用户名: 密码: 验证码:
肝癌NK细胞免疫抑制机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]:建立人肝癌裸鼠皮下-肝原位移植瘤模型及NK细胞分离方法;检测NK细胞的细胞毒活性及其活化性受体NKG2D的表达;观察肝脏和脾脏组织病理变化。
     [方法]:①建立人肝癌裸鼠皮下-肝原位移植瘤模型先用人肝癌细胞株Hep3B接种于裸鼠皮下,形成皮下移植瘤,然后用此移植瘤组织再接种于裸鼠肝内,建立肝原位移植瘤模型(间接肝原位移植瘤模型);②检测裸鼠原发性肝癌对NK细胞免疫活性的影响分别用Ficoll-Hypaque分层液、酶消化法和机械法初步制备裸鼠外周血、肝脏及脾脏混合淋巴细胞悬液后,用Percoll不连续密度梯度分离法分离NK细胞;用LDH方法检测NK细胞的细胞毒活性;用流式细胞技术检测不同组织NK细胞NKG2D表达百分率;用H-E染色观察肝脏移植瘤对肝脏和脾脏淋巴细胞的影响。
     [结果]:①建立的间接肝原位移植瘤模型能稳定传代,移植瘤存活率达100%;②Percoll不连续密度梯度分离法分离的NK细胞纯度可达到68.5%;③外周血、肝脏及脾脏的NK细胞毒活性及NKG2D受体表达随着肿瘤生长逐渐下降,其中肝脏NK细胞毒活性及NKG2D表达下降明显;④荷瘤裸鼠肝脏癌组织与皮下瘤相同,癌组织异型性与时间呈正相关,脾脏淋巴小结在第4周增生明显,第8周小梁结构增多。
     [结论]:①人肝癌裸鼠皮下-肝原位移植瘤模型具有高存活率的优点,它的建立为人类肝癌的研究提供了理想的工具;②成功建立了裸鼠NK细胞分离方法;③原发性肝癌通过下调NKG2D的表达,对NK细胞有免疫抑制作用,这种作用主要发生在肝脏,但对外周血和脾脏也有影响。
【Objective】:To establish the orthotopic transplantation tumor model from the subcutaneous model of human hepatocellular carcinomas (HCC) in nude mice and the techniques of isolation hepatic NK cells. Then to investigate the cytotoxicity of NK cells and the expression of active NKG2D receptor. Eventually, to observe the pathological changes of liver and spleen.
     【Methods】:ⅠEstablishment of the orthotopic transplantation tumor model from the subcutaneous model of human hepatocellular carcinoma in nude mice: Hep3B cells were subcutaneously transplanted to form subcutaneous transplantation tumors in nude mice . Then the subcutaneous transplantation tumors were injected into liver to form the orthotopic transplantation tumor model (indirect orthotopic model) in nude mice.ⅡThe effects of the primary hepatocellular carcinoma on the immune activity of NK cells in nude mice: Total lymphocytes from the blood , liver and spleen of the nude mice were prepared by using Ficoll-Hypaque, digestive enzymes and mechanical dissection , respectively. Then NK cells were purified by Percoll discontinuous density gradient centrifugation , and the cytotoxicity of NK cells was detected by LDH method . Moreover, the NKG2D receptor expression of NK cells was measured by flow cytometry. Subsequently, the effects of the hepatic transplantation tumor on the lymphocytes of liver and spleen were analyzed by H-E staining.
     【Results】:ⅠThe indirect orthotopic model can stably be propagated. The survival rates of the transplantation tumor were about 100%.ⅡThe purity of NK cells separated by Percoll discontinuous density gradient centrifugation reached to 68.5%.ⅢThe decrease of the cytotoxicity of NK cells and NKG2D receptor expression in peripheral blood, liver and spleen was associated with the growth of hepatocellular carcinoma , and this tendency was significantly in the liver.ⅣBoth the subcutaneous and hepatic transplantation tumor was homology. The heteromorphism of hepatocellular carcinoma was positive correlated with the growth time of tumors. The hyperplasia lymph follicle obviously increased in the spleen after 4 weeks, and the spleen trabecula significantly increased after 8 weeks.
     【Conclusion】:ⅠThis model is an ideal means for study of HCC.ⅡNK cells are successfully purified.ⅢThe primary hepatocellular carcinoma has the immunosuppression effects upon NK cells though down-regulating the expression of NKG2D. Such effects are obvious in liver ,comparing with peripheral blood or spleen.
