用户名: 密码: 验证码:
造纸废水纸浆沉淀物宏基因组文库的构建及纤维素酶基因的克隆和鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分别采用间接提取法和直接提取法从造纸废水纸浆沉淀物中提取宏基因组DNA,使用含2%酸洗PVPP的Sephadex G200凝胶柱和电洗脱两步法进行纯化。以直接提取法获得并纯化的DNA为模板,PCR扩增该环境中细菌的16S rDNA并构建文库。随机挑取文库克隆进行测序,BlastN对比表明该环境中存在大量的未培养细菌,并具有种类的多样性,系统发育分析显示这些未培养细菌可分为螺旋体、变形杆菌、拟杆菌和厚壁菌四个群落。分别回收间接提取法和直接提取法获得的宏基因组DNA中30~50kb的片段并补平末端,以柯斯质粒pWEB∷TNC为载体构建了两个宏基因组文库PS1和PS2。以间接提取法提取的DNA构建的文库PS1含8,000个克隆,外源总DNA容量为2.43×10~8bp;以直接提取法提取的DNA构建的文库PS2含10,000个克隆,外源总DNA容量为3.53×10~8bp。
     经活性筛选从文库PS1中得到一个表达内切葡聚糖酶活性的克隆;从文库PS2中得到2个表达内切葡聚糖酶活性的克隆,3个表达外切葡聚糖酶活性的克隆及2个表达β-葡萄糖苷酶活性的克隆。选择文库PS1中的活性克隆PS1-C64,文库PS2中表达不同活性克隆中活性最强的PS2-C2、PS2-M6和PS2-B1作为进一步研究的对象。经亚克隆、测序和表达鉴定了四个新的纤维素酶基因umcel5F、umcel5L、umcel5M和umbgl3D。
     umcel5F全长1,110bp,编码一个含369个氨基酸残基的内切葡聚糖酶,该酶与一个来自嗜酸细菌的内切葡聚糖酶(GenBank索引号:AF40690)的同源性最高,具有38%的一致性和54%的相似性。umcel5L全长1,521bp,编码一个含506个氨基酸残基的内切葡聚糖酶,该酶与大豆慢生根瘤菌的一个内切葡聚糖酶(GenBank索引号:BAC48632)的同源性最高,具有43%的一致性和59%的相似性。umcel5M全长1,053bp,编码一个含350个氨基酸残基的纤维糊精酶,该酶与产琥珀酸丝状杆菌的一个纤维糊精酶(GenBank索引号:AAA50210)的同源性最高,具有48%的一致性和69%的相似性。umbgl3D全长2,382bp,编码一个含793个氨基酸残基的β-葡萄糖苷酶,该酶与海栖热袍菌的一个β-葡萄糖苷酶(GenBank索引号:AAD35119)的同源性最高,具有46%的一致性和61%的相似性。
     在(?)KTA explorer 100蛋白纯化仪上使用Source 15Q阴离子交换柱对重组蛋白Umcel5F进行纯化。以羧甲基纤维素(CMC)为底物对纯化蛋白Umcel5F进行酶学特性分析,该酶的最适反应pH值为6.5,最适反应温度为55℃,Km为16.44mg/ml,Vmax为433.7U/mg蛋白,该酶可在pH 5.5-10.0之间及温度低于50℃保持活力稳定。以各种寡糖作为底物来分析Umcel5F的底物特异性,薄层层析显示Umcel5F对纤维二糖和纤维三糖没有水解作用,纤维四糖被完全水解为纤维二糖,纤维五糖被水解为纤维二糖和纤维三糖。对Umcel5F降解CMC的产物进行粘度测定,结果表明随着反应时间的推移,反应产物的粘度缓慢下降,同时伴随着还原糖量的不断上升。这说明Umcel5F是一个具有外切作用方式的内切葡聚糖酶。
     这是第一次采用未培养方法对造纸废水纸浆沉淀物的细菌多样性进行分析并从中克隆新的纤维素酶基因的研究报告。
The metagenomic DNA of pulp sediments from paper mill effluent was extracted by indirect extraction method and direct extraction method respectively, the crude DNA was first purified by Sephadex G200 column containing 2% acid-washed polyvinylpolypyrrolidone (PVPP) and then by electroelution. A 16S rDNA library was prepared by cloning the amplified 16S rDNA using purified metagenomic DNA obtained by direct extraction method as template. Clones from the 16S rDNA library were randomly selected to be sequenced, BlastN showed that diverse of uncultured bacteria inhabit in this environment, and phylogenetic analysis revealed these bacteria can be classified into 4 clusters as Spirochaetes , Proteobacteria , Bacteroidetes and Firmicutes. The purified metagenomic DNA fragment between 30-50 kb was recovered and end-repaired, one metagenomic library PS1 harbored the DNA derived from indirect extraction method and another metagenomic library PS2 acquiring the DNA through direct extraction method were constructed with pWEB::TNC cosmid vector. The library PS1 contained 8,000 clones and the capacity of foreign DNA was 2.43×10~8 bp, the library PS2 contained 10,000 clones and the capacity of which was 3.53×10~8 bp.Functional screening of the library PS 1 resulted in isolation of one clone expressing endoglucanase activity, moreover, the same screening strategy applied to library PS2 brought on two independent clones expressing endoglucanase activity, three independent clones expressing exoglucanase activity and two independent clones expressingβ-glucosidase activity. The positive clone PS1-C64 from the library PS1 and one clone expressing strongest enzyme activity from each activity category in the library PS2 designated as PS2-C2, PS2-M6, PS2-B1 were chosen to be further analyzed. Four novel cellulase genes named umcel5F, umcel5L, umcel5M and umbgl3D were identified by subcloning, sequencing and expressing in Escherichia. coli.
