Food Chemistry, 2008, 106: 1299~1305.
    46. Blancou J. A history of the traceability of animals and animal products. Scientific and Technical Review, 2001, 20 (2): 420~ 425.
    47. Boner M, Forstel H. Stable isotope variation as a tool to trace the authenticity of beef. Analytical and Bioanalytical Chemistry, 2004, 378: 301~310.
    48. Branch S, Burke S, Evans P, Fairman B, Briche Céline S J Wollff. A preliminary study in determining the geographical origin of wheat using isotope ratio inductively coupled plasma mass spectrometry with 13C, 15N mass spectrometry. Journal of analytical atomic spectrometry, 2003, 18(1): 17~22.
    49. Brescia M A, Caldarola V, Buccolieri G, Dell’Atti A, Sacco A. Chemometric determination of the geographical origin of cow milk using ICP-OES data and isotopic ratios: a preliminary study. Italian Journal of Food Science, 2003, 15: 329~336.
    50. Brescia M A, Kosir I J, Caldarola V, Kidric J, Sacco A. Chemometric classification of Apulian and Slovenian wines using H-1 NMR and ICP-OES together with HPICE data. Journal of Agricultural and Food Chemistry, 2003, 51: 21~26.
    51. Camin F, Bontempo L, Heinrich K, Horacek M, Kelly S D, Schlicht C, Thomas F, Monahan F J, Hoogewerff J, Rossmann A. Multi-element (H, C, N, S) stable isotope characteristics of lamb meat from different European regions. Anal Bioanal Chem, 2007, 389(1): 309~320.
    52.Camin F, Perini M, Bontempo L, Giongo L. Multi-element (H, C, N, O) stable isotope characterization of blueberries. Acta Hort (ISHS), 2009, 810:697~704.
    53. Camin F, Wietzerbin K, Cortes A B, Harerhauer G, Lees M, Versini G. Application fo multielement stable isotope ratio analysis to the characterization of French, Italian, and Spanish Cheeses. J. Agric. Food Chem., 2004, 52, 6592~6601.
    54. Carrijo A S, Pezzato A C, Ducatti C, Sartori J R, Trinca L, Silva E T. Traceability of Bovine Meat and Bone Meal in Poultry by Stable Isotope Analysis. Brazilian Journal of Poultry Science, 2006, 8(1): 63~68.
    55. Christy A A, Kasemsumran S, Du Y, Ozaki Y. The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics. Analytical Sciences, 2004, 20(6):935~940.
    56. Coetzee P P, Vanhaccke F. Classifying wine according to geographical origin via quadruple-based ICP-mass spectrometry measurements of boron isotope ratios. Anal Bioanal Chem, 2005, 383: 977~984.
    57. Cozzolino D, DeMattos D, Vaz Martins D. Visible/near infrared reflectance spectroscopy for predicting composition and tracing system of production of beef muscle. Animal Science. 2002. 74: 477~484.
    58. Cozzolino D, Murray I. Identification of anima1 muscle by visible and near infrared reflectance spectroscopy. Lebensmittel Wissenschaft und Technologie.2004, 37(4):447~45.
    59. Crittenden R G, Andrew A S, Lefournour M, Yong M D, Middleton H, Stockmann R. Determining the geographic origin of milk in Australasia using multi-element stable isotope ratio analysis. International Dairy Journal, 2007, 17: 421~428.
    60. Dalvit C, De Marchi M, Cassandro M. Genetic traceability of livestock products: A review. Meat Science, 2007, 77: 437~449.
    61. De Smet S, Balcaen A, Claeys E, Boeckx P, Cleemput O V. Stable carbon isotope analysis of different tissues of beef animals in relation to their diet. Rapid Communications in mass spectrometry, 2004, 18:1227~1232.
    62. Dempson J B, Power M. Use of stable isotopes to distinguish farmed from wild Atlantic salmon, Salmo salar. Ecology of Freshwater Fish, 2004, 13, 176~184.
    63. Deniro M J, Epstein S. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 1978, 42: 495~506.
    64. Doan Duy Le Nguyen, Gemrot E, Loiseau G, Montet D. Determination of citrus fruit origin by using 16s rDNA fingerprinting of bacterial communities by PCR-DGGE: an application to clementine from Morocco and Spain. Fruits, 2008, 63(2):75~84.
