用户名: 密码: 验证码:
钯复合膜制备及催化苯制苯酚研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于钯复合膜具备独特的透氢能力,在氢气分离纯化及催化领域得到越来越多的关注和应用,尤其在苯一步羟基化制备苯酚中表现出良好的催化效果。载体对钯膜制备及其性能有重要影响,且在载体外表面制备钯复合膜易产生污染和刮蹭等问题,对钯复合膜的气体渗透及催化性能的影响很大。
     本论文分别采用大孔陶瓷管和中空纤维陶瓷管作为载体制备钯复合膜。使用改进化学镀方法优化“共晶种”法所制备钯复合膜结构与气体渗透性能,在中空纤维陶瓷管内表面使用传统制备方法制备钯基复合膜,利用SEM、TEM和气体渗透测试等分析手段表征所制备钯复合膜的形貌结构及气体分离能力。构建具有类似“微通道”特征结构的钯膜反应器,优化苯羟基化反应条件,并对苯制苯酚反应机理进行了一定的研究。
     1.使用“共晶种”法在孔径2μm的大孔陶瓷管外表面制备了钯-纯硅复合膜。考察提拉晶种时间,水热晶化温度对沸石修饰层的影响:在提拉时间小于20s,423K晶化温度的合成条件下获得纯硅沸石层形貌最佳。通过旋转法和负压法对传统化学镀方法进行改进,获得钯复合膜常温下氮气渗透通量有所下降,旋转和外负压法消除反应生成气泡对膜致密性影响。内负压法增强了钯膜层与沸石层之间的穿插交织,促进了“钯腿”的形成。以上方法制备所得钯膜在高温下气体分离性能相对较差。因此,在大孔陶瓷管外表面不易制备出高性能的钯-纯硅复合膜。
     2.使用传统化学镀方式,优化制备条件成功在中空纤维陶瓷管内表面制备出厚约2μm的钯基复合膜并具备良好的高温气体渗透、分离能力和稳定性。在773K、0.1MPa下,H2的渗透通量为0.16mol·m-2·s-1, H2/N2理想选择性为493。在473K下经过10次N2/H2转化循环和773K下膜两侧压差在20kPa/150kPa连续交替变化20次后气体渗透通量保持稳定,该钯基复合膜具有良好的抗氢脆和抗压力波动能力。四次高温循环后该钯基复合膜的H2/N2理想选择性从493降至418,热稳定性略有下降。
     3.利用在中空纤维陶瓷管内表面所制备钯基复合膜,构建具有类似“微通道”特征的钯膜反应器,进行了苯羟基化反应,显示了良好催化活性。在473K下,H2/O2比为3.5时,反应效果最佳:苯转化率和苯酚产率达到最高,分别为16.95%和14.51%,苯酚选择性为85.58%。苯制苯酚反应累计运行9天后,钯基复合膜未出现明显缺陷,氮气渗透通量从8.14×10-4mol·m-2·s-1略微上升至8.60×10-4mol·m-2·s-1,该钯膜具有良好的反应稳定性。
Palladium composite membranes have attained more and more application in hydrogen separation、purification and catalytic hydrogen-related reactions due to their unique selectivity of H2, especially in hydroxylation of benzene to phenol. Properties of supports greatly affect preparation and qualities of Pd composite membranes. Palladium composite membranes deposited on outer face of tubular substrates are prone to get polluted and scraped, which easily reduce their gas permeable and catalytic capabilities.