     The ORF of umcel5F was 1,110 bp, which encoded an endoglucanase with 369 amino acid residues. The Umcel5F shares highest homology with an endoglucanase (Accession number: AF40690) from Acidobacterium bacterium Ellin345 at 38% identity and 54% similarity. The ORF of umcel5L was 1,521 bp, which encoded an endoglucanase with 506 amino acid residues. The Umcel5L is most related to an endoglucanase (Accession number: BAC48632) from Bradyrhizobiumjaponicum at 43% identity and 59% similarity. The ORF of umcel5M was 1,053 bp, which encoded a cellodextrinase with 350 amino acid residues. The Umcel5M is most similar to a cellodextrinase (Accession number: AAA50210) from Fibrobacter succinogenes at 48% identity and 69% similarity. The ORF of umbgl3D was 2,382 bp, which encoded a putativeβ-glucosidase with 793 amino acid residues. The Umbgl3D shares highest homology with aβ-glucosidase (Accession number: AAD35119) from Thermotoga maritima at 46% identity and 61% similarity.
     The recombinant enzyme Umcel5F was purified in (?)KTA explorer 100 HPLC with Source 15Q anion-exchange column. The purified Umcel5F was characterized with carboxymethyl cellulose sodium salt (CMC) as template. The optimal pH and temperature of the enzyme against CMC were pH6.5 and 55℃, respectively. Km and Vmax of the recombinant enzyme toward CMC were 16.44 mg/ml and 433.7 U/mg protein. The enzyme was stable at temperature below 50℃and pH 5.5~10.0. To investigate the activities of Umcel5F with various cello-oligosaccharides, the hydrolysis products obtained from the substrates were qualitatively analyzed by TLC. Cellobiose and cellotriose were not hydrolysed by Umcel5F, cellotetraose was mostly hydrolysed to cellobiose, and degradation of cellopentaose produced both cellobiose and cellotriose. The viscosity assay showed that hydrolysis of CMC was accompanied by a slow decrease in the specific viscosity of the reaction solution and a gradual increase in the level of reducing sugar. These results indicated that the recombinant endoglucanase Umcel5F is a processive endoglucanase.
     This is the first report on the bacterial diversity of pulp sediments from paper mill effluent and cloning novel cellulase genes from the bacteria by culture-independent method.
引文
[1] Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995, 59(1): 143-169.
    [2] Cowan D, Meyer Q, Stafford W et al. Metagenomic gene discovery: past, present and future. Trends Biotechnol. 2005, 23(6): 321-329
    [3] Cowan DA, Arslanoglu A, Burton SG et al. Metagenomic, gene discovery and the ideal biocatalyst. Biochem Soc Trans. 2004, 32(2): 298-302.
    [4] Schmidt TM, DeLong EF, Pace NR. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991, 173(14): 4371-4378.
