用户名: 密码: 验证码:
雅砻江流域植被恢复与重建技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以雅砻江流域高原丘陵区植被恢复与重建为目标,结合流域特殊环境资源特征,以乡土植物为基础筛选出适合区域植被恢复与重建的优良材料,集成优化出不同类型山地植被快速恢复与重建技术,并采用野外长期定位观测对恢复与重建植被进行生态效益评估。主要研究结果如下:
     (1)高原丘陵区植被恢复与重建秋季更新的生理生态学基础分析表明:①土壤温度和水分是影响雅砻江流域这一特殊生态环境下植被恢复的主要因子,5~8月为高原失水期,9月以后为聚水期,水分的盈亏直接影响植被恢复阶段的保存率,秋更可以缩短缓苗期,增强幼苗对不利环境抵抗。6月下旬至七月底是高山林区苗木新陈代谢旺盛,8月上旬生长基本停止逐步形成顶芽,代谢减弱蒸腾降低,8月至9月,苗木冬芽饱满但根系活动仍然较强,继续吸收水分和养分有利于次年生长发育;8月下旬苗木定植到10月初须根数量增多长度增加,根系与土壤结合密切发育良好,逐步适应新的环境条件;次年春季土壤解冻气温回升,苗木即萌动生长无明显的缓苗现象。②秋更苗木无需假植,起苗后随即更新,且苗圃土壤湿润,起苗过程中苗木根系损伤明显减少;秋更必须在顶芽基本形成,根系尚有活力,生长未完全停止以前进行,否则秋更就成了单株假植失去更新意义,10月雨季结束土壤结冻后不宜秋更作业;③此外,秋更可降低成本约6%。,延长更新时间1个月,有利于营林生产作业程序调整,秋更便于圃地轮作保证苗木质量。
     (2)筛选出多类乡土树种作为植被恢复材料,并集成了相应的快速繁殖技术:①云杉扦插快繁选取幼龄母树的1年生枝条,扦插基质选择“泥炭1/2+炭化稻壳1/2+4‰复合肥”,基质温度控制在20~25℃,外源生根激素选择ABT生根粉,效果最佳;②光果西南杨插条采用15cm长的1~3年生枝条中下段进行扦插效果良好,扦插时间3月中旬为佳;③北京杨插条长度为18~24cm为宜,影响苗高和成活率的因素:枝条年龄>浸水处理>地膜覆盖;④海棠种子育苗用福尔马林(浓度0.15%)溶液浸种15~30min,出苗率高,苗木质量好。
     (3)提出了云、冷杉秋季更新技术。5个试验地(海拔3600m—4000m)造林后逐年定株观测数据分析表明:①川西云杉、鳞皮冷杉和鳞皮云杉苗木生长与气温和降水量密切相关,秋季更新定植3年后未经补植的保存率平均为46.8%,略低于春季更新,影响保存率的主要因素为:更新季节、树种、单穴植苗数、整地、苗木处理等;定株9年后树高和冠幅均以道孚>炉霍>翁达;②光果西南杨是高原丘陵区宽谷平地造林优良树种,整地50×50×50cm每穴另加客土10kg,4月上中旬土壤解冻后造林,用2年生根系完整、地径≥1.0cm、高≥1.0m的合格苗穴植,密度1110株/hm~2;③花叶海棠抗逆性强、生长快,适合山地中下造林,造林前一年雨季前整地,规格与技术光果西南杨相同,初植密度2505株/hm~2。
     (4)植被恢复与重建生态效益明显:①川西云杉7年生与17年生重建林比较,总植物多样性指数和丰富度分别提高15%和70%;土壤有机质、氮、磷、钾分别提高41%、40%、41%、33%;林地枯落物层拦蓄量增加1倍,林地土壤蓄水量提高5.09%。②火烧迹地重建林地与未造林地比较,林地地表及近地面层0~20cm内年均温下降1.2℃~1.3℃,1.5m高处平均相对湿度提高5.0%:林冠截留降水的45.2%;年蒸发量减少494mm;③9年生光果西南杨重建林生物量61.4 t.hm~(-2),林分生产力6.5 t.hm~(-2).a~(-1),生产力比5年生林分提高约7倍。
     本研究所建立的较为系统的苗木筛选培育方案和相应山地更新技术,适合于雅砻江流域高原丘陵区这一特殊生态环境下的植被恢复与重建,成效显著,可为高海拔地区困难立地的植被恢复与重建提供参考。
The author of this paper aims to study the vegetation restoration in the Yalong river basin.In this study,with long term located and semi-located observation in field, combining with the special environmental and resources features,verification of vegetation restoration's environmental media features was carried out;the excellent materials of vegetation restoration were selected based on the native plant under the guidance of Ecology and Forestry;the fast restoration technique for mountainous vegetation of different types were selected,integrated and optimized in view of the capricious environment in Yalong river basin;ecological function evaluation was carried through with the constructed fast restoration models and the first-hand data were got,the achievement of which will directly provide technical and theoretical support for the vegetation restoration in Yalong river basin and the areas nearby.The main content and conclusions of this study are as follows:
     1.According to the special ecological environment of the cutting-blank in the Yalong river basin,the soil temperature and moisture,which affect vegetation restoration greatly,were checked:find out soil temperature's changing tendency with the season, altitude and interdiumal change,which made clear the vertical distribution regularity of moisture in soil in the cutting-blank and its characteristics with the season and interdiumal change.The practice showed that:temperature of soil in the near-surface layer changes greatly;the soil temperature declines with the elevation of altitude;the thermal diffusivity of soil in the cutting-blank at the altitude of 3,900m is above that at the altitude of 3,700m;the plateau loses water from May to August while profits water after September;the profit and lose of water directly influence the preserving rate of different vegetation restoration stages.