     In this paper, porous ceramic tubular substrates with large pore size and ceramic hollow fibers were chosen as supports to deposit Pd composite membranes. Two modified electroless plating methods were used to optimize the structure and gas permeability of Pd-Sil-1 composite membranes prepared by "co-seeding" method. Pd-based membranes were deposited on inner face of ceramic hollow fibers by conventional electroless plating. The morphology, structure, gas permeability and selectivity of as-synthesized Pd composite membranes were characterized by means of SEM、TEM and gas permeation tests. A novel Pd membrane reactor with "micro-channel" characteristic was designed and applied in one-step hydroxylation of benzene to phenol. The reaction conditions were optimized and the reaction mechanism was investigated. The main contents and results are as follows:
     1. Pd-Sil-1 composite membranes were prepared on macroporous ceramic supports with average pore size of 2μm by "co-seeding" method. Different dip-coating time, crystallization temperature were investigated to optimize the growth of Sil-1 membranes. The results showed that the best Sil-1 membranes for subsequent deposition of Pd membranes were achieved under the dip-coating time of less than 20s and the crystallization temperature of 423K. Rotating electroless plating and vacuum-assisted electroless plating were used to improve the performance Pd composite membranes. N2 flux at room temperature of Pd-Sil-1 composite membranes prepared by modified methods were improved. Rotation of supports and vacuum outside the supports could eliminate bubbles generated by redox reaction. Vacuum inside the supports could enhance the adhesion between Sil-1 layer and Pd layer, and encourage the generation of "Pd-legs". All Pd composite membranes prepared by methods mentioned above had poor gas selectivity at high temperature wich indicated that it was hard to prepare good Pd-Sil-1 membranes on macroporous ceramic supports.
     2. Palladium-based membranes with a thickness of 2μm were deposited successfully on the inner face of ceramic hollow fibers by conventional electroless plating with 3 times of sensitization/activation at 318K, which had good gas permeability and stability. The hydrogen flux was 0.16 mol·m-2·s-1 at 773K, 0.1MPa and H2/N2 ideal selectivity was 493.10 gas-exchanging cycles between N2 and H2 at 473K and 20 pressure-exchanging cycles between 150kPa and 50kPa at 773K didn't impair its gas permeation flux. After four temperature changing cycles, the H2/N2 ideal selectivity decreased from 493 to 418, which indicated that the thermal stability of the Pd membrane dropped slightly.
     3. A palladium membrane reactor with "micro-channel" characteristic was constructed and used in direct hydroxylation of benzene to phenol, which was assembled with the palladium membrane deposited on inner face of ceramic hollow fiber. The highest benzene conversion and phenol yield were obtained when H2/O2 feed ratio was 3.5, which were 16.95% and 14.51%, respectively. After 9 days of reactions, the N2 flux of palladium-based membrane slightly increased from 8.14×10-4mol·m-2·s-1 to 8.60×10-4mol·m-2·s-1, and no defect was observed from SEM images, which meant the membrane had good stability in the hydroxylation of benzene to phenol.
引文
[1]淡萍.葛渊,汤慧萍,等.国外氢分离及净化用钯膜的研究进展[J].稀有金属材料与工程.2007,36567-570.
    [2]雷敏志、陈森凤.钯膜与钯膜反应器应用研究进展[J].材料导报,2004、18(5):41-44.
    [3]Graham T. On the absorption and dialytic separation gases by colloid sepata[J]. Phyilosophical Trans-actions of the Royal Society. 1866, 156: 399-412.
    [4]Sneiling W O. Apparatus for separating gases[P]. US patent 1174631, 1916-3-7.
    [5]Hunter J B. A new hydrogen purification process [J]. Platinium Metals Review, 1960, 4: 130-131
    [6]Derosset A J. Diffusion of hydrogen through palladium membranes[J]. Industrial & Engineering Che-mistry, i960. 52(6): 525-528.
    [7]Gryaznove V M, Ermilova M M, Morozova L S. Patladium alloys as hydrogen permeable catalysts(?) hydrogenation and dehydrogenation ractions[J]. Journal of the Less Common Metals. 1983. 89: 529-535.
    [8]Uemiya S. Kude Y, Sugino K, et al. A Palladium/porous-glass composite membrane for hydrogen sebaration[J]. Chemistry Letters, 1988. 17:1687-1690
    [9]Govind R. Atncor D. Deveiopment of a composhe pa(?)adium membrane for selective hydrogen(?) tion at high temperarure[J]. industrial & Engineering Chemstry Research, 1991, 30(3): 591-594
    [10]Huang Y. Dittmeyer R. Preparation and chara(?)zation of composite palladium membranes on s(?) metal supports with a ceramic barrier agains(?)mtermeta(?) diffusion[J]. Journal of Membrane Science 2006. 282(1-2): 296-310.