    65. Dourtoglou V G, Dourtoglou T, Antonopoulos A, Stefanou E, Lalas S, Poulos C. Detection of olive oil adulteration using principal component analysis applied on total and regio FA content. Journal of the American Oil Chemists Society, 2003, 80:203~208.
    66. Fernandez C, Astier C, Rock E, Coulon J B BerdaguéJ L .Characterization of milk by analysis of its terpene fractions. International Journal of Food Science and Technology, 2003, 38: 445~451.
    67. Ferreira I, Cacote H. Detection and quantification of bovine, ovine and carbine milk percentages in protected denomination of origin cheeses by reversed-phase high-performance liquid chromatography of beta-lactoglobulins. Journal of Chromatography A, 2003, 1015:111~118.
    68. Fortunato G, Mumic K, Wunderli S, Pillonel L, Bosset J O, Gremaud G. Application of strontium isotope abundance rations measured by MC-ICP-MS for food authentication. Journal of Analytical Atomic Spectrometry, 2004, 19(2): 227~234.
    69. Franke B M, Gremaud G, Hadorn R, Kreuzer M. Geographic origin of meat—elements of an analytical approach to its authentication. Eur Food Res Technol, 2005, 221: 493~503.
    70. Franke B M, Haldimann M, Gremaud G, Bosset J O, Hadorn R, Kreuzer M. Element signatureanalysis: its validation as a tool for geographic authentication of the origin of dried beef and poultry meat. Eur Food Res Technol, 2008, 227: 701~708
    71. Franke B M, Haldimann M, Reimann J, Baumer B, Gremaud G, Hadorn R, Bosset J O, Kreuzer M. Indications for the applicability of element signature analysis for the determination of the geographic origin of dried beef and poultry meat. Eur Food Res Technol, 2007, 225: 501~509.
    72. Franke B M, Koslitz S, Micaux F, Piantini U, Maury V, Pfammatter E, Wunderli S, Gremaud G, Bosset J O, Hadorn R, Kreuzer M. Tracing the geographic origin of poultry meat and dried beef with oxygen and strontium isotope ratios. Eur Food Res Technol, 2007, 226(4):761-769.
    73. García-Ruiz S, Moldovan M, Fortunato G, Wunderli S, García Alonso J I. Evaluation of strontium isotope abundance ratios in combination with multi-elemental analysis as a possible tool to study the geographical origin of ciders. Analytica Chimica Acta, 2007, 590: 55~66.
    74. GB/T 18932-2002.蜂蜜中碳-4植物糖含量测定方法稳定碳同位素比率法. 2002.
    75. Gebbing T, Schellberg J, Kühbauch W. Switching from grass to maize changes the C isotope signature of meat and fat during fattening of steers. Lüscher A, Jeangros B, Kessler W, et al. In Proceedings of the 20th General Meeting of the European Grassland Federation. Luzern, Switzerland, 2004, 1130~1132.
    76. Germain C. Traceability implementation in developing countries, its possibilities and its constraints and epidemiology of BSE in British cattle. Nature, 2003, 382: 779~788.
    77. Ghidini S, Ianieri A, Zanardi E, Conter M, Boschetti T, Iacumin P, Bracchi P G. Stable isotopes determination in food authentication: a review. Ann. Fac. Medic. Vet. di Parma, 2006, XXVI:193 ~204.
    78. González-Martín I. Pérez C G, J. Méndez J H, González C S. Differentiation of dietary regimene of Iberian swine by means of isotopic analysis of carbon and sulphur in hepatic tissue. Meat Science, 2001, 58: 25~30.
    79. Gremaud G, Quaile S, Piantini U P, fammatter E, Corvi C. Characterization of Swiss vineyards using isotopic data in combination with trace elements and classical parameters. European Food Research and Technol-ogy, 2004, 219: 97~104.
    80. Guadarrama A, Fernandez J A, Inguez M Souto J, de Saja J A. Discrimination of wine aroma using an array of conducting polymer sensors in conjunction with solid-phase micro- extraction (SPME) technique. Sensors and Actuators B-Chemical, 2001, 77: 401~408.