     2.Choosing and equipping vegetation restoration materials are the premise and basis of ecological restoration.This paper selected many kinds of native species and established fast propagation techniques:(1) To propagate spruces fast,1 year old branches of 3~4 years old spruce should be chosen for cutting propagation,and the matrix of CombinationⅠ(peat 1/2+ carbonized rice husk 1/2 + 4‰compound fertilizer) or CombinationⅡ(peat 1/2+ bark 1/2 + 4‰compound fertilizer) should be better.And the temperature should be 20~25℃while the exogenous rooting hormone should be ABT.(2) About Populusschneiderivar tibetica,while 1~3 years old branches with length of 15cm were used for cutting propagation in middle March with the planting space 20cm×15cm,the effect is better.(3) For Populous beijengensis,branches of 18~24cm long is better for cutting propagation.2~8 years' old mother trees are in their growing peak period,with much nutrient and strong reproductive capacity.Different factors' affect on height and survival height of seedling:species>age of branches>field for cutting propagation>immersing dealt>disposal>plastic film.(4) With regard to crabapple seed seedling,while seeds are immersed in formalin solution (concentration=0.15%) for 15~30 minutes or in potassium permanganate solution(0.3%) for 15 minutes,the germination rate is higher and the quality is better.
     3.This thesis observes and studies the growth of renewed seedlings systematically, and puts forward renewing techniques for spruces and firs in autumn.At the same time, through selecting plant materials in vegetation restoration,Populus schneideri var. tibetica forestation trial and crabapple vegetation renewal trial were carried through, which all acquired good effect and can provide scientific basis and practical technology for the vegetation restoration and forestation at high altitude:(1) Plant fixed tests were implemented in the five experimental plots in the Xilin area of Wengda river,Rilin area of Luohuo and Lamagoulin area of Daofu.Through observing the phonological and meteorological factors of Picea balfouriana,Abies squamata Mast.and Picea aurantiaca var.rtroflexa termly,it showed that the phonological phase and growth of every specie seedling are closely related with temperature,and the height growth law takes on an N growth model of "slow-fast-slow".The growth of total height,current year height and crown width of Picea aurantiaca var.rtroflexa termly and Picea balfouriana is as Daofu>Luhuo>Wengda.The renewed seedlings' annual height growth of different grades takes on a W growth model of "high-low-high-low".The preserving rate of renewal in autumn is a little lower than that in spring.The preserving rate is 46.8%after three years without replanting,testing according to effective renewing area of forestation.Tests showed the influence of each factor on preserving rate is renewal season>renewal species>numbers of seeding>blank disposal>seedling disposal.(2) Populus schneideri var.tibetica is the ideal specie for forestation in strath at high altitude.The specification of soil preparation is alpine meadow soil 50×50×50cm,foreign soil of overflow land 50×50×60cm,with each point weighing 10kg:the season for forestation is when the soil thaws,that is from April 5~(th) to April 20~(th):Populus schneideri var.tibetica seedlings for transplantation should be of first or second grade and 2 years old,with unabridged root,1.0cm long stem and over 1.0m height;about density and method for forestation:plant seedlings in subalpine meadow soil,the initial planting density should be 74 trees per mu with the space of 3×3m by hole planting;plant seedlings on overflow land,as a result of much gravel and blown sand,the initial planting density should increase to 111 trees per mu with the space of 2×3m by hole planting.