用户名: 密码: 验证码:
刻槽控制爆破有限元数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刻槽孔断裂控制爆破是用机械、高压水射流方法在孔壁预计开裂方向刻轴向槽,用动爆或静态胀裂剂对所切割介质的开裂位置、开裂方向进行控制的一种断裂控制爆破方法。
     此种断裂控制爆破法具有切割面平整、对切割体的破坏性小、便于在生产中推广应用的突出优点。目前已有两种机械刻槽方法(V形刻槽方法和矩形刻槽方法)获得专利,机械刻槽方法是解决我国石材业急需提高荒料率这一问题的重要手段之一。
     论文中论述了刻槽爆破的机理研究,并且列举了目前在刻槽爆破模拟方面采取的各种方法和结论。本文采用有限元ANSYS软件数值模拟了V形、矩形和半圆形刻槽孔,并且采用应力图可视化地显现出三种刻槽方式在刻槽尖端都具有应力集中作用。
     通过建立在弹性体内刻槽孔壁上作用有均匀内压的弹性力学模型,采用有限元数值方法求解刻槽尖端和槽孔周围应力,得出应力分布规律,从而在数值解上证明V形、矩形和半圆形刻槽尖端是首先产生裂缝的位置。
     通过对V形槽等效应力的求解,分析V形刻槽角度、刻槽深度、槽孔曲率半径等因素对槽孔附近及槽孔尖端应力场的影响;得出了V形槽孔各参数与槽孔周围应力分布之间的规律;通过对矩形槽等效应力的求解,分析矩形刻槽深度、槽孔宽度等因素对槽孔附近及槽孔尖端应力场的影响;得出了槽深、槽宽与槽孔周围应力分布之间的规律;通过对半圆形刻槽等效应力的求解,分析了刻槽半径对槽孔附近及槽孔尖端应力场的影响。本文从力学上说明V形、矩形和半圆形刻槽槽孔可以有效控制裂纹的初始点和扩展方向,槽孔断裂控制爆破是一种有效的石材开采方法。
     经过有限元数值模拟V形、矩形和半圆形刻槽孔在不同刻槽参数下的等效应力分布规律,进行分析得到如下结论:
     (1)V形刻槽尖点上与尖角附近预计断裂面上(x轴上),等效应力明显大于槽孔其他各处,因而槽孔内壁加载时,始裂点在刻槽尖点处产生,裂纹扩展方向在轴线上;
     (2)V形和矩形刻槽尖点上的等效应力都随着刻槽深度的增加而增大;刻槽深度建议取4~6mm。
     (3)根据V形刻槽尖点上的等效应力与刻槽角度的关系,建议取60°≤a≤90°;
     (4)V形刻槽尖角处应力随着刻槽尖端曲率半径的增大而减小;但是在工程实践中,曲率半径过小将导致岩石对切刃的夹持作用增大,机械刻槽效率降低,刃具磨损加大。因此刻槽曲率半径不易取太小,建议取0.6mm~2.0mm;
     (5)矩形刻槽宽度越大,刻槽尖点等效应力集中度越小,因此刻槽宽度不易取得太大,建议取3mm~4mm;
     (6)V形和矩形刻槽都能在刻槽尖端起等效应力高度集中,并且有效控制裂纹的初始点和扩展方向;
     (7)V形和矩形刻槽在槽深相同、尖端曲率半径相同时,在刻槽尖端等效应力集中效果相差不大。
     (8)半圆形槽孔刻槽半径越小槽尖等效应力越集中,但改变不大。
The groove fracture controlled blasting method which uses machinery and high water jet to carve groove along predictable direction of crack expanding on hole side and control the position and direction of cracking in specimens cut with loose blasting and static split drug is one of fracture controlled blasting methods.
    Lath sections with more smooth face and less destructive object cut and easy application to production are this way's advantages. Nowadays, two carving groove with machinery methods(carving V-shaped groove and carving rectangular groove method) have been patented. They are important measures of raising raw material ratio of masonry materials mining in our country.
    The paper discuss the principle of the groove fracture controlled blasting, and sums up the results of some research and results as simulating the groove fracture controlled blasting. The results of V-shaped groove and rectangular groove and half circularity are solved by finite element numerical simulation. And the results can show that the equivalent stress around wedge tip of them are expanding excess other position's by equivalent stress graphic.
    In this paper, firstly, the linear elastic plane strain model with even internal pressure in infinite elasticity is set up and the equivalent stress distribution around the groove and wedge tip is calculated by the numerically simulated finite element method. It is used during the studying groove, and prove the regulations of V-shaped groove and rectangular groove and half circularity groove that wedge tip is the first forming position of crack.
