用户名: 密码: 验证码:
有序Pt纳米阵列电极的制备及其电催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)普遍采用Pt/C作为电催化剂,但是Pt资源稀少且其造价高,阻碍了燃料电池的发展。因为碳载体的腐蚀,会导致Pt/C催化剂失活。同时由于Pt/C中大尺寸的碳载体增加了催化层的厚度,从而影响电极反应各相传质的速度以及其反应速度。为了提高了催化剂性能,优化催化剂结构是必要的。本文选择模板法制备Pt纳米阵列(PtNWs)催化剂,首先采用阳极氧化制备不同尺寸的阳极氧化铝(AAO)模板,然后利用AAO模板电沉积制备出不同尺寸的Pt纳米阵列,将其作为燃料电池催化剂,对该催化剂进行了XPS, SEM、TEM>、ICP-AES以及电化学测试,研究结果表明:
     (1)溶解AAO模板后,制备的Pt NWs形状是比较规则的圆柱形,很好的复型了AAO模板的均匀孔道。Pt NWs的直立情况良好,这样自支撑的结构将有利于催化剂的电化学测试。
     (2)根据Pt NWs循环伏安曲线中氢吸附脱附电量和CO氧化电量计算出,Pt NWs的电化学活性面积远远大于几何面积。
     (3)根据旋转圆盘电极(ROE)测试的Pt NWs催化剂的ORR曲线中,Pt NWs的半波电势相对于Pt/C有正移,且Pt NWs的极限扩散电流比Pt/C要大。
     (4)催化剂的甲醇氧化曲线中,Pt NWs的甲醇氧化峰电流比Pt/C大,这说明Pt NWs的甲醇催化氧化性能比Pt/C好。三种尺寸的Pt NWs甲醇氧化峰电位较Pt/C都有正移,其中25nmPt NWs的峰位与Pt/C最接近,这说明Pt纳米线尺寸越小,越有利于甲醇的催化氧化。
In the electrode of PEMFC, Pt/C catalyst is most commonly used. For the lack of Pt material and its high cost in the world, commercial application of PEMFC faces barriers. Because of the carbon corrosion, the catalyst would lead to deactivation. And also, large-size carbon support increases the thickness of the catalyst layer, thus affecting the rate of mass transfer and electrode reaction speed. In order to improve the catalyst performance, it is necessary to optimize the structure of catalyst. In this paper, platinum nanowire arrays were fabricated by electrodepositing, utilizing nanochannel alumina templates, then used it as the catalyst of PEMFC. First we prepared different size aluminum templates by anodic oxidation, then electrodeposited Pt as catalyst. X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM), transmission electron microscopy(TEM), inductively coupled plasma-atomic emission spectrometry(ICP-AES) and electrochemical measurement were used to characterize these catalysts. The results indicated that:
     (1) After dissolving AAO template, as-prepared Pt NWs are relatively regular cylindrical shape, and they are good replicas of the uniform pores of AAO templates. As Pt NWs are upright in good condition, their self-supporting structure will facilitate the electrochemical measurements.
     (2) According to the cyclic voltammetry curves of hydrogen adsorption and CO stripping for Pt NWs catalysts, it is seen that electrochemical surface area(ECSA) of Pt NWs was far greater than the geometric area.
     (3) The half wave potential in ORR curves of Pt NWs is more positive than Pt/C in RDE measurements. This shows that the oxygen reduction reaction carries out more easily for Pt NWs. Moreover, compared with the conventional Pt/C catalyst, Pt NWs catalysts present higher limiting diffusion current. It is because highly ordered Pt NWs provides a good set of mass transfer channel and serves as an excellent current collector.
     (4) The peak current in methanol oxidation curves of Pt NWs is greater than Pt/C, indicating better methanol electrooxidation of Pt NWs. The peak potential in methanol oxidation of three kinds of Pt NWs peak potential showed a positive shift compared with that of Pt/C. The peak potential of 25nmPt NWs is most closed to that of Pt/C, which shows that the smaller size of Pt NWs, the better the catalytic of methanol oxidation.
引文
[1]张力德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [2]Murray C B, Shou-heng Sun, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM. J. RES & DEV,2001,45:47-56.
    [3]Bradley C C, Anderson W R, MeClelland J J, et al. Nanofabrication via atom optics. Applied Surface Science,1999,141:210-218.
    [4]Campbell D, Farnan G, Walmsley D. Field enhanced fabrication of metallic nanostructures using millisecond plused scanning tunneling microscope. Nanotechnology,2001,12: 69-74.
    [5]Wu A T, Koshizuka N. Nanostructures fabricated on the as-prepared surfaces of NdBa2Cu3Oy temperatures superconductor using scanning tunnel microscope. Nanotechnology,2001,12:80-83.