(3) Tibetan crabapple belongs to the native broadleaf species in the test plots,with multipurpose, strong stress resistance,early germination characteristics.The soil preparation method for vegetation restoration is point preparation before the rainy season one year ahead the forestation,and the specification of soil preparation is subalpine meadow soil 50×50×50cm or foreign soil of overflow land 50×50×60cm;April 5 to April 20 each year is good time for forestation;Populus schneideri var.tibetica seedlings for transplantation should be of first or second grade and 2 years old,with unabridged root,1.0cm long stem and over 1.0m height;on subalpine meadow land,the initial forestation density should be 167 trees per mu with the planting space 2×2m;on flow land,the initial forestation density can increase to 167 trees per mu with the planting space 2×2m,due to the condition of much gravel and blown soil.Point planting should be adopted for plantation, acquiring keeping the seedlings straight,the soil solid,the soil extended,no air flow, burying soil over the root soil print of the seedlings by 2~3cm.
     4.The natural environment is bad in the hilly area of the plateau of the Yalong river basin,so that technique for vegetation restoration is of great difficulty,with expensive cost but obvious ecological benefit.Therefore,it is very important to analyze and assess the ecological function and benefit of vegetation restoration models.This research studies the species diversity and ecological function of artificial spruce forests,the ecological benefit of vegetation restoration in burned blank,the ecological benefit of Populus schneideri var.tibetica forestation and its cost:(1) Ecological function and benefit evaluation of artificial spruce forests:the biodiversity index of the tree layer, shrub layer and herb layer in 7 years old artificial Picea balfouriana forests is 0,0.73, 1.06 respectively,and the species richness index is 0.22,1.52,2.61 respectively.The biodiversity index of the tree layer,shrub layer and herb layer in 17 years old artificial Picea balfouriana forests is 0,0.85,1.20 respectively,and the species richness index is 0.22,2.17,and 4.99 respectively.The total biodiversity index and species index increases 14.53%and 70.05%respectively.It also has obvious increase in soil improvement,with soil organic matter increased by 40.52%,nitrogen by 40.32%,phosphor by 40.50%, potassium by 32.57%,forestland soil water storage by 5.09%;through artificial simulation of rainfall,the interception amount by layers increases evidently,especially in the early rainfall,when rainfall reaches 3mm,the interception amount by litters in Picea balfouriana forests is 1.8mm,accounting for 60%of the precipitation,while that in mixed forests is only 0.8mm,accounting for 26.7%:the soil water storage is quite different according to different forest vegetation,the adult Picea balfouriana forests>the young artificial Picea balfouriana forests(17 years old)>mixed forests of Picea balfouriana and birch>the young artificial Pieea balfouriana forests(7 years old)>birch forests.