    Equivalent stress calculating data of V-shaped groove show that the relation of groove angle, groove depth and groove tip's curvature radius effecting equivalent stress around groove, and gain how they effect equivalent stress around groove. Equivalent stress calculating data of rectangular groove show that the relation of groove depth and groove width effecting equivalent stress around groove, and gain how they effect equivalent stress around groove. Equivalent stress calculating data of half circularity groove show that the relation of groove radius effecting equivalent stress around groove, and gain how they effect equivalent stress around groove. The fact is proved by mechanics that groove can control initial position and direction of crack expanding effectively, the groove fracture controlled blasting is an effective method in mining masonry materials.
    The numerically simulated finite element method is used during the studying several different parameters of V-shaped groove and rectangular groove and half circularity groove hole. The equivalent stress distribution around the groove and wedge tip is calculated and found those rules such as follow:
    (1) the values of equivalent stress around wedge tip and predictable surface of
    
    
    
    crack(on x- axis) expanding excess other position's greatly, therefore initial position of crack expanding comes out on wedge tip and crack expands along predictable axis of crack expanding when the loads increase on the v-shape hole inside.
    (2) the increase of groove depth of V-shaped groove and rectangular groove raise the values of equivalent stress around wedge tip; It had better choose the groove depth in 4~6mm to fit the ask of project of machine.
    (3) It had better choose the groove angle in 60 掳~90 掳 on the basis of the relation of groove angle effecting equivalent stress around groove.
    (4) The decrease of wedge tip's curvature radius enhance the values of equivalent stress around wedge tip. In the fact of project, the decrease of wedge tip's curvature radius raise resistance which rock nips blade and diminish the efficiency of machine working and raise blade damage. It had better choose wedge tip's curvature radius in 0.6 ~2.0mm and can choose less.
    (5) the increase of rectangular groove tip's width decrease the values of equivalent stress around wedge tip, the groove tip's width had better choose in 3mm~4mm and can't choose bigger..
    (6) V-shaped groove and rectangular groove all can
引文
[1] 张志呈.定向断裂控制爆破.重庆:重庆出版社,2000.
    [2] 李志峰.边坡工程中的爆破作用分析:[硕士论文]. 杭州::浙江大学建筑工程学院,2003
    [3] 郑颖人,沈珠江,龚晓南.岩石塑性力学原理.北京.中国建筑工业出版社,2002
    [4] 房泽法.槽孔断裂控制爆破开采石材的研究[硕士论文]. 武汉:武汉工业大学资源与环境工程学院,1989
    [5] 刘殿书,王树仁.柱状装药爆破破碎过程的数值模拟研究:工程爆破文集.中国地质大学出版社,1993:16~22
    [6] Langefors, U and Kinlstrom. B, the modern technique of rock blasting, 1963, pp3300~301.
    [7] 阳友奎,张志呈.刻槽爆破中刻槽的导向机理.重庆大学学报,1990(5):61-65
    [8] Khanukaev A N. stress wave energy in rock blasting by explosion. Moslow. 1994
    [9] Gold, Vladimir M. Numerical modeling of fragmentation characteristics of explosive fragmentation munitions. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP v 435 2002. p 239-244
    [10] James W. Dally and W. L Fourney preedings 18th U. S. Symposium on Rock Mechanics 1977. pp. 2A6-1~2A6-7
    [11] 张志呈,王成端.刻槽爆破中刻槽角的研究.爆炸与冲击,1990,10(3):233-238.
    [12] 王成端.预制V形裂纹尖端应力强度因子的研究.应用数学和力学,1992,13(5):461-477.
    [13] 杜云贵,张志呈.圆形炮孔刻槽后对岩石破坏方向控制作用的力学分析.全国第四届岩石破碎学术讨论论文集 (C),成都,1989.