    81. Gutiérrez R, Vega S, Díaz G, Sánchez J, Coronado M, Ramírez A, Pérez J, González M, Schettino B. Detection of non-milk fat in milk fat by gas chromatography and linear discriminant analysis. Journal of Dairy Science, 2009, 92: 1846~1855.
    82. Heaton K, Simon D K, Hoogewerff J, Woolfe M. Verifying the geographical origin of beef: The application of multi-element isotope and trace element analysis. Food Chemistry, 2008, 107: 506~515.
    83. Hegerding L, Seidler D, Danneel H J, Gessler A, Nowak B. Oxygen isotope ration analysis for the determination of the origin of beef. Fleischwirtschaft, 2002, 82(4):95~100.
    84. Hilmar F. The natural fingerprint of stable isotopes– use of IRMS to test food authenticity. Anal Bioanal Chem, 2007, 388:541~544.
    85. Hurley I P, Coleman R C, Ireland H E, Williams J H H. Measurement of bovine IgG by indirect competitive ELISA as a means of detecting milk adulteration. Journal of Dairy Science, 2004, 87:543~549.
    86. Husted S, Mikkkelsen B F, Jensen J, Nielsen N E. Elemental fingerprint analysis of barley (Hordeum vulgare) using inductively coupled plasma mass spectrometry, isotope-ratio mass spectrometry, and multivariate statistics. Anal Bioanal Chem, 2004, 378:171~182.
    87. Jame H, Mc Cutchan Jr, William M, Lweis Jr, Carol Kendall, Claire C. McGrath. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. OIKOS, 2003, 102:378~390
    88. Jamin E, Gonzalez J, Remaud G, Naulet N, Martin G G, Weber D, Rossmann A, Schmidt H L. Improved detection of sugar addition to apple juices and concentrates using internal standard 13C IRMS. Analytica Chimica Acta, 1997, (347): 359~368.
    89. Jha V K, Kumar A, Mandokhot U V. Indirect enzyme—linked immunosorbent assay in detection and differentiation of coked and raw pork from meats of other species. Journal of Food Science and Technology—Mysore, 2003, 40: 254~256.
    90. Kelly J F D, Downey G, Fouratier V. Initial study of honey adulteration using midinfrared (MIR)spectroscopy and chemometrics. Journal of Agricultural and Food Chemistry, 2004, 52:33~39.
    91. Kelly S D, Heaton K, Hoogewerff J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends in Food Science & Technology, 2005 (16): 555~567.
    92. Kelly S D, Rhodes C. Emerging Techniques in Vegetable Oil Analysis Using Stable Isotope Ratio Mass Spectrometry. Grasasy Aceites, 2002(53): Fasc. 1, 34~44.
    93. Knobbe N, Vogl J, Pritzkow W, Panne U, Fry H, Lochotzke H M, Preiss-Weigert A. C and N stable isotope variation in urine and milk of cattle depending on the diet. Anal Bioanal Chem, 2006, 386:104~108.
    94. Kornexl B E. Rossmann A, Schmidt H L. Improving fruit juice origin assignment by combined carbon and nitrogen isotope ratio determination in pulps. Z Lebensm Unters Forsch, 1996, 202: 55~59.
    95. Kornexl B E, Werner T, Rossmann A, Schmidt H L. Measurement of stable isotope abundances in milk and milk ingredients: a possible tool for origin assignment and quality control. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung, 1997, 205(1): 19~24.
    96. Linda M R, O′Donnell C P, Downey Gerard. Recent technological advances for the determination of food authenticity. Trends in Food Science & Technology, 2006 (17): 344~353.
    97. Martinez I, Aursand M, Erikson U, Singstad T E, Veliyulin E, Zwaag C V. Destructive and non-destructive analytical techniques for authentication and composition analyses of foodstuffs. Trends in Food Science & Technology, 2003, 14: 489~498.
    98. Manca G, Franco M A, Versini G, Camin F, Rossmann Tola A. Correlation between Multielement Stable Isotope Ratio and Geographical Origin in Peretta Cows’Milk Cheese. American Dairy Science Association, 2006, 89: 831~839.
    100. Mannina L, Patumi M, Proietti N, Segre A L. Geographical characterization of Italian extra virgin olive oils using high-field H-1 NMR spectroscopy. Journal of Agricultural and Food Chemistry, 2001, 49: 2687~2696.