    [5] Hugenholtz P, Goebel BM, Pace NR. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol. 1998, 180(18): 4765-4774
    [6] Rappe MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbial. 2003, 57: 369-394
    [7] Wang GY, Graziani E, Waters B et al. Novel natural products from soil DNA libraries in a streptomycete host. Org Lett. 2000, 2(16): 2401-2404
    [8] Kaeberlein T, Lewis K, Epstein SS. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science. 2002, 296(5570): 1127-1129
    [9] Karsten Z., Gerardo T., Rappa M et al. Cultivating the uncultured. Proc Natl Acad Sci USA. 2002, 99(24): 15681-15686
    [10] Frohlich J, Konig H. New techniques for isolation of single prokaryotic cells. FEMS Microbiol Rev. 2000, 24(5): 567-572
    [11] Lorenz P, Schleper C. Metagenome: a challenging source of enzyme discovery. J Mol. Catalysis B: Enzymatic, 2002, 19(20): 13-19
    [12] Roddguez-Valera F. Environmental genomics, the big picture?. FEMS Microbiol Lett, 2004, 231(2): 153-158
    [13] Rondon MR, August PR, Bettermann AD et al. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol, 2000, 66(6): 2541-2547
    [14] Tyson GW, Chapman J, Hugenholtz P et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 2004, 428(6978): 37-43
    [15] Berry AE, Ciocchini EC, Selby T et al. Isolation of high molecular weight molecular weight DNA from soil for cloning into BAC vectors. FEMS Micobiol Lett, 2003, 223(1): 15-20
    [16] Robe P, Nalin R, Capellano C. Extraction of DNA from soil. Eur. J. Soil Biol. 2003, 39: 183-190
    [17] Tebbe CC, Vahjen W. Interference of humid acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ. Microbiol. 1993, 59(8): 2657-2665
    [18] Young CC, Burghoff R.L, Keim LG et al. Polylonylpyrroldore-agrose gel electrophoresis purification of polymerase chain reaction amplifiable DNA from soils. Appl Environ Microbiol. 1993, 59(6): 1972-1974
    [19] Wechter P, Williamon J, Robertson A et al. A rapid, cost-effective procedure for the extraction of microbial DNA from soil. World J Microbiol Biotechnol. 2003, 19:85-91
    [20] Frostegarp A, Courtois S, Ramisse V et al. Quantification of Bias Related to the Extraction of DNA Directly from Soils. Appl Environ Microbiol. 1999, 65(12): 5409-5420
    [21] Faegri A, Torsvik VL. Bacterial and fungal activities in soil: separation of bacteria and fungi by a rapid fractionated centrifugation technique. Soil Biol Biochem. 1977, 9:105-112
    [22] Steffan RJ, Goksoyr J, Bej AK et al. Recovery of DNA from soils and sediments. Appl Environ Microbiol. 1988, 54(12): 2908-2915
    [23] Volcssiouk T, Robb EJ, Nazar RN. Direct DNA extraction for PCR mediated assays of soil organisms. Appl Environ Microbiol. 1995, 61 (11): 3972-3976
    [24] Raina K, Chandlee JM. Recovery of genomic DNA from a fungus (Scelerotinia homoeocarpa) with high polysaccharide content. Biotechniques. 1996, 21:1030-1032
    [25] Entcheva P, Liebl W, Johann A et al. Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl Environ Microbiol. 2001, 67(1): 89-99
    [26] Zhou J, Brouns MA, Tiedje JM. DNA recovery from soil of diverse composition. Appl Environ Microbiol. 1996, 62(2): 316-322
    [27] Dijkmans R, Jagers A, Kreps S et al. Rapid method for purification of soil DNA for hybridization and PCR analysis. Microb Releases. 1993, 2(1): 20
    [28] Leff LG, Dana JR, McArthur JV et al. Comparision of methods of DNA extraction from steam sediments. Appl. Environ. Microbiol. 1995, 61(3): 1141-1143
    [29] Pillai SD, Fosephenson KL, Bailey RL et al. Rapid method for processing soil samples for polymerase chain reaction amplification of specific gene sequences. Appl Environ Microbiol. 1991, 57(8): 2283~2286
    [30] 杨瑞馥.从土壤中分离DNA的研究进展.微生物免疫进展,2003,28(2):57-61
    [31] Tsai YL, Olson BH. Rapid methods for separation of bacterial DNA from hummic substances in sediments for polymerase chain reaction. Appl Environ Microbiol. 1992, 58(7): 2292-2295
    [32] Picard C, Ponsonnet C, Paget E et al. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol. 1992, 58(9): 2717-2722
    [33] 张瑞福,劳慧,崔中利等.土壤微生物总DNA的提取纯化.微生物学报,2003,43(2):276-282
    [34] 赵晶,张锐,林念炜等.深海沉积物中微量DNA的提取及应用.海洋与湖沼.2003,3 (43):313-321
    [35] 张汉波,段昌群.直接从土壤中提取DNA的方法.生物技术.2002,12(4):37-39
    [36] 王啸波,唐玉秋,王金华等.环境样品中DNA的分离纯化和文库构建.微生物学报.2000,41(2):133-140