    [14] Barker, LM. As implified method form easuring plane fracture toughness. Eng Fract Mech, 1977(9)
    [15] Chen, Z. H; Tang, C. Y; Lee, T. C, et al. Numerical simulation of fine-blanking process using a mixed finite element method. International Journal of Mechanical Sciences v 44 n 7 July 2002. p 1309-1333
    [16] 吴立,张时忠.岩石爆破中的断裂控制方法.探矿工程 1997(3):54~55
    [17] Cho, Sang Ho; Nishi, Masaaki; Yamamoto, et al. Estimation of rock fragmentation in bench blasting using numerical simulation. Proceedings of the Annual Conference on Explosives and Blasting Technique v I 2002. p 187-196
    [18] 刘第海.刻槽预裂爆破的应用与研究.爆破,1995,(1):23-25
    [19] 宗琦.岩石炮孔预刻槽爆破断裂成缝机理研究.岩土工程学报,1998,20(1):30-33
    [20] 杨仁树,宋俊生,杨永瑜.刻槽孔爆破机理模型试验研究.煤炭学报,1995,20(2):198-200
    [21] Chakraborty, S; Bhattacharyya, B. An efficient 3D stochastic finite element method. International Journal of Solids and Structures. vol. 39, no. 9 p2465-2475
    
    
    [22] Fourney. LDallyJW. . Grooved bore holes for fracture plane control in blasting. Univof Margland Report to the National science Foundation, 1977, 113-127
    [23] 刘殿书.岩石爆破破碎的数值模拟:[博士论文]. 北京:中国矿业大学北京研究生部,1992
    [24] 肖正学,郭学彬,张志呈.刻槽爆破在爆炸冲击波和爆轰气体作用下的力学效应.岩石力学与工程学报,1998,17(6):650-654.
    [25] 杜云贵,张志呈,李通林.刻槽爆破中V形刻槽产生的力学效应研究.爆炸与冲击,1991,11(1):26-30
    [26] 肖正学,郭学彬,张志呈.刻槽爆破成缝机理探讨.云南冶金,1999,28(6):1-4
    [27] 郑泽岱,陈宝心,徐国顺.刻槽爆破的机理分析及刻槽刀头参数设计.爆破,1991(4):1-7
    [28] 高金石,杨军,等.准静态压力作用下岩体爆破成缝方向与机理研究.爆炸与冲击,1990,10(1):76-84
    [29] WilliamsML. On the stress distribution at the base of as tationary crack. JApplMech, 1957, (24):109-114
    [30] WilliamsML. stress singularities resulting from various boundary inangular corner sofe plates intension. Jappl Mech, 1952, (14): 526-528
    [31] Rao, B. N. ; Rahman, S. A coupled meshless-finite element method for fracture analysis of cracks. International Journal of Pressure Vessels and Piping. v 78 n 9 Nov 23 2001. p 647-657
    [32] 魏庆同,郎福元,赵帮戟.一种求解V形切口尖端应力强度因子的新方法.甘肃工业大学学报,1986,12(4):21-31.
    [33] 魏庆同,郎福元,赵帮戟.V形切口尖端应力场和位移场的幂级数解答.甘肃工业大学学报,1985,11(2):10-14
    [34] 陆文,张志呈.刻槽爆破断裂应力强度因子及其装药量的确定.西南工学院学报,1994,9(1):46-51
    [35] 钱俊.三维切口尖端应力应变场.应用数学和力学,1994,15(3):199-208
    [36] 张志呈.刻槽爆破参数的研究与生产实践.岩土工程学报,1996,18(2):104-108
    [37] 肖正学,郭学彬.刻槽爆破中刻槽参数的研究.四川冶金,1998,(2):1-4
    [38] Chiaia, B. Fracture mechanisms induced in a brittle material by a hard cutting indenter. International Journal of Solids and Structures. v 38 n 44-45 Oct 12 2001. p7747-7768
    [39] 宋俊生,杨仁树.刻槽孔爆破参数及其应力场模型试验研究.建井技术,1992, 18(1):21-24
    [40] 杜云贵,张志呈,李通林.刻槽爆破中V形刻槽产生的力学效应研究.爆炸与冲击,1991,11(1):26-30
    [41] Bershadskii, A. . Fractal mini-max principle in fragmentation related to fracture. Chaos, Solitons and Fractals. v13 n 1 January 2002. p 185-186
    
    
    [42] 张志呈.刻槽爆破参数的研究和生产实践.岩土工程学报.1996(2)
    [43] Forney, W. L, et al. Model studies of well stimulation using propel lent charges. Rock Mech Minsci & Geome Abstr, 1983, 20(2): 91-101
    [44] Brent, G. F, Smith, G. E. Detection of blast damage by borehole pressure measurement. Journal of The South African Institute of Mining and Metallurgy. v100 n1 2000, p17-21
    [45] 王靖涛.裁剪脉冲加载法研究.中国科学,1987,(10):1113-1120
    [46] 杨军,钟冬望.爆破技术新进展,北京,冶金工业出版社,1998
    [47] Mortazavi, Ali;Katsabanis, P. D. Discontinuum modelling of blasthole expansion and explosive gas pressurization in jointed media. FRAGBLAST-International Journal for Blasting and Fragmentation. v 2 n 3 1998. p 249-268
    [48] 徐芝纶,弹性力学简明教程,高等教育出版社,1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700