    [11]Pani X L, Xiong G X. Sheng S S, et al. Thin de(?)se Pd membranes supported on α-Al2O3 hollow (?)s [J] Chemical Communications, 2001, (24): 1536-2537.
    [12]fong J. Matsumura Y. Thin Pd membrane prepared on macroporous stainless steel tube filte(?) in-situ multi-dimensional plating mechanisim[J]. Cnemical Communications, 2004, (21): 2460-246.
    [13]fanaka D A P, Tanco M A L, Nagase T, et al. Fabrication cf Hydrogen-Permeable Composite Mem-branes Packed with Palladium Nanoparticles[J]. Advanced Materials, 2006, 18(5): 630-632.
    [14](?) Y. Zhung X, Deng H, et al. A novel approach for the preparation of highly stable Pd me(?) on macroporous α-Al2O3 tube[J]. Journal of Membrane Science, 2010, 362(1-2): 241-248
    [15]Samingprai S, Tantayanon S, Ma Y H. Chromium oxide intermetallic diffusion barrier for pa(?)adium membrane supported on porous stainless steet[J]. Journal of Membrane Science. 2010.347(1-2):8-16.
    [16]Cade S K. Keeling M K, Davidson A P. et al. Palladium-ruthenium membranes for hydr(?)en reparation fabricated by electroless co-deposition[J]. international Journal of Hydrogen (?)nergy. 2009, 34(15)6484-6491.
    [17]Okazaki J, ikeda T, Tanaka D A P, et al. An investigation of thermal stability of thin palladium-silver a(?)oy membranes for high temperature hydrogen separation[J]. Journal of Membrane Science. 2011. 366(1-2): 212-219.
    [18]Tanaka D A P. Tanco M A L, Niwa S, et al. Preparation of palladium and silver alloy membrane on a porous α-aiumina tube via simultaneous electroless plating[J]. Journal of Membrane Science 2005. 247(1-2). 21-27.
    [19]Peters T, Tucho W, Ramachandran A, et al. Thin Pd-23%Ag/stainless steel composite membranes: Long-term stability,life-time estimation and post-process characterisation[J]. Journal of Membrane Science,2009,326(2):572-581.
    [20]Tarditi A M, Braun F, Cornaglia L M. Novel PdAgCu ternary alloy:Hydrogen permeation and surface properties[J]. Applied Surface Science,2011,257(15):6626-6635.
    [21]Li A W, Xiong G X, Gu J H, et al. Preparation of Pd/ceramic composite membrane 1. Improvenment of the conventional preparation technique[J]. Journal of Membrane Science,1996,110:257-260.
    [22]Zhao H B, Pflanz K, Gu J H, et al. Preparation of palladium composite membranes by modified electroless plating procedure[J]. Journal of Membrane Science,1998,142:147-157.
    [23]Zhang X L, Xiong G X, Yang W. A modified electroless plating technique for thin dense palladium composite membranes with enhanced stability[J]. Journal of Membrane Science,2008,314(1-2): 226-237.
    [24]Wu L Q, Xu N P, Shi J. Novel method for preparing palladium membranes by photocatalytic deposi-tion[J]. AlChE Journal,2000,46(5):1075-1083.
    [25]Wu L Q, Xu N P, Shi J. Preparation of a Palladium Composite Membrane by an Improved Electroless Plating Technique[J]. Industrial & Engineering Chemistry Research,2000,39:342-348.
    [26]Li X, Fan Y, Jin W, et al. Improved photocatalytic deposition of palladium membranes[J]. Journal of Membrane Science,2006,282(1-2):1-6.
    [27]Hu X, Huang Y, Shu S L, et al. Toward effective membranes for hydrogen separation:Multichannel composite palladium membranes[J]. Journal of Power Sources,2008,181(1):135-139.