(2) Ecological benefit assessment of vegetation restoration in burned blanks:the annual average surface temperature is 5.0℃in burned blanks,1.2℃higher than that in the inner forest,and its annual range of surface temperature is 5.0℃over that in forest: the annual average temperature of air and annual range of burned blanks is 0.2℃and 0.6℃higher than that of inner forest resp ctively:in aspect of soil temperature,within 0~20cm surface layer,the annual average temperature in burned blanks is 1.2℃~1.3℃higher than that in inner forest,but 0.6~2.4℃lower in the coldest month in winter,the change and difference tendency of which is consistent to that of soil surface temperature and ail temperature:the average relative humidity at the height of 1.5m in burned blanks is 69.0%,5.0%lower than that in inner forest,while at the height of 0.2m,that is 75%, 4%higher than that in inner forest:comparing from the aspect of rainfall,the annual rainfall in burned blanks is 934.5mm,422.4mm more than that in inner forest,and the evaporation in burned blanks is 1050.2mm,493.5mm more than that in inner forest, which indicates that the interception function of canopy is distinct,reaching 45.2%of the rainfall,and the evaporation in burned blanks is far more than that in inner forest,going against the seedlings' water surplus or deficit:in view of soil's physical and chemical properties,the organic matter get lost,the soil water storage capacity and fertilizer sustainable serving ability decline in the blanks,which goes against greatly for the growth of renewed seedlings:among the enzymes in soil,activity of the urease,protease, peroxide,amylase and phosphatase weakens,catalase is enabled in black soil layer and weakened in inner soil layer,cellulose and polyphenol oxidase keep their original activity basically.Among the soil enzymes in the whole blanks,protease and peroxide have the greatest change.(3) Biological productivity and forestation effectiveness evaluation of Populus schneideri var.tibetica:the total biomass of 9 years old stand is 61.371t·hm~(-2), 425.468 t·hm~(-2) lower than that of thick shell cherry bay forests in Dinghu mountain, 357.976 t·hm~(-2) lower than that of evergreen broad-leaved forests in Heishiding, Guangdong,578 t·hm~(-2),325t·hm~(-2) and 328.8 t·hm~(-2) lower than that of temperate zone adult forests,close with that of semitropical secondary cypress-oak mixed forests and alder-cypress mixed forests 75.869 t·hm~(-2),61.409 t·hm~(-2) respectively.The stand biomass of trunk,branch,leaf and root is 32.383 t·hm~(-2),6.792 t·hm~(-2),3.163 t·hm~(-2),19.033 t·hm~(-2) respectively,taking on an change tendency of trunk>root>branch>leaf.The root biomass of Populus schneideri var.tibetica is 16.84 t·hm~(-2),in which root crown and big root account for 87.7%,fine root and middle root account for only 12.3%,indicating that the main root is more developed than the lateral root,and the environment improvement effectiveness is good after vegetation restoration.In view of productivity,it is 0.9511 t·hm~(-2).a~(-1) of 5 years old Populus schneideri var.tibetica,increasing to 6.477t·hm~(-2).a~(-1) of 9 years old Populus schneideri var.tibetica by 6.8 times,indicating that Populus schneideri var.tibetica enter their fast growth period when they are 7 years old,and their biomass and biological productivity multiple.After planting Populus schneideri var. tibetica,not only the vegetation restoration is accelerated,but also the forest coverage increases in the basin,consequently,obvious ecological,social and economic benefit are produced.
引文
[1]彭少麟.恢复生态学及植被重建[J].生态学报,1996,15(2):26-31.
    [2]舒俭民,刘晓春,恢复生态学的理论基础、关键技术与应用前景[J].中国环境科学,1998,18(6):540-543.
    [3]宋玉芳,张艳彦译.生态系统的恢复与发展[J].生态学进展,1989,6(4):265-271.
    [4]舒俭民,沈英华,高吉喜.城市垃圾填埋场植树造林试验研究[J].环境科学研究,1995,8(3):13-19.
    [5]道本迈尔R著,陈庆诚译.植物群落生态学教程[M].北京:人民教育出版社,1981:113-217.
    [6]刘建业,秦泰毓,刘翠玲.赣南稀土矿堆放场地复垦研究,持续发展与生态学[M].北京:中国科学技术出版社,1993,151-156.
    [7]马姜明,刘世荣,史作民,等.川西亚高山暗针叶林恢复过程中群落物种组成和多样性的变化 林业科学2007(43)517-24
    [8]马姜明 刘世荣 史作民 张远东,等.川西亚高山暗针叶林恢复过程中不同恢复阶段的定量分析3应用生态学报2007,18(8)1695-1701
    [9]许启木.受损水域生态系统恢复与重建研究[J].生态学报,1998,18(5):547-556.
    [10]周国逸.生态系统水热原理及其应用[J].北京:气象出版社,1997,230.