    [37] 王远亮,杨瑞红,毛爱军等.采用未培养技术对荷斯坦奶牛瘤胃细菌多样性进行初步分析.微生物学报.2005,45(6):915-919
    [38] 方光伟,洪雪梅,蔡丽希等.土壤宏基因组的提取及基于免培养技术分析细菌16S rDNA.江西农业大学学报.2005,27(4):505-507
    [39] 庞浩,张鹏,莫新春等.一种有效构建环境未培养微生物柯斯质粒文库的方法.2004年中国微生物学会学术年会论文摘要集,2004年11月:167
    [40] Handelsman J, Rondon MR, Brady SF et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998, 5(10): R245-249
    [41] Streit WR, Daniel R, Jaeger KE. Prospecting for biocatalysts and drugs in the genome of non-cultured microorganisms. Curr Opin Biotechno. 2004, 15(4): 285-290
    [42] Henne A, Daniel R, Schmitz RA et al. Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl Environ Microbiol. 1999, 65(9): 3901-3907
    [43] Beja O, Koonin EV, Aravind L et al. Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Appl Environ Microbiol. 2002, 68(1): 335-345
    [44] Beja O, Suzuki MT, Koonin EV et al. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol. 2000, 2(5): 516-529
    [45] Quaiser A, Ochsenreiter T, Klenk HP et al. First insight into the genome of an uncultivated crenarchaeote from soil. Environ Microbiol. 2002, 4(10): 603-611
    [46] Daniel R. The soil metagenome-a rich resource for the discovery of novel natural products. Curr Opin Biotechnol. 2004, 15(3): 199-204
    [47] Courtois S, Cappellano CM, Ball M et al. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol. 2003, 69(1): 49-55
    [48] Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: genome analysis of microbial communities. Annu.Rev.Genet. 2004, 38:525-552
    [49] Henne A, Schmitz RA, Bomeke M et al. Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol. 2000, 66(7): 3113-3116
    [50] Majernik A, Gottschalk G, Daniel R. Screening of environmental DNA libraries for the presence of genes conferring Na(+)(Li(+))/H(+) antiporter activity on Escherichia coli: characterization of the recovered genes and the corresponding gene products. J Bacteriol. 2001, 183(22): 6645-6653
    [51] Steit WR, Schmitz RA. Matagenomics: the key to the uncultured Microbes. Curr Opin Microbiol. 2004, 7:492-498
    [52] Knietsch A, Bowien S, Whited G et al. Identification and characterization of genes encodingcoenzyme B_(12)-dependent glycerol and diol dehydratases from metagenomic DNA libraries derived from enrichment cultures. Appl Environ Microbiol. 2003, 69(6): 3048-3060
    [53] Sebat JL, Colwell FS, Crawford RL. Metagenomic profiling: microarray analysis of an environmental genomic library. Appl Environ Microbiol. 2003, 69(8): 4927-4934
    [54] Bell PJ, Sunna A, Gibbs MD et al. Prospecting for novel lipase genes using PCR. Microbiol. 2002, 148(Pt8): 2283-2291
    [55] Beja O, Aravind L, Koonin EV et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science. 2000, 289(5486): 1902-1906
    [56] Campbell BJ, Stein JL, Cary SC. Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl Environ Microbiol. 2003, 69(9): 5070-5078
    [57] Liles MR, Manske BF, Bintrim SB et al. A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl Environ Microbiol. 2003, 69(5): 2684-2691
    [58] Lopez GP, Brochier C, Moreira D et al. Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers. Environ Microbiol. 2004, 6(1): 19-34
    [59] Quaiser A, OchsenreiterT, Lanz C et al. Acidobacteria from a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol Microbiol. 2003, 50(2): 563-575
    [60] Hallam SJ, Girguis PR, Preston CM et al. Identification of methyl coenzyme M reductase A (mcr A) genes associated with methane-oxidizing archaea. Appl Environ Microbiol. 2003, 69(9): 5483-5491
    [61] Schleper C, DeLong EF, Preston CM et al. Genomic analysis reveals chromosomal variation in natural populations of the uncultured psychrophilic archaeon Cenarchaeum symbiosum. J. Bacteriol. 1998, 180(19): 5003-5009
    [62] Schleper C, Swanson RV, Mathur EJ et al. Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum. J Bacteriol. 1997, 179(24): 7803-7811
    [63] Stein JL, Marsh TL, Wu KY et al. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J Bacteriol. 1996, 178(3): 591-599
    [64] Vergin KL, Urbach E, Stein JL et al. Screening of a fosmid library of marine environmental genomie DNA fragments reveals four clones related to members of the order Planctomycetales. Appl Environ Microbiol. 1998, 64(8): 3075-3078
    [65] Voget S, Leggewie C, Uesbeck A et al. Prospecting for novel biocatalysts in a soil metagenome. Appl Environ Microbiol. 2003, 69(10): 6235-6242