    [28]Shu S L, Huang Y, Hu X J, et al. On the membrane reactor concept for one-step hydroxylation of benzene to phenol with oxygen and hydrogen[J]. Journal of physical chemistry C,2009,113(45): 19618-19622.
    [29]张宝树,侯凯湖.化学镀条件对Pd/a-Al2O3膜微观结构的影响[J].膜科学与技术,2009,29(1):23-28.
    [30]Gao H Y, Lin J Y S, Li Y D, et al. Electroless plating synthesis,characterization and permeation pro-perties of Pd-Cu membranes supported on ZrO2 modified porous stainless steel [J]. Journal of Membrane Science,2005,265(1-2):142-152.
    [31]王和义,傅依备.钯基合金膜应用研究进展[J].膜科学与技术,2002,22(5):41-45.
    [32]张雪盈,杨长春,郭彩峰.钯复合膜研究进展[J].有色金属,2005,57(2):51-57.
    [33]刘伟,张宝泉,刘秀凤.钯复合膜的研究进展[J].化学进展,2006,18(11):1468-1481.
    [34]黄彦,李雪,范益群,等.透氢钯复合膜的原理制备及表征[J].化学进展,2006,18(2/3):230-238.
    [35]谈萍,汤慧萍,朱纪磊,等.渗氢用钯基膜的研究现状[J].稀有金属快报,2007,26(11):13-17.
    [36]史蕾,徐恒泳.钯复合膜透氢稳定性研究进展[J].天然气化工,2007,32:54-59.
    [37]李新利,蒋炜,梁斌.钯铜复合膜透氢性和稳定性研究进展[J].化工进展,2008,27(7):968-972.
    [38]Han J, Kim II-S, Choi K-S. High purity hydrogen generator for on-site hydrogen production[J]. Inter-national Journal of Hydrogen Energy,2002,27(10):1043-1047.
    [39]Ward T L, Dao T. Model of hydrogen permeation behavior in palladium membranes[J]. Journal of Membrane Science,1999,153:211-231.
    [40]Chen W-H, Chiu I-H. Transient dynamic of hydrogen permeation through a palladium membrane[J]. International Journal of Hydrogen Energy,2009,34(5):2440-2448.
    [41]Athaydea A L, Baker R W, Nguyen P. Metal composite membranes for hydrogen separation[J]. Journal of Membrane Science,1994,94(1):299-311.
    [42]Collins J P, Way J D. Preparation and characterization of a composite palladium-ceramic membrane[J].Industrial & Engineering Chemistry Research,1993,32(12):3006-3013.
    [43]Dittmeyer R, Hollein V, Daub K.Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium[J]. Journal of Molecular Catalysis A:Chemical,2001,173(1-2):135-184.
    [44]Holleck. Gerhard L. Diffusion and solubility of hydrogen in palladium and palladium-silver alloys[J]. The Journal of Physical Chemistry,1970,74(3):503-511.
    [45]Shu J, Grandjean B P A. Catalytic palladium-based membrane reactor:A review[J]. Canadian Journal of Chemical Engnieering,1991,26(3):121-128.
    [46]Tang J, Zuo Y. Study on corrosion resistance of palladium films on 316L stainless steel by electro-plating and electroless plating[J]. Corrosion Science.2008,50(10):2873-2878.
    [47]Chen S C, Tu G C, Hung C C Y, Huang C A, et al. Preparation of palladium membrane by electro-plating on AISI 316L porous stainless steel supports and its use for methanol steam reformer[J]. Journal of Membrane Science,2008,314(1-2):5-14.
    [48]Xomeritakis G, Lin Y S. Fabrication of a thin palladium membrane supported in a porous ceramic substrate by chemical vapor deposition[J]. Journal of Membrane Science,1996,120(2):261-272. [49] Itoh N. Akiha T. Sato T. Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity[J]. Catalysis Today,2005,104:231-237.
    [50]Zhao H B. Xiong G X, Baron G V. Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering[J]. Catalysis Today,2000,56(1-3):89-96.