引文
1. H Hung.Treatment modalities for hepatocellular carcinoma, Curr. Cancer Drug Targets 2005;5:131-138.
    2. Cormier JN, Thomas KT, Chari RS, Pinson CW. Management of hepatocellular carcinoma. J Gastrointest Surg 2006;10:761-780.
    3. Sun HC, Tang ZY, Wang L, Qin LX, Ma ZC, Ye QH, et al. Postoperative interferon alpha treatment postponed recurrence and improved overall survival in patients after curative resection of HBV-related hepatocellular carcinoma: a randomized clinical trial. J Cancer Res Clin Oncol 2006;132:458-465.
    4. Lo CM, Liu CL, Chan SC, Lam CM, Poon RT, Ng IO, et al. A randomized, controlled trial of postoperative adjuvant interferon therapy after resection of hepatocellular carcinoma. Ann Surg 2007;245:831-842.
    5. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol 2004;22:329-60.
    6. Dunn GP, Koebel CM, Schreiber RD: Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006;6:836-848.
    7. Smyth MJ, Dunn GP, Schreiber RD: Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 2006;90:1-50.
    8. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology 2007;121(1):1-14.
    9. Reiman JM, Kmieciak M, Manjili MH, Knutson KL: Tumor immunoediting and immunosculpting pathways to cancer progression. Semin Cancer Biol 2007; 17:275-287.
    10. Kirwan SE, Burshtyn DN. Regulation of natural killer cell activity. Curr Opin Immunol 2007;19:46-54.
    11. Ljunggren H.G and Malmberg K.J. Prospects for the use of NK cells in immunotherapyof human cancer. Nat. Rev. Immunol. 2007;7:329-339.
    12. Ishiyama K, Ohdan H, Ohira M, et al. Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatology 2006;43(2): 362.
    13. Chan A, Hong D.L, Atzberger A, Kollnberger S, Filer A.D, Buckley C.D, McMichael A , Enver T, Bowness P. CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J. Immunol. 2007;179:89-94.
    14. Armeanu, S. et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res. 2005;65:6321-6329.
    15. Endt, J. et al. Inhibitory receptor signals suppress ligation-induced recruitment of NKG2D to GM1-rich membrane domains at the human NK cell immune synapse. J. Immunol. 2007;178:5606-5611.
    16. Anderson AR, Weaver AM, Cummings PT, Quaranta V: Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 2006;127:905-915.
    17. Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J, et al. Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 2006;213:131-45.
    18. Witz IP. Tumor-microenvironment interactions: the selectin-selectin ligand axis in tumor-endothelium cross talk. Cancer Treat Res 2006;130:125-40.
    19. Roda-Navarro, P. et al. Transfer of NKG2D and MICB at the cytotoxic NK cell immune synapse correlates with a reduction in NK cell cytotoxic function. Proc. Natl. Acad. Sci. U. S. A 2006 ;103 :11258-11263.
    20. Eagle, R.A. et al. Regulation of NKG2D ligand gene expression. Hum. Immunol 2006; 67:159-169.
    21. Kato, N. et al. Regulation of the expression of MHC class I-related chain A, B (MICA, MICB) via chromatin remodeling and its impact on the susceptibility of leukemic cells to the cytotoxicity of NKG2D-expressing cells. Leukemia 2007 ;21 :2103-2108.
    22. Zwirner NW, Fuertes MB, Girart MV, Domaica CI, Rossi LE. Cytokine-driven regulation of NK cell functions in tumor immunity: role of the MICA-NKG2D system. Cytokine Growth Factor Rev 2007;18:159-70.
    23. Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE, et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 2005;6:928-937.
    24. Eisele, G. et al. TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 2006;129:2416-2425.
    25. Kaiser, B.K. et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 2007;447:482-486.
    26. Norris S, Collins C, Doherty DG, et al. Resident human hepatitis lymphocytes are phenotypically different from circulating lymphocytes[J ]. J Hepatol 1998;28(1): 84-96.
    27. Luo D,Vanderkerken K, ChenMQ , et al. Rat hepatic natural killer cells (pit cells) express mRNA and protein similar to invitro interleukin-2 activated natural killer cells. Cellular Immunology 2001;210(1):41.
    28. Rygaard J. Immunobiology of the mouse mutant "Nude".Preliminary investigations. Acta Pathol Microbiol Scand 1969;77:761-762.