    [11]王树功.自然控制论在生态示范区中的应用初探[J].广州环境科学,1997,12(4):25-27.
    [12]陈灵芝,陈伟烈主编.中国退化生态系统研究[M].北京:中国科技出版社,1995,165-185.
    [13]许厚泽,赵其国主编.长江流域洪涝灾害与科技对策[M].北京:科学出版社,1999,72-78.
    [14]刘照光,吴宁,张雨成.长江上游森林生态系统及其持续发展.牛得水主编[M].农业生物研究和农业的持续发展.科学出版社,1997.
    [15]姜恕,陈昌笃主编[M].植被生态学研究--纪念侯学煜先生诞辰90周年文集.北京:科学出版社,1994.
    [16]许厚泽,赵其国主编[M].长江流域洪涝灾这与科技对策.北京:科学出版社,1999,79-83.
    [17]刘庆.青藏高原东部(川西)生态脆弱带恢复与重建研究进展[J].资源科学,1999,21(4).
    [18]刘兴良,刘世荣,何飞,等.中国硬叶常绿高山栎类植物的分类与现代地理分布[J].四川林业科技,2008,29(3):1-7
    [19]吴宁,刘庆.长江上游地区的生态环境与可持续发展战略.世界科技研究与发展,1999,21(3):29-32.
    [20]陈昌笃,王祖望主编.持续发展与生态学[M].北京:中国科技出版社,1993,3-7.
    [21]马世骏主编.现代生态学透视[M].北京:科学出版社,1990,300-308.
    [22]包维楷,王春明.岷江上游山地生态系统退化机制[J].山地学报,2000,18(1).
    [23]包维楷,刘照光.岷江上游大沟流域驱动植被退化的人为干扰体研究[M].环境与应用生物学报,1999,5(3):233-239.
    [24]包维楷,陈庆恒.山地植被恢复与重建的基本理论和方法[J].长江流域资源与环境,1998,(4):370-377.
    [25]包维楷,陈庆恒.生态系统退化的过程及其特点[J].生态学杂志,1999,18(2):36-42.
    [26]包维楷,陈庆恒.退化山地生态系统恢复与重建的有关问题探讨[J].山地学报,1999,17(1):22-28.
    [27]余作岳,彭少麟.热带亚热带退化生态系统植被恢复生态学研究[M].广州:广东科技出版社,1996.
    [28]李文华,王如松编.生态安全与生态建设[M].北京:气象出版社,2002:90-97.
    [29]章家思,徐琪.恢复生态学研究的一些基本方法探讨[J].应用生态学报,1999,10(1);109-112.
    [30]包维楷,刘照光,刘庆.生态恢复重建研究与发展现状及存在的主要问题[J].世界科技研究与发展,2001,23(1):44-48.
    [31]杨永兴等.三江平原沼泽区“稻-苇-鱼”复合生态系统生态效益研究[J].地理科学,1993,13(1):41-48.
    [32]王克林.洞庭湖淡地景观结构与生态工程模式[J].生态学杂志,1998,17(6):28-32.
    [33]叶春.洱海湖滨带生态恢复工程模式研究[M].北京:中国环境研究院,1999.
    [34]吴宁.岷江上游退化生态系统的恢复与重建[M].科学报告,2002.
    [35]李贤伟等.长江上游退化森林生态系统恢复与重建刍议[J].生态学报,2001,21(12):2117-2124.
    [36]侯扶江等.黄土退耕地的生态恢复[J].应用生态学报,2002,13(8):923-929.
    [37]石胜友等.缙云山风灾迹地人工混交林生态恢复过程中物种多样性研究[J].生态多样性,2002,10(3):274-279.
    [38]郭晓敏等.江西省不同类型退化荒山生态系统植被恢复与重建措施[J].生态学报,2002,22(6):878-884.
    [39]王国梁等.黄土高原丘陵沟壑区植被恢复重建后的物种多样性[J].山地学报,2002,20(2):182-187.
    [40]刘建军等.延安市张梁试区退耕地植被自然恢复与多样性变化[J].西北林学院学报,2002,17(3):8-11
    [41]张永泽,王恒.自然湿地生态恢复研究综述[J].生态学报,2001,21(2):309-314.
    [42]任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2002.
