用户名: 密码: 验证码:
配气机构动力学试验方法与模型规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配气机构控制发动机进排气过程,对发动机性能具有重要影响。随着发动机技术的发展,配气机构动力学问题逐渐受到重视并得到深入研究。配气机构动力学特性试验和动力学模型分析已经广泛应用于配气机构设计和研究中。但是,目前配气机构动力学特性试验方法缺乏统一的规范,没有对其数据处理方法进行有针对性的研究,动力学模型的工况适应性研究尚不充分,缺少配气机构动力学模型计算结果与试验结果一致性评价依据。
     针对目前配气机构动力学研究中的问题,本课题分析了现有试验和数据处理方法,将多传感器数据融合技术应用到配气机构动力学试验数据处理中,并在试验基础上,对现有配气机构动力学模型进行规划研究,分析各种动力学模型的适用范围,并提出动力学模型计算气门加速度与试验结果一致性的评价依据。
     首先,本课题建立了配气机构综合试验系统,将配气机构动力学特性试验和配气机构可靠性试验在一个试验系统上完成。该系统对目前所采用的各种配气机构结构形式具有通用性,避免了过去专用试验装置的局限性。气门动态特性试验采用压电式加速度传感器和电涡流位移传感器测量气门加速度和位移。
     然后,本课题对气门动态特性试验获得的气门加速度和气门升程信号进行数据处理方法研究。在过去的研究中,配气机构动力学特性试验数据处理多借用通用的数据处理方法,如多循环平均、数字滤波等,缺乏针对性。本课题对气门动态特性试验数据处理方法研究包括:
     ■ 采用最小二乘拟合方法消除气门加速度测量结果中包含的传感器漂移信号,其效果优于数字滤波方法;
     ■ 将线性平均和指数平均方法用于气门加速度和气门升程信号处理,比较表明,气门加速度适用指数平均方法处理,气门升程信号可由线性平均方法处理;
     ■ 由气门加速度积分和气门升程微分得到两路气门速度信号。应用离散小波分解提取气门速度信号特征,依据传感器频响特性不同,确定气门速度信号特征的权值;应用加权平均方法将两路速度信号特征融合,离散小波重构得到融合的气门速度。结果表明,在配气机构动力学特性试验数据处理中应用多传感器
Air exchange process of I.C. engine is controled by valve train, which has great influnce on engine performance. Valve train dynamic experiment and models are widely used in valve train study. By now, there are some limitations in valve train dynamic study, such as dynamic experiment standard, data processing methods, dynamic models' computed result coherence with experimental result, and adaptability of dynamic models to revolution.
    Aim of this paper is to study valve train dynamic experiment and data processing methods, compare the computed results with experimental result, analyze the adaptability of dynamic models to revolution and the coherence of results.
    Firstly, valve train test system (VTTS) was built in this project, which can take both valve train dynamic experiment and reliability experiment. Valve train dynamic characteristic can be tested by this system, with engine speed, temperature, lubricating condition in control. Valve acceleration is taken by piezoelectricity acceleration sensor, and valve displacement by eddy current displacement sensor.
    Secondly, data processing methods used in valve train dynamic experiment are analyzed in details. Least square fit method is used to eliminate drifting sign from piezoelectricity acceleration sensor. Data average, digital filter and wavelet metods were used to processing valve dynamic data. It shows that:
    ■ Least square fit method is better than digital filter used in eliminate acceleration sensor excursion.
    ■ Valve acceleration data suit to be exponential average, and linear average method can be used to processing valve displacement data.
    ■ Multi sensor data fusion method was used to get valve velocity data. Two kinds of valve velocity data were got from valve acceleration integral and displacement differential. Signal character in different time-frequency dormain is got by discreted wavelet transform. Based on the difference of frequency response of two sensors, the valve velocity signals were weighted added and reconstructed by wavelet. As the result, valve velocity without abnormal alteration is got.
引文
[1] 尚汉冀.內燃机配气凸轮机构-设计与计算[M].上海:复旦大学出版社,1988.
    [2] 尚汉冀.用摄动方法研究配气机构动力学[J].内燃机学报.1984,2(4):339-348.