    29. Shimosato Y, Kameya T, Nagai K, Hirohashi S, Koide T, Hayashi H, Nomura T. Transplantation of human tumors in nude mice.J Natl Cancer Inst 1976;56:1251-1260.
    30. Li Y, Tian B, Yang J, Zhao L, Wu X, Ye SL, Liu YK, Tang ZY. Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics. J Cancer Res Clin Oncol 2004;130:460-468.
    31. YAMAMOTO C, TAKEMOTO H, KUNO K, et al . Cycloprodigiosin hydrochloride, a new H(+) /Cl(-) symporter, induces apoptosis in human and rathepato cellular cancer cell lines in vitro and inhibits the growth of hepatocellular carcinoma xenografts innude mice[ J]. Hepatology 1999;30(4): 894-902.
    32. Su ZJ, Chen HB, Zhang JK, Xu L. Effects of dendritic cells from cord blood CD34+ cells on human hepatocarcinoma cell line BEL-7402 in vitro and in SCID mice. World J Gastroenterol 2005;11:2502-2507.
    33. Elinav E, Abd-Elnabi A, Pappo O, Bernstein I, Klein A, Engelhardt D, Rabbani E, Ilan Y. Suppression of hepatocellular carcinoma growth in mice via leptin, is associated with inhibition of tumor cell growth and natural killer cell activation. J Hepatol 2006;44:529-536.
    34. Chien-Jen C, Ming-Whei Y, Yun-Fan L. Epidemiological characteristics and risk factors of hepatocellular carcinoma. J Gastroenterol Hepatol 1997;12:S294-308.
    35. El-Serag HB, Mason AC, Key C. Trends in survival of patients with hepatocellular carcinoma between 1977 and 1996 in the United States. Hepatology 2001;33:62-65.
    36. Zhang Y, Xu JS, Zhao R, et al. Inhibition effects on liver tumors of BALB/c mice bearing H22 cells by immunization with a recombinant immunogen of GnRH linked to heat shock protein 65. Vaccine 2007;25:6911-6921.
    37. Curry M P, No rris S, Go lden2M ason L , et al. Isolation of lymphocytes from normal adult human liver suitable for phenotypic and functional characterization [J]. J Immunol Methods 2000 ;242(122) :21-31.
    38. FUJIHARA T, SAWADA T, HIRAKAWA K, et al. Establishment of lymph node metastatic model for human gastric cancer in nude mice and analysis of factors associated with metastasis[J]. Clin ExpMetastasis 1998;16(4):389-398. [0]39. Yuen M F, Norris S. Expression of inhibitory receptors in natural killer (CD3-CD56+ and CD3+CD56+)cells in the peripheral blood lymphocytes and tumor infiltrating lymphocytes in patients with primary hepatocellular carcinoma [J]. Clin Immunol 2001;101(3):264-269.
    40. Wiltrout RH, Mathieson BJ, Talmadge JE, Reynolds CW, Zhang SR, Herberman RB, et al. Augmentation of organassociated natural killer activity by biological response modifiers. Isolation and characterization of large granular lymphocytes from the liver.J Exp Med 1984;160(5):1431-1449.
    41. Vujanovic NL, Polimeno L, Azzarone A, Francavilla A, Chambers WH, Starzl TE, et al. Changes of liver-resident NK cells during liver regeneration in rats. J Immunol 1995;154(12):6324-6338.
    42. Mackay IR. Hepatoimmunity: a perspective. Immunol Cell Biol 2002;80:36-44.
    43. Norris S, Collins C, Doherty DG, Smith F, McEntee G, Traynor O, et al. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol 1998;28:84-90.
    44. Rabinowich H , Sedlmayr P ,Herberman R B et al . Increased proliferation lytic activity and purity of human natural killer cells cocultured with mitogenactivated feeder cells. Cell Immunol 1991;135:454.
    45. Niemeyer CM, Siaff C A , Smith B R et al . Hematopoiesis in vitro coexists with natural killer lymphocytes. Blood 1989;74:2376.
    46. Timonen T , Saksela E. Isolation of human NK cells by density gradient centrifugation. J Immunol Meth 1980;36:285.
    47. Timonen T, Reynolds CW, Ortaldo JR, et al . Isolation of human and rat NK cells. J Immunol Meth 1982;51:269.
    48. Shafritz DA, Mariana D. Liver stem cells and model systems for liver repopulation[J ]. J Hepatol 2002;36(4):552-564.
    49. Golden-Mason L, O’Farrelly C. Having it all? Stem cells, haematopoiesis and lymphopoiesis in adult human liver [J]. Immunol Cell Biol 2002;80(1):45-51.