    [51]Zhao R, Ding R, Yuan S, et al. Palladium membrane on TiO2 nanotube arrays-covered titanium surface by combination of photocatalytic deposition and modified electroless plating processes and its hydrogen permeability[J]. International Journal of Hydrogen Energy,2011,36(1):1066-1073.
    [52]Zahedi M, Afra B, Dehghani-Mobarake M, et al. Preparation of a Pd membrane on a WO3 modified Porous Stainless Steel for hydrogen separation[J]. Journal of Membrane Science,2009,333(1-2): 45-49.
    [53]Chi Y-H. Yen P-S, Jeng M-S, et al. Preparation of thin Pd membrane on porous stainless steel tubes modified by a two-step method[J]. International Journal of Hydrogen Energy,2010,35(12):6303-6310.
    [54]Bosko M L, Munera J F, Lombardo E A, et al. Dry reforming of methane in membrane reactors using Pd and Pd-Ag composite membranes on a NaA zeolite modified porous stainless steel support[J]. Journal of Membrane Science,2010,364(1-2):17-26.
    [55]Quo Y, Zhang X F, Zou H Y, et al. Pd-silicalite-1 composite membrane for direct hydroxylation of benzene[J]. Chemical Communications,2009. (39):5898.
    [56]Yun S. Ko J H, Oyama S T. Ultrathin palladium membranes prepared by a novel electric field assisted activation[J]. Journal of Membrane Science,2011,369(1-2):482-489.
    [57]Souleimanova R S, Mukasyan A S, Varma A. Effects of osmosis on microstructure of Pd-composite membranes synthesized by electroless plating technique[J]. Journal of Membrane Science,2000. 166(2):249-257.
    [58]Pan X L. Pd/ceramic hollow fibers for H2 separation[J]. Separation and Purification Technology,2003, 32(1-3):265-270.
    [59]She Y, Han J, Ma Y H. Palladium Membrane Reactor for the Dehydrogenation of Ethylbenzene to Styrene[J]. Catalysis Today,2001,67(1-3):43-53.
    [60]Yu C L, Xu H Y. An efficient palladium membrane reactor to increase the yield of styrene in ethylbenzene dehydrogenation[J]. Separation and Purification Technology,2011,78(2):249-252.
    [61]Itoh N, Xu W C, Hara S. Effects of hydrogen removal on the catalytic reforming of n-hexane in a palladium membrane reactor[J]. Industrial & Engineering Chemistry Research,2003,42(25): 6576-6581.
    [62]Shirai M, Yuan P, Arai M, et al. Reactivity of permeating hydrogen with thiophene on a palladium membrane[J]. Applied Surface Science,1998,126(1-2):99-106.
    [63]Moustafa T M, Elnashaie S S E H. Simultaneous production of styrene and cyclohexane in an intergrated membrane reactor[J]. Journal of Membrane Science,2000,178(1-2):171-184.
    [64]Choudhary V R, Gaikwad A G, Subhash D S. Nonhazardous Direct Oxidation of Hydrogen to Hydrogen Peroxide Using a Novel Membrane Catalyst[J]. Angewandte Chemie International Edition, 2001,40(9):1776-1779.
    [65]Abate S, Centi G, Perathoner S, et al. Enhanced stability of catalytic membranes based on a porous thin Pd film on a ceramic support by forming a Pd-Ag interlayer[J]. Catalysis Today,2006,118(1-2): 189-197.
    [66]Niwa S, Eswaramoorthy M, Nair J, et al. A One-Step Conversion of Benzene to Phenol with a Palladium Membrane[J]. Science,2002,295:105-107.
    [67]Chen Y Z, Wang Y Z, Xu H Y, et al. Efficient production of hydrogen from natural gas steam reforming in palladium membrane reactor[J]. Applied Catalysis B:Environmental,2008,80(3-4): 283-294.
    [68]Basile A, Pinacci P, Iulianelli A, et al. Ethanol steam reforming reaction in a porous stainless steel supported palladium membrane reactor[J]. International Journal of Hydrogen Energy,2011,36(3): 2029-2037.