    [3] 陈景宝.内燃机配气机构的瞬态振动[J].力学与实践.1990,5:16-20.
    [4] 陆际清,李艳东,许昕.几种分段组合式凸轮型线之比较[J].内燃机学报.1996,14(3):309-315.
    [5] 陆际清,许昕,李艳东.对气门机构优化设计方法的探讨[J].內燃机学报.1997,15,(1):120-127.
    [6] 赵雨东,陆际清.刚度和摇臂比的变化对下置式凸轮轴配气机构动力学计算结果的影响[J].内燃机学报.1993,11(2):147-152.
    [7] 赵雨东,许昕,陆际清.凸轮轴下置式配气机构的一种新型动力学模型[J].内燃机学报.1992,10(4):303-308.
    [8] 张立梅,张克刚.配气机构振动的研究[J].内燃机工程.1986,3:68-76.
    [9] 张立梅.高速发动机多项式动力凸轮修正方法的探讨[J].汽车技术.1985,3:7-12.
    [10] 张可村,施兴中.二阶光滑逼近曲线的新求法及其在实测凸轮性能分析中的应用[J].汽车技术.
    [11] 张可村,王勇,陈治刚.内燃机配气机构的优化设计[J].内燃机工程.1989,8(4):38-48.
    [12] 梅雪松,谢友柏.配气机构冲击振动的数值模拟[J].内燃机学报.1993,11(3):249-254.
    [13] 梅雪松,陶涛,孔凡峰.速度对凹陷表面微弹流润滑特征的影响[J].西安交通大学学报.1999,33(3):81-85.
    [14] 李惠珍,蔡祥吉,乐俊秉等.内燃机配气凸轮型线的数值逼近方法[J].汽车技术.1985,6:7-12.
    [15] 李惠珍,蔡祥吉,乐俊秉等.配气凸轮设计的进展[J].内燃机工程.1989,10(1):32-37.
    [16] 李惠珍,高峰.配气凸轮型线动态优化设计[J].内燃机学报.1990,8,(4):329-336.
    [17] 乐俊秉,李惠珍,吴广全.配气机构有限元动力计算及分析[J].汽车工程.1994,16(1):36-43.
    [18] 乐俊秉,李惠珍,方华.顶置凸轮轴配气机构有限元动力模型计算及试验研究[J].汽车技术.1995,2:10-14.
    [19] 吴广全,李惠珍,乐俊秉.用多体系统动力学研究内燃机的配气机构[J].内燃机学报.1992,10(1):27-34.
    [20] 王明武,华建文.七项式动力凸轮及最佳设计[J].内燃机工程.1985,3:26-33.
    [21] 王明武.FD配气凸轮的研究与应用[J].内燃机工程.1997,18,(2):65-70.
    [22] 王明武.高次方五项式非对称凸轮的研究与应用[J].内燃机工程.1994,15(2):63-67.
    [23] 左承基,赵奎翰.摆式滚子挺柱对气门运动规律的影响[J].小型内燃机.1996,25(2):5-9.
    [24] 付光琦,高文志,康秀玲.高次多项式非对称高速车用柴油机配气凸轮型线设计[J].内燃机学报.2001,19(1):26-28.
    [25] 付光琦,康秀玲,郭凌崧.高速柴油机顶置式配气凸轮机构的动力学计算[J].内燃机学报.2001,18(2):113-116.
    [26] 王德海,姜树李.椭圆-幂函数组合凸轮动力学优化设计[J].内燃机工程.1989,8(4):48-56.
    [27] 袁银南.顶置凸轮轴式配气机构设计的若干问题[J].内燃机工程.1996,17(2):39-45.
    [28] 董锡明.内燃机气门开启截面的计算[J].汽车技术.1985,3:55-61.
    [29] 唐架时.用多尺度法进行配气机构的非线性动力学计算[J].汽车技术.1985,3:61-65.
    [30] 石英,肖金生,刘春晓等.配气凸轮优化设计的惩罚函数法和增广拉格朗日乘子法[J].武汉理工大学学报交通科学与工程版.2002,26(3):77-80.