    50. Norris S, Collins C, Doherty DG, et al. Resident human hepatitis lymphocytes are phenotypically different from circulating lymphocytes[J]. J Hepatol 1998;28(1): 84-96.
    51. Doherty DG, O’Farrelly C. Innate and adaptive lymphoid cells in the human liver[J]. Immunol Rev 2000;174:5-20.
    52. Wiltrout RH. Regulation and antimetastatic functions of liver-associated natural killer cells [J ]. Immunol Rev 2000 ;174:63-76.
    53. Seki S, Habu Y, Kawamura T, et al. The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1Ag+ T cells in T helper immune responses[J ]. Immunol Rev 2000;174:35-46.
    54. Golden-Mason L, O’Farrelly C. Having it all? Stem cells, haematopoiesis and lymphopoiesis in adult human liver[J ]. Immunol Cell Biol 2002;80(1):45-51.
    55. Mackay IR. Hepato immunology: a perspective [ J ]. Immunol Cell Biol 2002;80(1): 36-44.
    56. Ishiyama K, Ohdan H, Ohira M, et al. Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatology 2006;43(2):362.
    57. Chan A, Hong D.L, Atzberger A, Kollnberger S, Filer A.D, Buckley C.D, McMichael A, Enver T, Bowness P. CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J. Immunol 2007;179:89-94.
    58. Middleton D, CurranM, Maxwell L. Natural killer cells and their receptors[J]. Transplant Immunology 2002;10(3):147-164.
    59. Kim S, Lizuka K, Hyun-Seok PK, et al. Invivo developmental stages in murine natural killer cell maturation [J]. Nat Immunol 2002;16(3):523-528.
    60. Rosmaraki EE, Douagi I, Roth C, et al. Identification of committed NK cell progenitors in adult murine bone marrow [J]. Eur J Immunol 2001;31(6):1900-1909.
    61. Arase H, Saito T, Phllips JH, et al. Cutting edge: the mouse NK cell-associated antigen recognized by DX5 monoclonal antibody is CD49b (alpha-integrin, very late antigen 22) [ J ]. J Immunol 2001;167(3):1141-1144.
    62. Hsu KC, Keever-Taylor CA, Wilton A, et al. Improved outcome in HLA-identical sibling hematopoietic stem cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes [J]. Blood 2005;105(12):4878-4884.
    63. Kim J, Chang CK, Hayden T, et al. The activating immunoreceptor NKG2D and its ligands are involved in allograft transplant rejection [J]. J Immunol 2007;179(10): 6416-6420.
    64. Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting [ J ]. Nat Rev Immunol 2006;6 (11):836-848.
    65. Schreiber RD. Cancer vaccines 2004 opening address: themolecular and cellular basis of cancer immunosurveillance and immunoediting [J]. Cancer Immun 2005;5(Supp l1):128.
    66. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting [J]. Annu Rev Immunol 2004;22:329-360.
    67. Coudert JD, Zimmer J, Tomasello E, et al. Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells [ J ]. Blood 2005;106(5):1711-1717.
    68. Mor G, Visintin I, Lai Y, et al. Serum protein markers for early detection of ovarian cancer [J]. Proc Natl Acad Sci USA 2005;102(21):7677-7682.
    69. Nakae M, Iwamoto I, Fujino T, et al. Preoperative plasma osteopontin level as a biomarker complementary to carbohydrate antigen 125 in predicting ovarian cancer [J]. J Obstet Gynaecol Res 2006;32(3):309-314.
    70. Schorge JO, Drake RD, Lee H. Osteopontin as an adjunct to CA125 in detecting recurrent ovarian cancer [J]. Clin Cancer Res 2004;10(10): 3474-347.
    1. H Hung. Treatment modalities for hepatocellular carcinoma, Curr. Cancer Drug Targets 2005;5:131-138.
    2. Cormier JN, Thomas KT, Chari RS, Pinson CW. Management of hepatocellular carcinoma. J Gastrointest Surg 2006;10:761-780.
    3. Wisse E, Van’t Noordende JM , Van Der Meulen J. The pit cell: description of a new type of cell occurring in rat liver and peripheral blood. Cell Tissue Res 1976;173 (4):423.
    4. Kaneda K. Liver-associated large granular lymphocytes: morphological and functional aspects. A rch Histol Cytol 1989;52 (5):447.