    [66] Knietsch A, Waschkowitz T, Bowien S et al. Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on Escherichia coli. J Mol Microbiol Biotechnol. 2003, 5(1): 46-56
    [67] Knietsch A, Waschkowitz T, Bowien S et al. Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli. Appl Environ Microbiol. 2003, 69(3): 1408-1416
    [68] Schmeisser C, Stockigt C, Raasch C et al. Metagenome survey of biofilms in drinking-water networks. Appl Environ Microbiol. 2003, 69(12): 7298-7309
    [69] Richardson TH, Tan X, Frey G et al. A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable a-amylase. J Biol Chem. 2002, 277:26501-26507
    [70] MacNeil IA, Tiong CI, Minor C et al. Expression and isolation of antimicrobial small molecules from soil DNA libraries. J Mol Microbiol Biotechnol. 2001, 3(2): 301-308
    [71] Brady SF, Clardy J. Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA. J Am Chem Soc. 2000, 122:12903-12904
    [72] Healy FG, Ray RM, Aldrich HC et al. Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lingocellulose. Appl Microbiol Biotechnol. 1995, 43(4): 667-674
    [73] Rees H, Grant S, Jones B et al. Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles. 2003, 7(5): 415-421
    [74] Ferrer M, Golyshina OV, Chernikova TN et al. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol. 2005, 7(12): 1996-2010.
    [75] 赵广存,段承杰,庞浩等,牛瘤胃未培养细菌中一个β—葡萄糖苷酶基因umbg13A的克隆及鉴定.西南农业学报,2005,18(4):472-476.
    [76] Cottrell MT, Moore JA, Kirchman DL. Chitinases from uncultured marine microorganisms. Appl Environ Microbiol. 1999, 65(6): 2553-2557
    [77] Eschenfeldt WH, Stols L, Rosenbaum H et al. DNA from uncultured organisms as a source of 2,5-diketo-D-gluconic acid reductases. Appl Environ Microbiol. 2001, 67(9): 4206-4214
    [78] Lee SW, Won K, Lim HK et al. Screening for novel lipolytic enzymes from uncultured soil microorganism. Appl Microbiol Biotechnol. 2004, 65(6): 720-726
    [79] Brady SF, Clardy J. Synthesis of long-chain fatty acid enol esters isolated from an environmental DNA clone. Org. Lett. 2003, 5:121-124
    [80] Hughes DS, Felbeck H, Stein JL. A histidine protein kinase homolog from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl Environ Microbiol, 1997, 63(9): 3494-3498
    [81] Osburne MS, Grossmann TH, August PR et al. Tapping into microbial diversity for natural products drug discovery, ASM News. 2000, 66:411-417
    [82] Brady SF, Chao CJ, Clardy J. New natural product families from an environmental DNA (eDNA) gene cluster. J Am Chem Soc. 2002, 124(34): 9968-9969
    [83] DeSantis G, Zhu Z, Greenberg WA et al. An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. J Am Chem Soc. 2002, 124(31): 9024-9025
    [84] Zeidner G, Preston CM, Delong EF et al. Molecular diversity among marine picophytoplankton as revealed by psb A analyses. Environ Microbiol. 2003, 5:212-216
    [85] Wilkinson DE, Jeanicke T, Cowan DA. Efficient molecular cloning of environmental DNA from geothermal sediments. Biotechnol. Lett. 2002, 24(2): 155-161
    [86] Piel J. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA. 2002, 99(22): 14002-14007
    [87] Piel J, Hui D, Fusetani N et al. Targeting modular polyketide synthases with iteratively acting acyltransferases from metagenomes of uncultured bacterial consortia. Environ. Microbiol. 2004, 6(9): 921-927
    [88] Gupta R, Berg QK, Lorenz P. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol. 2002, 59(1): 15-32
    [89] Santosa DA. Rapid extraction and purification of environmental DNA for molecular cloning applications and molecular diversity studies. Mol Biotechnol. 2001, 17(1): 59-64
    [90] Gillespie DE, Brady SF, Bettermann AD et al. Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol. 2002, 68(9): 4306-4310
    [91] Brady SF, Chao CJ, Handelsman J et al. Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org Lett. 2001, 3(13): 1981-1984
    [92] Diaz-Torres ML, McNab R, Spratt DA et al. Novel tetracycline resistance determinant from the oral metagenome. Antimicrob Agents Chemother 2003, 47(4): 1430-1432
    [93] Diaz-Torres ML, Villedieu A, Hunt N et al. Determining the antibiotic resistance potential of the indigenous oral microbiota of humans using a metagenomic approach. FEMS Microbiol Lett. 2006,258(2): 257-262.