    [6]Enrique H, Lisa. J B. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev.,2001,101:1897-1930.
    [7]Prinz V Y, Gruzmacher D, Beyer A, et al. A new technique for fabricating three-dimensional micro and nanostructures of various shapes. Nanotechnology,2001,12:399-402.
    [8]Marek M, Ray F E. Thin film regular array structures with 10-100nm repeat distance. Nanotechnology,2001,12:11-13.
    [9]Sauer G, Brehm G, et al. Highly ordered monocrystalline silver nanowire arrays. Appl. Phys. 2002,91:3243-3246.
    [10]Valizadeh S, Hultman L, George J M, et al. Template synthesis of Au/Co multilayered nanowires by eleetrochemical deposition. Adv. Funct. Mater.2002,12:766-772.
    [11]Homyak G L, Patrissi C J, Martin C R. Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites:The nonscattering Maxwell-Gamett limit. J. Phys. Chem. B,1997,101:1548-1555.
    [12]Fan S, Chapline M G, Dai H, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science,1999,283:512-514.
    [13]郭玉国.纳米线的电化学模板法制备与表征:[硕士学位论文].青岛:青岛大学化学工程系,2001.
    [14]黄德欢.纳米技术与应用.上海:中国纺织大学出版社.2001.
    [15]F. Y. Li, L. Zhang, R. M. Metzger. On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide. Chem. Mater.1998,10:2470-2480.
    [16]Xinyi Zhang, et al. Porous platinum nanowire arrays for direct ethanol fuel cell applications. Chem. Commun,2009,195-197.
    [17]Xinyi Zhang, Dehua Dong, Dan Li, Tim Williams, Huanting Wang, Paul A. Webley. Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities. Electrochemistry Communications.2009,11:190-193.
    [18]毛宗强.燃料电池.北京:化学工业出版社,2005.
    [19]Wee J. H. Applications of proton exchange membrane fuel cell systems. Renewable & Sustainable Energy Reviews,2007,11:1720-1738.
    [20]Song S. Q. and Tsiakaras P. Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Applied Catalysis B-Environmental,2006,63:187-193.
    [21]De Leon C. P., Walsh F. C., Pletcher D., et al. Direct borohydride fuel cells. Journal of Power Sources,2006,155:172-181.
    [22]Dubois J. C. Direct methanol fuel cells. Actualite Chimique,2001,12:58-62.
    [23]EG&G Technical Serviees, Ine., Seience Application International Corporation. Fuel Cell Handbook(Sixth Edition).U.S. Department of Energy(DOE).2002.11.
    [24]Grove W R. On voltaic series and the combination of gases by platinum. London and Ediburgh Philosophical Magazine and Journal of Science,1839,14:127-130.
    [25]Mond L., Langer C. A new form of gas battery. Proceedings of the Royal Society of London, 1989,46:296-304.
    [26]Bacon F. T. Fuel Cell:Past, present and Future. Electrochim Acta,1969,14:569-585.
    [27]H. P. Dhar. On Solid Polymer Fuel Cell. J. Electronal. Chem.1993,357:237-250.
    [28]E. H. Hull, K. K. Mathur. Citric Acid Esters as Plasticizers for Medical-grade PVC. Mod. Plastics,1984,61:66-70.
    [29]陈延禧,黄成德,孙燕宝.聚合物燃料电池的研究与开发.电池,1999,29:243-248.
    [30]Glenn D. Direct Fuel Cell Power Plants:the Final Steps to Commercialization. J. Power Sources,1996,61:79-85.
    [31]苏红.质子交换膜燃料电池催化剂的研究:[博士学位论文].北京:中国科学理化技术研究所物理化学,2009.
    [32]Cheng, X. L., B.L. Yi, M. Han, J. X. Zhang, Y. G. Qiao, J. R. Yu. Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells. Journal of Power Sources,1999,79:75-81.
    [33]Wang, X., I. M. Hsing, P. L. Yue. Electrochemical characterization of binary carbon supported electrode in polymer electrolyte fuel cells. Journal of Power Sources,2001,96: 282-287.
    [34]Borronibird C. E. Fuel Cell Commercialization Issues for Light-Duty Vehicle Applications. J. Power Sources,1996,61:33-48.
    [35]Klaiber T. Fuel Cells for Transport:Can the Promise Be Full Filled? Technical Reqirements and Demands from Customers.J. Power Sources,1996,61:61-69.
    [36]Miyake Y., Akiyama Y., Hamada A., et al. Status of Fuel Cells R&D Activities at Sanyo. J. Power Sources,1996,61:155-160.
    [37]Glenn D. Direct Fuel Cell Power Plants:the Final Steps to Commercialization. J. Power Sources,1996,61:79-85.