    [69]Bi Y D,XuH Y, Li W Z, et al. Water-gas shift reaction in a Pd membrane reactor over Pt/Ce0.6Zr0.4O2 catalyst[J]. International Journal of Hydrogen Energy,2009,34(7):2965-2971.
    [70]Miyamoto M, Hayakawa C, Kamata K, et al. Influence of the pre-reformer in steam reforming of dodecane using a Pd alloy membrane reactor[J]. International Journal of Hydrogen Energy,2011, In Press, Corrected Proof.
    [71]Tosti S, Rizzello C, Borgognoni F, et al. Design of Pd-based membrane reactor for gas detritiation[J]. Fusion Engineering and Design,2011, In Press, Corrected Proof.
    [72]Jayaramana V, Lin Y S, Pakalab M, et al. Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition[J]. Journal of Membrane Science,1995,99(1):89-100.
    [73]Nam S E, Lee K H. Preparation and characterization of palldium alloy composite membranes with a diffusion barrier for hydrogen seperation[J]. Industrial & Engineering Chemistry Research,2005, 44(1):100-105.
    [74]Volpe M, Inguanta R, Piazza S, et al. Optimized bath for electroless deposition of palladium on amorphous alumina membranes[J]. Surface and Coatings Technology,2006,200(20-21):5800-5806.
    [75]Hoelderich W F.'one-pot' reactions:a contribution to environmental protection[J]. Applied Catalysis A:General,2000,194-195:487-496.
    [76]Chernyavsky V, Pirutko L, Uriarte A, et al. On the involvement of radical oxygen species O in catalytic oxidation of benzene to phenol by nitrous oxide[J]. Journal of Catalysis,2007,245(2): 466-469.
    [77]陈希.苯直接氧化制苯酚Fe-ZSM-5催化剂研究新进展[J].广州化工,2010,38(10):29-3].
    [78]任通,闫亮,张汉鹏,等.以N2O为氧化剂,Fe-P-O催化剂气相催化氧化苯制苯酚的研究[J].分子催化,2003,17(5):342-346.
    [79]崔小明.苯直接羟基化制苯酚的技术进展[J].杭州化工,2006,36(4):7-11.
    [80]Dimitrova R, Spassova M. Hydroxylation of benzene and phenol in presence of vanadium grafted Beta and ZSM-5 zeolites[J]. Catalysis Communications,2007,8(4):693-696.
    [81]Tanev P T, Chlbwe M, Plnnavala T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds[J]. Nature,1994,368(6469):321-323.
    [82]Barbera D, Cavani F, D'Alessandro T, et al. The control of selectivity in benzene hydroxylation catalyzed by TS-1:The solvent effect and the role of crystallite size[J]. Journal of Catalysis,2010. 275(1):158-169.
    [83]He J, Xu W P, Evans G D, et al. Role of pore size and surface properties of Ti-MCM-41 catalysts in the hydroxylation of aromatics in the liquid phase[J]. Microporous and Mesoporous Materials,2001. 44-45:581-586.
    [84]Balducci L, Bianchi D, Bortolo R, et al. Direct Oxidation of Benzene to Phenol with Hydrogen Peroxide over a Modified Titanium Silicalite[J]. Angewandte Chemie,2003,115(40):5087-5090.
    [85]Barbera D, Cavani F, D'Alessandro T, et al. The control of selectivity in benzene hydroxylation catalyzed by TS-1:The solvent effect and the role of crystallite size[J]. Journal of Catalysis,2010. 275(1):158-169.
    [86]Kitano T, Kuroda Y, Mori M, et al. Gas phase oxidation of benzene to phenol using Pd-Cu composite catalysits[J]. Catalysis Letters,1991,11:11-18.
    [87]Miyake T, Hamada M, Sasaki Y, et al. Direct synthesis of phenol by hydroxylation of benzene with oxygen and hydrogen[J]. Applied Catalysis A:General,1995,131(1):33-42.
    [88]Ehrich H. Berndt H, Pohl M M, et al. Oxidation of benzene to phenol on supported Pt-VOx and Pd-VOx catalysts[J]. Applied Catalysis A:General,2002,230(1-2):271-280.