    [94] Byun JS, Rhee JK, Kim DU et al. Crystallization and preliminary X-ray crystallographic analysis of EstEl, a new and thermostable esterase cloned from a metagenomic library. Acta Crystallograph Sect F Struct Biol Cryst Commun. 2006, 62(Pt 2): 145-147. Epub 2006 Jan 27.
    [95] Cottrell MT, Yu L, Kirchman DL. Sequence and expression analyses of Cytophaga-like hydrolases in a Western arctic metagenomic library and the Sargasso Sea. Appl Environ Microbiol. 2005, 71(12): 8506-8513
    [96] Lira HK, Chung EJ, Kim JC et al. Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coil Appl Environ Microbiol. 2005, 71(12): 7768-7777
    [97] Li Y, Wexler M, Richardson DJ et al. Screening a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes. Environ Microbiol. 2005, 7(12): 1927-3196.
    [98] Wexler M, Bond PL, Richardson DJ et al. A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase. Environ Microbiol. 2005, 7(12): 1917-1926
    [99] Kim YJ, Choi GS, Kim SB et al. Screening and characterization of a novel esterase from a metagenomic library. Protein Expr Purif. 2006, 45(2): 315-323. Epub 2005 Jul 11
    [100] Ranjan R, Grover A, Kapardar RK et al. Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem Biophys Res Commun. 2005, 335(1): 57-65.
    [101] Song JS, Jeon JH, Lee JH et al. Molecular characterization of TEM-type beta-lactamases identified in cold-seep sediments of Edison Seamount (south of Lihir Island, Papua New Guinea). J Microbiol. 2005,43(2): 172-178.
    [102] Walter J, Mangold M, Tannock GW. Construction, analysis, and beta-glucanase screening of a bacterial artificial chromosome library from the large-bowel microbiota of mice. Appl Environ Microbiol. 2005, 71(5): 2347-2354
    [103] Piel J, Butzke D, Fusetani N et al. Exploring the chemistry of uncultivated bacterial symbionts: antitumor polyketides of the pederin family. J Nat Prod 2005, 68(3): 472-479
    [104] Rhee JK, Ahn DG, Kim YG et al. New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol. 2005, 71(2): 817-825
    [105] Yun J, Kang S, Park S et al. Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl Environ Microbiol. 2004, 70(12): 7229-7235
    [106] Ginolhae A, Jarrin C, Gillet B et al. Phylogenetic analysis of polyketide synthase Ⅰ domains from soil metagenomic libraries allows selection of promising clones. Appl Environ Microbiol. 2004, 70(9): 5522-5527
    [107] Gabor EM, de Vries EJ, Janssen DB et al. Construction, characterization, and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases. Environ Microbiol. 2004, 6(9): 948-958
    [108] Bayer EA, Chanzy H, Lamed R et al. Cellulose, cellulases and cellulosomes. curr Opin Struct Biol. 1998, 8(5): 548-557
    [109] Muniswaran A, Charyulu N. Solid substrate fermentation of coconut coir pith for cellulase production. Enzyme Microbiology Technology. 1994, 16(5): 436-440
    [110] Gardner KH, Blackwell J. The structure of native cellulose. Biopolymers. 1974, 13:1975
    [111] 高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展.自然科学进展2003,13(1):21—29
    [112] Lynd LR, Weimer PJ, Van Zyl WH et al. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002, 66(3): 506-577