    5. Wiltrout RH, Mathieson BJ, Talmadge JE, et al. Augmentation of organ associated natural killer activity by biological response modifiers. Isolation and characterization of large granular lymphocytes from the liver [J]. J Exp Med 1984;160 (5) :1431-1449.
    6. Bouwens L, Remels L, Baekeland M, et al. Large granular lymphocytes or“pit cells”from rat liver: isolation, ultrastructural characterization and natural killer activity. Eur J Immunol 1987;17 (1):37.
    7. Nakatani K, Kaneda K, Sek i S, et al. Pit cells as liver-associated natural killer cells: morphology and function. Med Electron Microsc 2004;37(1):29.
    8. Winnock M, Garcia Barcina M, Lukom ska B, et al. Human liver-associated lymphocytes: an overview. J Gastroenterol Hepatol 1995;10(Supp l1):S43.
    9. Adelheid C, Lewis L, Lanier LL. Natural killer cells, viruses and cancer[J]. Nat Immunol Rev 2001;1:41.
    10. Biron CA, Brossay L. NK cells and NKT cells in innate defense against viral infections [J ]. Curr Opin Immunol 2001;13(4):458-464.
    11. Kaneda K, Pilaro AM, Scyers T J , et al. Quantitative analysis of rod-cored vesicles and dense granular lymphocytes in the liver, spleen and peripheral blood of rats. Cell Tisse Res 1994;276 (1):187.
    12. Vivier E,Tomasello E,Paul P. Lymphocyte activation via NKG2D:towards a newparadigm in immune recognition[J].Curr Opin Immunot 2002;14(3):306-311.
    13. Diefenbach A, Raulet DH. The innate immune response to tumors and its role in the induction of T-cell immunity [J].Immunol Rev 2002;188(1):9-21.
    14. Sutherland CL,Chalupny NJ,Schooley K,et a1.UL16-binding proteins,novel MHC class I-related proteins,bind to NKG2D and activate multiple signaling pathways in primary NK cells [J]. J Immunol 2002;168(2):671-679.
    15. Holmes MA, Li P, Petersdorf EW, et a1.Structural studies of allelic diversity of the MHC class I homolog MIC-B, a stress-inducible ligand for the activating immunoreceptor NKG2D [J]. J Immunol 2002;l69(3):1395-1400.
    16. Norris S, Collins C, Doherty DG, et al. Resident human hepatitis lymphocytes are phenotypically different from circulating lymphocytes[J]. J Hepatol 1998;28(1): 84-96.
    17. Doherty DG, O’Farrelly C. Innate and adaptive lymphoid cells in the human liver [J]. Immunol Rev 2000;174:5-20.
    18. Wiltrout RH. Regulation and antimetastatic functions of liver-associated natural killer cells[J]. Immunol Rev 2000 ;174:63-76.
    19. Seki S, Habu Y, Kawamura T, et al. The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cells in T helper 1 immune responses [J]. Immunol Rev 2000;174:35-46.
    20. Golden-MasonL, O’Farrelly C. Having it all? Stem cells, haematopoiesis and lymphopoiesis in adult human liver [J]. Immunol Cell Biol 2002;80(1):45-51.
    21. Luo D,Vanderkerken K, ChenMQ , et al. Rat hepatic natural killer cells (pit cells) express mRNA and protein similar to invitro interleukin-2 activated natural killer cells. Cellular Immunology 2001;210(1) :41.
    22. Trobonjaca Z, Kroger A , Stober D, et al. Activating immunity in the liver.ⅡIFN -beta attenuates NK cell-dependent liver injury triggered by liver NKT cell activation [J]. J Immunol 2002;168(8):3763-3770.
    23. Trobonjaca Z, Leithauser F, Moller P, et al. Activating immunity in the liver.ⅠLiverdendritic cells (but not hepatocytes) are potent activators of IFN-gamma release by liver NKT cells [J ]. J Immunol 2001;167(3):1413-1422.
    24. Hayakawa Y, Takeda K, Yagita H, et al. Differential regulation of Th1 and Th2 functions of NKT cells by CD28 and CD40 costimulatory pathways [J ]. J Immunol 2001;166(10):6012-6018.
    25. Smyth MJ, Cretney E, Takeda K, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis [J]. J Exp Med 2001;193(6): 661-670.