    [38]Watanabe Y, Matsumoto M., Takasu K. The Market for Utility-Scale Fuel Cell Plants. J. Power Sources,1996,61:53-59.
    [39]田明星,木士春,潘牧.质子交换膜燃料电池催化层设计与优化.电池工业,2010,15:57-60.
    [40]尹鸽平,杜春雨,王振波.质子交换膜燃料电池催化剂稳定性研究进展(Ⅱ).电源技术,2008,32:210-214.
    [41]Gasteiger HA, Markovic N, Ross PNJ, Cairns EJ. Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys. Journal of Physical Chemistry,1994a,98: 617-625.
    [42]Petukhov AV, Akemann W, Friedrich KA, Stimming U. Kinetics of electrooxidation of a CO monolayer at the platinum/electrolyte interface. Surface Science,1998,182:402-404.
    [43]Friedrich KA, Geyzers KG, Linke U, Stimming U. CO adsorption and oxidation on a Pt(111) electrode modified by ruthenium deposition:an IR spectroscopic study. Journal of Electroanalytical Chemistry,1996,402:123-128.
    [44]Byungkwon Lim, et al. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science,2009,324:1302-1305.
    [45]冯媛媛,等.界面合金化的Pt_Ag催化剂对阴极氧还原反应的电催化特点.催化学报,2009,30:776-779.
    [46]Takako Toda,et al. Enhancement of eletrocatalytic 02 reduction on Pt-Fe alloys. J Electroanal Chem,1999,460:258-262.
    [47]Xiong L, et al. Pt-M(M=Fe,Co,Ni and Cu)electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells. Electrochem Commun,2002,4:898-903.
    [48]Myoung Ki Min, et al. Patrticle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta,2000,45:4211-4217.
    [49]Joongpyo Shim, et al. Characteristics for electrocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in Polymer electrolyte fuel cell. Electrochim Acta,2000,45:1943-1951.
    [50]Neergat M, et al. Platinum-based alloys as oxygen-reduction catalysts for solid-polymer-electrolyte direct methanol fuel cells. JAppl Electrochem,2001,31:373-378.
    [51]吕玲红,金丽华,王均涛.质子交换膜燃料电池的氧电极.电源技术,2001,2:67-71.
    [52]李长志,文刚要,张颖等.PtCr/C-Nafion膜氧电极的电催化活性.电源技术,1998,5:201-203.
    [53]Jung Tae Hwang, et al. The morphological and surface properties and their relationship with oxygen reduction activity for platinum-iron electrocatalysts. Electrochim Acta,1993,38: 2715-2723.
    [54]Ermete Antolini, et al. Electrocatalysis of oxygen reduction on a carbon supported platinum-vanadium alloy in polymer electrolyte fuel cells. Electrochim Acta,2002:263-270.
    [55]Ermete Antolini. Formation of carbon-supported PtM alloys for low temperature fuel cells:a review. Mater Chem Phys,2003,78:563-573.
    [56]Samuel S. Mao, Xiaobo Chen. Selected nanotechnologies for renewable energy applications. Int. J. Energy Res.2007,31:619-636.
    [57]S. G. Neophytides, K. Murase, S. Zafeiratos, G. Papakonstantinou, F. E. Paloukis, N. V. Krstajic, M. M. Jaksic. Composite Hypo-Hyper-d-Intermetallic and Interionic Phases as Supported Interactive Electrocatalysts. J. Phys. Chem. B,2006,110:3030-3042.
    [58]Vojislav R. Stamenkovic, et al. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science,2007,315:493-497.
    [59]J. Zhang, F. H. B. Lima, M. H. Shao, K. Sasaki, J. X. Wang, J. Hanson, R. R. Adzic. Platinum Monolayer on Nonnoble Metal-Noble Metal Core-Shell Nanoparticle Electrocatalysts for O2 Reduction.J. Phys. Chem. B,2005,22701-22704.
    [60]Zhang J, Vukmirovic M B, Sasaki K, et al. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. JAm Chem Soc,2005,127:12480-12481.
    [61]Prasanna Mani, Ratndeep Srivastava, Peter Strasser. Dealloyed Pt-Cu Core-Shell Nanoparticle Electrocatalysts for Use in PEM Fuel Cell Cathodes. J. Phys. Chem. C,2008, 112:2770-2778.
    [62]A. Sarkar, A. Manthiram. Synthesis of Pt@Cu Core-Shell Nanoparticles by Galvanic Displacement of Cu by Pt4+ Ions and Their Application as Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. J. Phys. Chem. C,2010,114:4725-4732.
    [63]Peter Strasser, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nature Chemistry,2010,2:454-460.
    [64]Junfeng Zhai, Minghua Huang, Shaojun Dong. Electrochemical Designing of Au/Pt Core Shell Nanoparticles as Nanostructured Catalyst with Tunable Activity for Oxygen Reduction. Electroanalysis,2007,19:506-509.