    [113] Huang Y, Krauss G, Cottaz S et al. A highly acid-stable and thermostable endo-beta-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J. 2005,385(Pt 2): 581-588
    [114] Ando S, Ishida H, Kosugi Y et al. Hyperthermostable endoglucanase from Pyrococcus horikoshii. Appl Environ Microbiol. 2002, 68(1): 430-433
    [115] Teeri TT. Crystalline cellulose degradation: new insight into the function of cellobiohydrolase. Trends Biotechnol. 1997, 15(5): 160-167
    [116] Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991,280(Pt2): 309-316
    [117] Zhang YH, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng. 2004, 88(7): 797-824
    [118] Tanaka H, Itakura S, Enoki A. Hydroxyl radical generation by an extracellular low molecular weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete trametes versicolor. J Biotechnol. 1999, 75(1): 57-70
    [119] 王蔚,胡玮.密粘褶菌Gloeophyllum trabeum胞外低分子量多肽的分离纯化及其对纤维素生物降解作用.中国生物化学与分子生物学报.2002,18(2):202-208
    [120] 冯家勋,庞浩,段承杰等.未培养微生物纤维素酶基因资源的挖掘.2005中国资源生物技术与糖工程学术研讨会论文集.2005年7月,p.8,中国济南
    [121] Mielenz J. Ethanol production from biomass: technology and commercialization status. Curr Opin Biotechnol. 2001, 4(3): 324-329
    [122] Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000, 18(5): 355-383
    [123] Beguin P, Aubert JP. The biological degradation of cellulose. FEMS Microbiol Rev. 1994, 13(1): 25-58.
    [124] Mandels M. Applications of cellulases. Biochem Soc Trans.1985, 13: 414-415.
    [125] Humpf H-U, Schrier P. Bound aroma compounds from the fruit and the leaves of Blackberry(Rubus laciniata L.). J Agric Food Chem. 1991, 39: 1830-1832.
    [126] Krammer G, Winterhalter P, Schwab M et al. Glycosidically bound aroma compounds in the fruits of prunus species: Apricot (P. armeniaca, L.), Peach (P. persica, L.), Yellow plum (P. domestica, L. ssp. Syriaca). J Agric Food Chem. 1991, 39:778-781
    [127] Galante YM, De Conti A, Monteverdi R. Application of Trichoderma enzymes in food and feed industries. In: Harman GF, Kubicek CP, editors. Trichoderma & Gliocladium—Enzymes, biological control and commercial applications. Vol. 2. London: Taylor & Francis, 1998b. 327-342.
    [128] Galante YM, De Conti A, Monteverdi R. Application of Trichoderma enzymes in textile industry. In: Harman GF, Kubicek CP, editors. Trichoderma & Gliocladium—Enzymes, biological control and commercial applications. Vol. 2. London: Taylor & Francis, 1998a. pp. 311-326
    [129] Godfrey T, West S. Industrial Enzymology, 2nd ed. London: Macmillan Press, 1996b.
    [130] Uhlig H. Industrial enzymes and their applications, New York: John Wiley & Sons, Inc., 1998. pp. 435
    [131] Akhtar M. Biochemical pulping of aspen wood chips with three strains of Ceriporiopsis subvermispora. Holzforschung. 1994, 48:199-202.
    [132] Noe P, Chevalier J, Mora F et al. Action of enzymes in chemical pulp fibres. Part Ⅱ: enzymatic beating. J Wood Chem Technol. 1986, 6: 167-84.
    [133] Buchert J, Oksanen T, Pere J et al. Applications of Trichoderma reesei enzymes in the pulp and paper industry. In: Harman GF, Kubicek CP, editors. Trichoderma & Gliocladium-Enzymes, biological control and commercial applications, Vol. 2. 1998. 343-363.