    [31] 陈传举,舒寅清.多项动力凸轮升程函数的物理意义[J].农业机械学报.2000,31(4):77-84.
    [32] [德]Flierl R,Oebling K H,Hosl J.现代发动机的气门机构设计[J].国外内燃机.1995,2:9-17.
    [33] 陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1996
    [34] 陆佑方.汽车柔性多体系统动力学建模综述[J].汽车技术,1997,5,1-7
    [35] 李为监 吴金源.气阀系统多质量模型的数学处理[J].复旦学报(自然科学版)1982,21(2):131-139
    [36] 王水来,马元镐,朱隆碧,等.配气机构动态数据处理方法的研究[J].华中理工大学学报,1995,23:56-59.
    [37] 李建锋,俞小莉,沈瑜铭等.气门动态信号处理方法研究[J].内燃机工程.2004,23(1):35-37.
    [38] 常新龙,刘兵吉,汪亮.螺旋弹簧应力松弛实验研究[J].推进技术.1999,20(1):99-102.
    [39] 宋士忠.气门弹簧抗松弛性机理的讨论[J].弹簧工程.2000(4).14-16.
    [40] 杨绍麒,张涌森.WD615气门弹簧的可靠性分析和试验[J].弹簧工程.2000(2).13-16.
    [41] 俞海清,詹先泽,黄钰仙.内燃机凸轮.挺柱副动态弹流润滑油膜厚度计算及其润滑性能分析[J].内燃机学报.1984,2(2):125-140.
    [42] 俞海清,詹先泽.内燃机凸轮润滑特性的评定[J].内燃机学报.1983,1(4):83-93.
    [43] 梅雪松,谢友柏.高速内燃机凸轮与挺柱付润滑过程的数值分析[J].内燃机学报.1994,12(1):71-77.
    [44] 梅雪松,谢友柏.配气机构冲击振动的数值模拟[J].内燃机学报.1993,11(3):249-254.
    [45] 梅雪松,陶涛,孔凡峰.速度对凹陷表面微弹流润滑特征的影响[J].西安交通大学学报.1999,33(3):81-85.
    [46] 梅雪松,陶涛.载荷对凹陷表面的动态微弹流润滑特征的影响[J].机械工程学报.1997,33(3):1-6.
    [47] 张效工,陈法成.内燃机气门落座特性的研究[J].内燃机工程.1980,1:23-35.
    [48] 柳志远,王书茂,汪清华等.变刚度气门弹簧组固有特性对配气机构性能影响的研究[J].内燃机工程.1996,17(2):68-72.
    [49] 袁军堂.变螺距气门弹簧的动力分析及测试[J].中国机械工程.1994,5(5):60-61.
    [50] 袁军堂.变螺距气门弹簧的反求设计[J].机械设计.1995,1:21-23.
    [51] 彭健.变螺距气门弹簧的设计与计算[J].内燃机工程.1984,5(4):25-31.
    [52] 袁军堂.螺旋弹簧的动力分析——有限差分法[J].弹簧工程,1988(2).
    [53] 万斌,袁军堂.气门弹簧动力计算的有限元方法[J].弹簧工程.2000(3).16-20
    [54] 韩雅静,王哲人,王慧.汽车发动机气门弹断裂分析[J].金属热处理,2001,26(9):47-48.
    [55] 腾弘飞,隋允康,韦日钰.高速柴油机气门弹簧动态优化设计[J].内燃机工程.1994,15(3):62-69.
    [56] 张义民,刘锡国,李红英.气门弹簧的可靠度计算[J].农业机械学报,1996,27(1):96-98.
    [57] 李泳鲜,李双义.气门弹簧三次设计中望目特性信躁比的存在问题与改进方法[J].内燃机学报,2001,19(3):279-282.
    [58] 楼文高.气门外弹簧的模糊可靠性优化设计[J].农业机械学报,1999,30(6):107-111.
    [59] 万斌,袁军堂,王功锋.气门弹簧CAD/CAPP集成软件的研究与开发[J].弹簧工程.2000(2).19-28.
    [60] 潘公宇,黄鼎友.发动机气门弹簧的可靠性优化设计[J].车用发动机.1996(4):45-47.