    101. Mcconnaughey T A, Burdett J, Whelan J F, Paull C K. Carbon isotopes in biological carbonate: respiration and photosynthesis. Geochim, Cosmochim. Acta, 1997, 61: 611~622.
    102. Minagawa M, Wada E. Stepwise enrichment of 15N along food chains: further evidence and the relation betweenδ15N and animal. Geochim. Cosmochim. Acta, 1984, 48: 1135~1140.
    103. Miranda P M, Meuwissen, Annet G J, Velthuis, Henk Hogeveen, Ruud B M, Huirne. Traceability and certification in meat supply chains. Journal of Agribusiness, 2003, 21 (2):167~181.
    104. Moe, T. Perspectives on traceability in food manufacture. Trends in Food Science & Technology, 1998, (9):211~214.
    105. Molkentin J, Giesemann A. Differentiation of organically and conventionally produced milk by stable isotope and fatty acid analysis. Anal Bioanal Chem, 2007, 388(1):297~305.
    106. Móri C, Garcia E A, Ducatti C, Denadai J C, Pelicia K, Gottmann R, Mituo Aom, Bordinhon A M. Traceability of animal byproducts in Quail(Coturnix coturnix japonica)tissues using caron(13C/12C) and nitrogen (15N/14N stable isotopes. Brazilian Journal of Poultry Science, 2007, 9(4): 263~269.
    107. Nakashita R, Suzuki Y, Akamatsu F, Iizumi Y, Korenaga T, Chikaraishi Y. Stable carbon, nitrogen, and oxygen isotope analysis as a potential tool for verifying geographical origin of beef. Analytica Chimica Acta, 2008, 617: 148~152.
    108. Nardoto G B, Godoy de P B, Ferraz E S de B, Ometto J P H B, Martinelli L A . Stable carbon and nitrogen isotopic fractionation between diet and swine tissues. Sci. Agric., 2006, 63(6): 579~582.
    109. Nectarines M, Mertanen E. Impact of geological origin on trace element composition of edible mushrooms. Journal of Food Composition and Analysis, 2004, 17: 301~310.
    110. Nguyen D D L, Ngoc H H, Dijoux D, Loiseau G, Montet D. Determination of fish origin by using 16S rDNA fingerprinting of bacterial communities by PCR-DGGE: An application on Pangasius fish from Viet Nam. Food Control, 2008, 19 (5): 454~460.
    112. Ogrinc N, Kosir I J, Spangenberg JE, Kidric J.The application of NMR and MS methods for detection of adulteration of wine, fruit juices, and olive oil: A review. Anal Bioanal Chem, 2003, 376: 424~430.
    113. Padovan G J, De Jong D, Rodrigues L P, Marchini J S. Detection of adulteration of commercial honey sample by the 13C/12C isotope ratio. Food Chemistry.2003, 82 (4):633~636.
    114. Penza M, Cassano G. Chemometric characterization of Italian wines by thin-film multisensors array and artificial neural networks. Food Chemistry, 2004, 86:283~296.
    115. Peres B, Barlet N, Loiseau G, Montet D. Review of the current methods of analytical traceability allowing determination of the origin of foodstuffs. Food Control, 2007, 18:228~235.
    116. Piasentier E, Valusso R, Camin F, Versini G. Stable isotope ratio analysis for authentication of lamb meat. Meat Science, 2003, 64:239~247.
    117. Picque D, Cattenoz T, Corrieu G, Berger J L. Discrimination of red wines according to their geographical origin and vintage year by the use of mid-infrared spectroscopy. Sciences des Aliments, 2005, 25(33): 207~220.
    118. Pillonel L, Ampuero S, Tabacchi R, Bosset J O. Analytical methods for the determination of the geographic origin of Emmental cheese: Volatile compounds by GC/Ms-FID and electronic nose. European Food Research and technology, 2003, 216:179~183.
    119. Pillonel L, Luginbühl, Picque D, Schaller E, Tabacchi R, Bosset J O. Analytical methods for the determination of the geographic origin of Emmental cheese: mid- and near-infrared spectroscopy Eur Food Res Technol, 2003, 216(2): 174~178.