    26. Takeda K, Hayakawa Y, Van-Kaer L , et al. Critical contribution of liver natural killer T cells to amurine model of hepatitis [J]. Proc Natl Acad Sci USA 2000 ;97(10): 5498-5503.
    27. Bioulac-Sage P, Boulard A, Rossignol D, et al. The increase in the number of liver sinusoidal pit cells in four patients with primary ormetastatic cancer of the liver. J Submicrosc Cytol Pathol 1988;20(2) :335.
    28.陈罡,罗殿中,李萍,等.肝癌、肝硬化中NK细胞的免疫组织化学研究.肝胆胰外科杂志, 2005;17(2):101.
    29. Hata K, Van Thiel DH, Herberman RB, et al. Phenotypic and functional characteristics of lymphocytes isolated from liver biopsy specimens from patients with active liver disease. Hepatology 1992;15(5):816.
    30. Winnick M, Garcia-Barcina M, Huet S, et al. Functional characterization of liver-associated lymphocytes in patients with liver metastasis. Gastroenterology 1993;105(4):1152.
    31. Shiratori Y, Nakata R, Okano K, et al. Inhibition of hepatic metastasis of colon carcinoma by asialo GM 1-positive cells in the liver. Hepatology 1992;16(2):469.
    32. Francavilla A, Vujanovic NL, Polimeno L, et al. The in vivo effect of hepatotrophic factors augmenter of liver regeneration, hepatocyte growth factor, and insulin-like growth factor-II on liver natural killer cell functions. Hepatology 1997;25(2):411.
    33.刘婷,俞维.自然杀伤细胞在妊娠子宫中的作用.陕西医学杂志, 2004;33 (2):158.
    34. Luo D, Vermijlen D, Vanderkerken K, et al. Involvement of LFA-1 in hepatic NK cell (pit cell)-mediated cytolysis and apoptosis of colon carcinoma cells. J Hepatology 1999;31(1):110.
    35. Ortaldo JR, Winkler-Pickett RT, Nagashima K, et al. Direct evidence for release of pore-forming protein during NK cellular lysis. J Leukocyte Biol 1992;52(5):483.
    36. Hanahan D,Weinberg RA. The hallmarks of cancer[J].Cell 2000;100(I):57-70.
    37. Dunn GP, Bruce AT, Ikeda H, et a1.Cancer immunoediting: from immuno-surveillance to tumor escape [J].Nat ImmunoI 2002;3(11):991-998.
    38. Takeda K, Smyth MJ, Cretney E, et a1. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gamma-dependent suppression of subcutaneous tumor growth [J]. Cell Immunol 2001;214(2):194-200.
    39. Smyth MJ, Cretney E, Takeda K, et a1. Tumor necrosis factor-reated apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis[J] . J Exp Med 2001; 193(6):661-670.
    40. Hayakawa Y,Kely JM,Westwood JA,et a1.Cutting edge:tumor rejection mediated by NKG2D receptor-ligand interaction is dependent upon perforin [J].J Immuno1 2002;169(10):5377-5381.
    41. Gerosa F,Baldani-Guerra B,Nisii C,et a1.Reciprocal activating interaction between natural killer cells and dendritic cells.J Exp Med 2002;195(3):327-333.
    42. Srivastava P.Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses[J]. Annu Rev Immunol 2002;20:395-425.
    43. Li Z,Menoret A, Srivastava P. Roles of heat-shock proteins in antigen presentation and cross presentation [J]. Curr Opin Immunol 2002;14(1):45-51.
    44. Yu Spiotto MT,Lee Y,et a1.Complementary role of CD4+T cells and secondary lymphoid tissues for cross-presentation of tumor antigen to CD8+T cells[J].J ExpMed 2003;197(8):985-995.
    45. Gabrilovich D.Mechanisms and functional significance of tumor-induced dendritic cell defects [J].Nat Rev Immunol 2004;4(12):941-952.
    46. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance[J].Nat Rev Cancer 2005;5(4):263.
    47. Marincola FM.Jafee EM,Hicklin DJ,et a1.Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000;74:181-273.
    48. Groh V,Wu J,Yee C,et a1.Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activatior [J].Nature 2002;419(6908):734-738.
    49. Takeda K, Smyth MJ, Cretney E,et a1.Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development[J].Exp Med 2002;195(2):161-169.
    50. Hayashi T, Faustman DL.Development of spontaneous uterine tumors in low molecular mass polypeptide-2 knockout mice[J1.Cancer Res 2002;62(1):24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700