    [61] 佟刚,苗卫东.发动机气门弹簧遗传优化设计[J].沈阳航空工业学院学报.2001,18(4):27-29.
    [62] 龚庆寿.多约束多变量的弹簧优化设计与计算[J].机械.2003,30(5):36-38.
    [63] 胡军,徐燕申,肖学福.铝合金陶瓷摇臂配气机构的气门弹簧优化设计[J].内燃机.2002,3:7-11.
    [64] 姜培刚,丁建民.刘晓斌.内燃机气门弹簧的模糊优化设计[J].青岛建筑工程学院学报.1995,16(1):54-60.
    [65] 钱久娟,姜贵尧.气门弹簧的简便优化设计[J].现代机械.1999(3).22-25.
    [66] Robert L. Norton, Ronald L. Stene, James Westbrook et al. Analyzing Vibration in an IC Engine Valve Train[J]. SAE Paper 980570, 1998.
    [67] Saeid-M. Baniasad and Michael R. Emes. Design and Development of Method of Valve-Train Measurement[J]. SAE Paper 980572, 1998.
    [68] Friedrich-Wilhelrn Speckens, Jurgen Buck, Rainer Lach. Marked Progress in Both Technique and Handling of Valve Train and Valve Train Drive Calculation on Commercial Platforms[J]. SAE Paper 1999-01-0560, 1999.
    [69] Rifat Keribar. A Valvetrain Design Analysis Tool with Multiple Functionality[J]. SAE Paper 2000-01-0562, 2000.
    [70]Hiroyuki Oketani, Masao Ishida, Toshiharu Noda et al. Trends in Engine Valve Development for Automobiles and Motorcycles[J]. SAE Paper 2000-01-0907,2000.
    [71] H. Y. Isaac Du and Jia-Shium Chen. Dynamic Analysis of 3D Finger Follower Valve Train System Coupled with Flexible Camshafts[J]. SAE Paper 2000-01-0909, 2000.
    [72] P. J. Philips, A. R. Schamel and J. Meyer. An Efficient Model for Valvetrain and Spring Dynamics[J]. SAE Paper 890619, 1989.
    [73] Kishro Akiba and Toshiaki Kakiuchi. A Dynamic Study of Engine Valving Mechanisms: Determination of the Impulse Force Acting on the Valve[J]. SAE Paper 880389, 1988.
    [74]Takashi Kosugi and Tetsuya Seino. Valve Motion Simulation Method for High-Speed Internal Combustion Engines[J]. SAE Paper 850179, 1985.
    [75] YoungKeun Park, Katsuhiko Wakabayashi, Yasuhiro Honda et al. A New Simulation of Dynamic Motion of Engine Valve Train System Using Transition Matrix Method[J]. JSAE Paper 9935383, 1999.
    [76] G. Dalpiaz, A. Rivola. A Non-Linear Elastodynamic Model of a Desmodromic Valvetrain[J]. Mechanism and Machine Theory 2000,35: 1551-1562.
    
    [77]Mashu Kurata, Hajime Igarashi, Satoshi Niino et al. Analysis of Roller Tappet Behavior[J]. JSAE Paper 1999,20: 259-279.
    [78] Andi Isra Mahyuddin and Ashok Midha. Direct Numerical Solution Algorithm for Parametric Vibration Response and Stability Determination of Multi-Degree-Freedom Flexible Cam-Follower Systems[J]. JSAE Paper 9531714, 1995.
    [79] Mitsuhiro Soejima, Yutaro Wakuri, Yoshito Ejima et al. Studies on Friction Characteristics of Cam and Roller Tappet for Engine Valve Train, Investigation of Friction Measurement Method[J]. JSAE Paper 9935365, 1999.
    [80] S Melaughlin and I Haque. Development of a Multi-body Simulation Model of a Winston Cup Valvetrain to Study Valve Bounce[J]. Mech Engrs, Vol 216: 237-246
    [81]Yan Hong-Sen,, Cheng Wen-Teng. Curvature analysis of spatial cam-follower mechanisms[J]. Mechanism and Machine Theory 34 (1999) 319-339.