    120. Pillonel L, Badertscher R, Froidevaux P, Haberhauer G, Holzl S, Horn P, Jakob A, Pfammatter E, Piantini U Rossmann A, Tabacchi R, Bosset J O. Stable isotope rations, major, trace and radioactive elements in emmental cheeses of different origins. Lebensm,-Wiss.u.-Technol, 2003,36: 615~623.
    121. Prache S, Cornu A, BerdaguéJ L, Priolo A. Traceability of animal feeding diet in the meat and milk of small ruminants. Small Ruminant Research, 2005, 59: 157~168.
    122. Reid L M, O’Donnell C P, Downey G. Recent technological advances for the determination of food authenticity. Trends in Food Science & Technology, 2006 (17): 344~353.
    123. Reid L M, O’Donnell C P, Downey G. Potential of SPME-GC and Chemometrics to Detect Adulteration of Soft Fruit Purées. Journal of Agricultral and Food Chemistry, 2004, 52 (3): 421~427.
    124. Reid L M, Woodcock, T, O’Donnell, C P, Kelly, J D, Downey G, Dalvit C, Marchi M, Cassandro M. Differentiation of apple juice samples on the basis of heat—treatment and variety using chemometric analysis of MIR and NIR data. Food Research International, 2005, 8(10):1109~1l15.
    125. Renou J P, Bielicki G, Deponge C,Gachon P, Micol D, Ritz P. Characterization of animal products according to geographic origin and feeding diet using nuclear magnetic resonance and isotope ratio mass spectrometry. II. Beef meat. Food Chemistry, 2004, 86: 251~256.
    126. Renou J P, Deponge C, Gachon P, Bonnefoy J C, Coulon J B, Garel J P, VéritéR, Ritz Patrick. Characterization of animal products according to geographic origin and feeding diet using nuclear magnetic resonance and isotope ratio mass spectrometry: cow milk. Food Chemistry, 2004 (85): 63~66.
    127. Ritz P, Gachon P, Garel J P, Bonnefoy J C, Coulon J B, Renou J P. Milk characterization: Effect of the breed. Food Chemistry, 2005, 91 (3): 521~523.
    128. Rossmann A. Determination of stable isotope ratios in food analysis. Food Reviews International, 2001, 17(3): 347~381.
    129. Rossmann A, Haberhauer G, H?lzl S, Horn P, Pichlmayer F, Voerkelius S. The potential of multielement stable isotope analysis for regional origin assignment of butter. Eur Food ResTechnol, 2000, 211:32~40.
    130. Rossmann A, Kornexl B E, Versini G., Pichlmayer F, Lamprecht G. Origin assignment of milk from alpine regions by multielement stable isotope ratio analysis (SIRA). J.Food Sci. Nutr. 1998, 1: 9~21.
    131. Rossmann A, Schmidt H L, Hermann A, Ristow R. Multiele-ment stable isotope ratio analysis of glycerol to determine its origin in wine. Zeitschrift fuer Lebensmittel Untersuchung und Forschung A/Food-Research-and-Technology, 1998, 207(3): 237~243.
    132. Rossmann A, Schmidt H L, Reniero F, Versini G, Moussa I, Merle M H. Stable carbon isotope content in ethanol of EC data bank wines from Italy, France and Germany. Z Lebensm Unters Forsch, 1996, 203: 293~301.
    133. Rummel S, Rossmann A, H?lzl S, Horn P. Determination of fruit juice origin by using multi-element stable isotopes. Geophysical Research Abstracts, 2006(8): 08094.
    134. Sacco D, Brescia M A, Buccolieri A, Jambrenghi A C. Geographical origin and breed discrimination of Apulian lamb meat samples by means of analytical and spectroscopic determinations. Meat science, 2005, 71:542~548.
    135. Schmidt O, Quilter J M, Bahar B, Moloney A P, Scrimgeour C M, Begley I S Monahan F J. Inferring the origin and dietary history of beef from C, N and S stable isotope ratio analysis. Food Chemistry, 2005, 91:545~549.
    136. Schw?gele F. Traceability from a European perspective. Meat Science, 2005, 71: 164~173.
    137. Schwertl M, Auerswald K, Schnyder H. Reconstruction of the isotopic history of animal diets by hair segmental analysis. Rapid Communication in Mass Spectrometry Spectrometry. 2003, 17: 1312~1318.