    [89]Kuznetsova N I, Kuznetsova L J. Hydrocarbon oxidation with an oxygen-hydrogen mixture:Catalytic systems based on the interaction of platinum or palladium with a heteropoly compound[J]. Kinetics and Catalysis,2009,50:5-14.
    [90]Gimeno M P, Soler J, Herguido J, et al. Use of Fluidized Bed Reactors for Direct Gas Phase Oxidation of Benzene to Phenol[J]. Industrial & Engineering Chemistry Research,2010,49(15):6810-6814.
    [91]翟宏斌,刘志煜.2002年有机化学闪光点[J].有机化学,2003,23:885-892.
    [92]Itoh N, Niwa S, Mizukami F, et al. Catalytic palladium membrane for reductive oxidation of benzene to phenol[J]. Catalysis Communications,2003,4:243-246..
    [93]Sato K, Hanaoka T, Niwa S, et al. Direct hydroxylation of aromatic compounds by a palladium membrane reactor[J]. Catalysis Today,2005,104(2-4):260-266.
    [94]Sato K, Niwa S, Hanaoka T, et al. Direct hydroxylation of methyl benzoate to methyl salicylate by using new Pd membrane reactor[J]. Catalysis Today,2005,104:260-266.
    [95]Orita H. Simulation of phenol formation from benzene with a Pd membrane reactor:abinitio periodic density functional study[J]. Applied Catalysis A:General,2004,258(1):17-23.
    [96]Sato K, Hanaoka T, Hamakawa S, et al. Structural changes of a Pd-based membrane during direct hydroxylation of benzene to phenol[J]. Catalysis Today,2006,118(1-2):57-62.
    [97]Vulpescu G, Ruitenbeek M, Vanlieshout L, et al.One-step selective oxidation over a Pd-based catalytic membrane; evaluation of the oxidation of benzene to phenol as a model reaction[J].Catalysis Communications,2004,5(6):347-351.
    [98]Ye S Y, Hamakawa S, Tanaka S, Sato K, et al. A one-step conversion of benzene to phenol using MEMS-based Pd membrane microreactors[J]. Chemical Engineering Journal,2009,155(3):829-837.
    [99]Dittmeyer R, Bortolotto L. Modification of the catalytic properties of a Pd membrane catalyst for direct hydroxylation of benzene to phenol in a double-membrane reactor by sputtering of different catalyst systems[J]. Applied Catalysis A:General,2011,391(1-2):311-318.
    [100]Bortolotto L, Dittmeyer R. Direct hydroxylation of benzene to phenol in a novel microstructured membrane reactor with distributed dosing of hydrogen and oxygen[J]. Separation and Purification Technology,2010,73(1):51-58.
    [101]Sato K, Hamakawa S, Natsui M, et al. Palladium-based bifunctional membrane reactor for one-step conversion of benzene to phenol and cyclohexanone[J]. Catalysis Today,2010,156(3-4):276-281.
    [102]David E, Kopac J. Devlopment of palladium/ceramic membranes for hydrogen separation[J]. International Journal of Hydrogen Energy,2011,36(7):4498-4506.
    [103]Itoh N, Xu W C. Selective hydrogenation of phenol to cyclohexanone using palladium-based membranes as catalysts[J]. Applied Catalysis A:General,1993,107(1):83-100.
    [104]Irfan Hatim M D, Tan X, Wu Z, et al. Pd/Al2O3 composite hollow fibre membranes:Effect of substrate resistances on H2 permeation properties[J]. Chemical Engineering Science,2011,66(6): 1150-1158.
    [105]Rahman M A, Garcia-Garcia F R, Hatim M D I, et al. Development of a catalytic hollow fibre membrane micro-reactor for high purity H2 production[J]. Journal of Membrane Science,2011, 368(1-2):116-123.
    [106]Garcia-Garcia F R, Rahman M A, Kingsbury B F K, et al. Asymmetric ceramic hollow fibres:New micro-supports for gas-phase catalytic reactions[J]. Applied Catalysis A:General,2011,393(1-2):71-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700