    [82] Lee, Jongmin. Dynamic modeling and experimental verification of a valve train including lubrication and friction[D]. The University of Michigan, 1993.
    [83]Nonglak Phetkong-Steele. Learning Control and Repetitive Control of a High-Speed Nonlinear Cam Follower System[D]. Lehigh University 2002.
    [84] Walter Krepulat, Marius Dusik and Volker Korte. Advanced calculation of the contact stress in roller follower valve train systems. SAE Paper 2002-01-0852.
    [85]Mircea Teodorescu, Dinu Taraza, Naeim A. Henein et al. Experimental analysis of dynamics and friction in valve train systems. SAE Paper 2002-01-0484.
    [86] R. Venugopal, M. Beine and A. Ruekgauer. Real-time simulation of adaptive suspension control using dSpace control development tools[J]. Int. J. of Vehicle Design. 2002, Vol. 29 128-146.
    [87] P. Li, L. Cheng, Y.Y. Li, N. Chen. Robust control of a vibrating plate using μ-synthesis approach[J]. Thin-Walled Structures 41 (2003) 973-986.
    [88] P. F. Pai, B. Wen. A. S. Naser and M. J. Schulz. Structural vibration control using pzt patches and non-linear phenomena[J]. Journal of Sound and Vibration. 1998,215(2) 162-185.
    [89]G.P. Liu, S. Daley. Design and implementation of an adaptive predictive controller for combustor NOx emissions[J]. Journal of Process Control. 9 (1999)485-491.
    [90]G.P. Liu, S. Daley. Adaptive predictive control of combustor NOx emissions[J]. Control Engineering Practice. 9 (2001) 631-638.
    [91] Ayman A. El-Badawy, Ali H. Nayfeh. Control of a directly excited structural dynamic model of an F-15 tail section[J]. Journal of the Franklin Institute 338(2001) 133-147.
    [92]Meng Joo Er, Chang Boon Low, Khuan Holm Nah et al. Real-time implementation of a dynamic fuzzy neural networks controller for a SCARA[J]. Microprocessors and Microsystems 26 (2002) 449-461.
    [93] Y.Y. Li, L. Cheng, P. Li. Modeling and vibration control of a plate coupled with piezoelectric material[J]. Composite Structures 62 (2003) 155-162.
    [94] Huann-Keng Chiang, Chih-Huang Tseng. Design and implementation of a grey sliding mode controller for synchronous reluctance motor drive[J]. Control Engineering Practice 12 (2004) 155-163.
    [95] K. V. Sudahakar. Failure analysis of an automobile valve spring[J]. Engineering Failure Analysis. 8 (2001) 513-520.
    [96] T. D. CHOI, O. J. ELSINGER, C. T. KELLEY et al. Optimization of automotive valve train components with implict filtering[J]. http://citeseer.ist.psu.edu
    [97] C. Y. Cheng, D. J. Lewandowski, J. W. David. Determination of Allowable Pushrod Angle Using a Three-Dimensional Valve Train Model [J]. ASME Transactions. 2001(123): 408-412.
    [98] J. Michalski, J. Marszalek, K. Kubiak. An experimental study of diesel engine cam and follower wear with particular reference to the properties of the materials [J]. Wear, 2000(240): 168-179.
    [99] 赵雨东 仝坤 陆际清.有直动式液压间隙调节器气门机构的一种动态测量方法[J].汽车技术.2001(1):21-24.
    [100] Mitsuhiro Soejima, Yoshito Ejima, Kenji Uemori, etc. Studies on friction and wear characteristics of cam and follower: influences of soot contamination in engine oil. JSAE Review. 2002 (23): 113-119.
    [101] Mitsuhiro SOEJIMA, Yutaro WAKURI, Yoshito EJIMA, etc. Study on friction characteristic of cam and roller tappet for engine valve train: investigation of friction measurement method. Proceedings of the 15th internal combustion engine symposium. 1999, 9935365.
    [102] Dasarathy B V. Sensor fusion potential exploitation innovative architecture and illustrative application. Proceedings of the IEEE, 1997, 85(1): 29~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700