    [65]Vismadeb Mazumder,Miaofang Chi, Karren L. More, Shouheng Sun. Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for the Oxygen Reduction Reaction. J. Am. Chem. Soc.2010,132:7848-7849.
    [66]W. Zhang, R. Wang, H. Wang, Z. Lei. High Performance Carbon-Supported Core@Shell PdSn@Pt Electrocatalysts for Oxygen Reduction Reaction. Fuel Cells,2010,10:734-739.
    [67]J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic. Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science,2007,315:220-222.
    [68]李文震,等.催化学报,2004,25:839-843.
    [69]Liu Zhao-Lin, et al. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir,2002, 18:4054-4060.
    [70]Kongkanand A, Kuwabata S, Girishkumar G, Kamat P. Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir,2006,22:2392-2396.
    [71]Neophytides,S.G.;Murase,K.;Zafeiratos,S.;Papakonstantinou,G.;Paloukis,F.E.;Krstajic,N.V.; Jaksic,M.M. Composite Hypo-Hyper-d-Intermetallic and Interionic Phases as Supported Interactive Electrocatalysts. J. Phys. Chem. B,2006,110:3030-3042.
    [72]Meyer, S.; Saborowski, S.; Schafer, B. Photocatalytic Reforming of Methanol by Spatially Separated Pd Particles on Special TiO2 Layers. Chem. Phys. Chem.2006,7:572-574.
    [73]Sangaraju Shanmugam, Aharon Gedanken. Synthesis and Electrochemical Oxygen Reduction of Platinum Nanoparticles Supported on Mesoporous TiO2.J. Phys. Chem. C, 2009,113:18707-18712.
    [74]Yu-Hung Shih, Guggilla Vidya Sagar, Shawn D. Lin. Effect of Electrode Pt Loading on the Oxygen Reduction Reaction Evaluated by Rotating Disk Electrode and Its Implication on the Reaction Kinetics. J. Phys. Chem. C,2008,112:123-130.
    [75]DEBE M, SCHMOECKEL A, VERNSTROM G, et al. High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J. Power Sources,2006,161: 1002-1011.
    [76]Lajos Gancs, Takeshi Kobayashi, Mark K. Debe, Radoslav Atanasoski, Andrzej Wieckowski. Crystallographic Characteristics of Nanostructured Thin-Film Fuel Cell Electrocatalysts:A HRTEM Study. Chem. Mater.2008,20:2444-2454.
    [77]S. M. Choi, et al. Pt nanowires prepared via a polymer template method:Its promise toward high Pt-loaded electrocatalysts for methanol oxidation. Electrochimica Ada,2008,53: 5804-5811.
    [78]Alexandra Ponrouch, Sebastien Garbarino, Daniel Guay. Effect of the nanostructure on the CO poisoning rate of platinum. Electrochemistry Communications,2009,11:834-837.
    [79]Xinyi Zhang, et al. Porous platinum nanowire arrays for direct ethanol fuel cell applications. Chem. Commun,2009,195-197.
    [80]Xinyi Zhang, Dehua Dong, Dan Li, Tim Williams, Huanting Wang, Paul A. Webley. Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities. Electrochemistry Communications,2009,11:190-193.
    [81]Zhongwei Chen, Mahesh Waje, Wenzhen Li, Yushan Yan. Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions. Angew. Chem. Int. Ed, 2007,46,4060-4063.
    [82]H. Masuda, H. Asoh, et al. Square and Triangular Nanohole Array Architectures in Anodic Alumina, Adv. Mater.,2001,13:189-192.
    [83]姜鲁华,直接醇类燃料电池阳极铂基电催化剂的研究.大连:中国科学院大连化学物理研究所,2005,56-90.
    [84]Pozio, A.;Francesco, M. D.; Cemmi, A.; Cardellini, F.;Giorgi, L. Comparison of high surface Pt/C catalysts by cyclic voltammetry. J. Power Sources,2002,105:13-19.
    [85]Jingrong Yu, Toyoaki Matsuura, Yusuke Yoshikawa, Md Nazrul Islam, Michio Hori. In Situ Analysis of Performance Degradation of a PEMFC under Nonsaturated Humidification. Electrochem. Solid-State Lett.2005,8:A156-A158.
    [86]朱永法.纳米材料的表征与测试技术.北京:化学工业出版社.2006.
    [87]藤嵨昭等著;陈震,姚建年译,电化学测定方法,北京大学出版社,1995.
    [88]查全性.电极过程动力学导论.北京:科学出版社,2002.123-127.
    [89]Yeager E. Electrocatalysts for O2 reduction. Electrochim Acta,1984,29:1527-1530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700