    138. Schwertl M, Auerswald K, Sch?ufele R, Schnyder H.Carbon and nitrogen stable isotope composition of cattle hair: Ecological fingerprints of production system?.Agriculture,Ecological and Environment, 2005, 109: 153~165.
    139. Shackell G H, Mathias H C, Cave V M, Dodds K G. Evaluation of microsatellites as a potential tool for product tracing of ground beef mixtures. Meat Science, 2005, 70: 337~345.
    140. Slattery W J, Sinclair A J Differentiation of meat according to species by the electrophoretic separation of muscle lactate dehydrogenase and esterase isoenzymes and isoelectric focusing of soluble muscle proteins. Australian Veterinary Journal, 1983, 60(2): 47~51.
    141. Smith G C, Tatum J D, Belk K E, Scanga J A, Grandin T, Sofos J N. Traceability from a US perspective. Meat Science, 2005, 71:174~193.
    142. Simpkins W A, Patel G, Harrison M, Goldberg D. Stable carbon isotope ratio analysis of Australian orange juices, Food Chemistry, 2000 (70): 385~390.
    143. Sivakesava S, Irudayaraj J M K, Korach R L. Detection of adulteration in apple juice using mid infrared spectroscopy. Applied Engineering in Agriculture, 2001, 17: 815~820
    144. Sponheimer M, Robinson T, Ayliffe L K, Passey B H, Roeder B, Shipley L, Lopez E, Cerling T E, Dearing M D, Ehleringer J R. An experimental study of carbon-isotope fractionation between diet,hair, and feces of mammalian herbivores. Candian Journal of Zoology, 2003, 81: 871~879.
    145. Sponheimer M, Robinson T, Ayliffe L K, Roeder B, Hammer J, Passey B H, West A G, Cerling T E, Dearing M D, Ehleringer J R. Nitrogen isotopes in mammalian herbivores: hair delta-15-N values from a controlled feeding study. Int. J. Osteoarchaeol. 2003, 12: 80~87.
    146. Steine C, Beaucousin F, Siv C Peiffer G. Potential of semiconductor sensor arrays for the origin authentication of pure Valencia orange juices. Journal of Agricultural and Food Chemistry, 49: 3151~3160.
    147. Suzuki Y, Chikaraishi Y, Ogawa N O, Ohkouchi N, Korenaga T. Geographical origin of polished rice based on multiple element and stable isotope analyses. Food Chemistry, 2008, 109: 470~475.
    148. Tieszen L L, Boutton T W, Tesdahl K G, Slade N A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications forδ13C analysis of diet. Oecologia, 1983, 57:32~37.
    149. Thiem I, Matthias L, Hermann S. Factors influencing the 18O/16O-ratio in meat juices. Isotopes in Environmental Heath Studies, 2004, 40(3):191~197.
    150. Verkaar E L C, Nijman I J, Boutaga K, Lenstra J A. Differentiation of cattle species in beef by PCR-RFLP of mitochondrial and satellite DNA. Meat Science, 2002, 60:365~369.
    151. Versini G, Camin F, Pamponi M, Dellacassa E. Stable isotope analysis in grape products: 13C-based internal standardization methods improve the detection of some types of adulterations. Analytica Chimica Acta, 2006, 563, 325-330.
    152. Vollaire Y, Banas D, Thomas M, Roche H. Stable isotope variability in tissues of the Eurasian Perch Perca Fluviatiilis. Comparative Biochemistry and Physiology, Part A, 2007, 148: 504~509.
    153. White J W, Doner L W. Mass spectrometric detection of high—fructose coin syrup in honey by use of 13C/12C ratio: collaborative study. Journal of the Association of Official Analytical Chemists, 1978, 61:746~750.
    154. White J W, Winters K. Honey protein as internal standard for stable carbon isotope ratio detection for adulteration honey. Journal of the Association of Official Analytical Chemists, 1989, 72: 907~911.
    155. Young O A, BerdaguéJ L, Viallon C, Rousset-Akrim S, Theriez M. Fat-borne volatiles and sheep meat odour. Meat Science, 1997, 45 (2): 183~200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700