    [134] 萨姆布鲁克J.,弗里奇E.F,曼尼阿蒂斯T,分子克隆实验指南(第二版),北京:科学出版社,1999,19-22
    [135] Woese CR. Bacterial evolution. Microbiol Rev. 1987, 51:221-271
    [136] Medlin L, Elwood HJ, Stickel S et al. The characterization of enzymatically amplified eukaryotic 16S-like ribosomal RNA-coding regions. Gene. 1988, 71(2): 491-500
    [137] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987,4(4): 406-4251
    [138] Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterisation of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol. 1982, 43(4): 777-780
    [139] Kwon Ki-sun, Lee Jaehoon, Kang Hyung-gyoo et al, Detection of β-Glucosidase activity in polyacrylamide gels with esculin as substrate. Appl Environ Microbiol. 1994, 60(12): 4584-4586
    [140] Heptinstall J, Stewart JC, Seras M. Fluorimetric estimation of exo-cellobiohydrolase and β-D-glucosidase activities in cellulase from Aspergillus fumigatus Fresenius. Enzyme Microb Technol. 1986, 8(2): 70-74
    [141] Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 224(5259): 680-685
    [142] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72:248-254
    [143] Miller GL. Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Biotechnol Bioeng Symp. 1959, 5:193-219
    [144] Sugimura M, Watanabe H, Lo N et al. Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. Eur J Biochem. 2003, 270(16): 3455-3460
    [145] Blanc M, Marilley L, Beffa T et al. Thermophilic bacterial communities in hot compost as revealed by most probably number counts and molecular (16S rDNA) methods. FEMS microbial Ecol. 1999, 28(2): 141-149
    [146] Howeler M, Ghiorse E.C, Walker L.P. A quantitative analysis of DNA extraction and purification from compost, J. Microbiol. Methods. 2003, 54(1):37-45
    [147] Hugenholtz P. Exploring prokaryotic diversity in the genomic era. Genome Biol. 2002, 3(2): Reviews0003.1-0003.8
    [148] Yu ZT, Mohn W. Bacterial diversity and community structure in an aerated lagoon revealed by ribosomal intergenic spacer analyses and 16S ribosomal DNA sequencing. Appl Environ Microbiol. 2001, 67(4): 1565-1574
    [149] Schloss PD, Handelsman J. Biotechnological prospects from metagenomies. Curr. Opin. Biotechnol. 2003, 14:303-310
    [150] Tomme P, Warren RA, Miller, R.C et al. Cellulose-binding domains: classification and properties. In "Enzymatic Degradation of Insoluble Polysaccharides" (Saddler, J.N. & Penner, M., eds.). 1995, pp. 142-163, American Chemical Society, Washington.
    [151] Limauro D, Cannio R, Fiorentino G et al. Identification and molecular characterization of an endoglucanase gene, celS, from the extremely thermophilic archaeon Sulfolobus solfataricus. Extremophiles. 2001, 5(4): 213-219
    [152] Pouwels J, Moracci M, Cobucci-Ponzano B et al. Activity and stability of hyperthermophilic enzymes: a comparative study on two archaeal beta-glycosidases. Extremophiles. 2000, 4(3): 157-164
    [153] Voorhorst WG, Gueguen Y, Geerling AC et al. Transcriptional regulation in the hyperthermophilic archaeon Pyrococcus furiosus: coordinated expression of divergently oriented genes in response to beta-linked glucose polymers. J Bacteriol. 1999, 181 (12): 3777-3783
    [154] Bauer MW, Driskill LE, Callen W et al. An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes beta-1,4 bonds in mixed-linkage (1—>3),(1—>4)-beta-D-glucans and cellulose, J Bacteriol. 1999, 181(1): 284-290
    [155] Cady SG, Bauer MW, Callen W et al. Beta-Endoglucanase from Pyrococcus furiosus. Methods Enzymol. 2001, 330:346-354
    [156] Kashima Y, Mori K, Fukada H et al. Analysis of the function of a hyperthermophilic endoglucanase from Pyrococcus horikoshii that hydrolyzes crystalline cellulose. Extremophiles. 2005, 9(1): 37-43. Epub 2004 Sep 16.
    [157] Hobel CF, Marteinsson VT, Hreggvidsson GO et al. Investigation of the microbial ecology of intertidal hot springs by using diversity analysis of 16S rRNA and chitinase genes. Appl Environ Microbiol. 2005,71(5): 2771-2776
    [158] Steele HL, Streit WR. Metagenomics: Advance in ecology and biotechnology. FEMS Microbiol Lett. 2005, 247(2): 105-111
    [159] Venter JC, Remington K, Heiderberg JF et al. Environmental genome shortgun sequencing of the Sargasso Sea. Science. 2004, 304(5667): 66-74
    [160] Belaich A, Parsiegla G, Gal L et al. Ce19M, a New Family 9 Cellulase of the Clostridium cellulolyticum Cellulosome. J Bacteriol. 2002, 184(5): 1378-1384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700