    [43]李永宏.内蒙古草原草场放牧退化模式研究及退化监测专家系统雏议[J].植物生态学报,1994,18(1):68-79.
    [44]纪万斌.塌陷与生态[M].北京:地震出版社,1996.
    [45]周禾.中国草地自然灾害及其防治对策[M].中国草地,1999,(2):1-3.
    [46]戎悦胜.生态畜牧业及围封转移[M].呼和浩特:内蒙古教育出版社,2002.
    [47]吴彦等.亚高山30年人工针叶林物种多样性的定量分析[J].应用与环境生物学报,2001,7(5):408-415.
    [48]吴彦等.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响[J].植物生态学报,2001,25(6):648-655.
    [49]喻理飞等.退化喀斯群落自然恢复过程研究-自然恢复演替系列[J].山地农业生物学报,1998,17(2):71-77.
    [50]李振基等.武夷山自然保护区郁闭稳定甜槠林与人为干扰甜槠林物种多样性比较[J].植物生态学报,2000,24(1):64-68.
    [51]盛才余等.云南南涧干热退化山地人工植被恢复初期生物量及土壤环境动态[J].植物生态学报,2000,24(5):575-580.
    [52]于秀波.我国生态退化、生态恢复及政策保障研究[J].资源科学,2002,24(1):72-76.
    [53]罗天祥等.青藏高原主要植被类型生物生产量的比较研究[J].生态学报,1999,19(6):823-831.
    [54]杜晓军等.生态系统退化程度诊断:生态恢复基础与前提[J].植物生态学报,2003,27(5): 700-708.
    [55]赵常明等.青藏东缘岷江上游亚高山针叶林人工恢复过程中物种多样性动态[J].植物生态学报,2002,26(增刊):20-29.
    [56]刘兴良等.川西高山林区人工林生态学研究-种群结构[J].四川林业科技,2003,24(3):1-9.
    [57]张继义.科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态[J].植物生态学报,2004,28(1):86-92.
    [58]苏永中.科尔沁沙地不同年代小叶锦鸡儿人工林植物群落特征及其土壤特性[J].植物生态学报,2004,28(1):93-100.
    [59]李翠环.亚热带常绿阔叶林植被恢复研究进展[J].浙江林学院学报,2002,19(3):325-329.
    [60]肖寒.海南岛生态系统土壤保持空间分布特征及生态经济价值评估[J].生态学报,2000,20(4):552-558.
    [61]杜晓军,姜凤岐.防护林防护成熟与干扰[J].植物生态学报,2002,26(增刊):115-118.
    [62]郭继勋等.松嫩平原羊草草原凋落物层群落学作用的研究[J].植物生态学报,2000,24(4):473-476.
    [63]黄忠良等.鼎湖山植物群落多样性的研究[J].生态学报,2000,20(2):193-198.
    [64]莫江明等.鼎湖山马尾松林凋落物及其对人类干扰的响应研究[J].植物生态学报,2001,25(6):656-664.
    [65]白永飞,陈佐忠.锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响[J].植物生态学报,2000,24(60):641-647.
    [66]关文彬等.中国东北西部地区沙质荒漠化过程与植被动态关系的生态学研究-群落多样性与沙质荒漠化过程[J].生态学报,2000,20(1):93-98.
    [67]韩发等.不同放牧强度下高寒灌丛植物的生长特点[J].植物生态学与地植物学学报,1993,17(4):331-338.
    [68]陈昌笃,李迪华.湖南省武陵源地区的生物多样性和生态完整性[J].生态学报,2003,23(11):2414-2423.
    [69]周华明.四川西部高山高原区实施天然林资源保护工程公益林建设技术对策[J].四川林业科技,1999,20(4):56-61.
    [70]彭基泰.甘孜州天然林禁伐后生物多样性可持续发展对策研究[J].四川林业科技,1999,20(4):27-37.
    [71]胡隐月等.集合环境梯度对森林生物多样性的影响[J].东北林业大学学报,1996,24(4):74-79.
    [72]张金屯.“城-郊-乡”森林生态样带植被变化梯度分析[J].植物生态学报,1998,22(5):392-397.
    [73]张远东,赵常明,刘世荣..川西米亚罗林区森林恢复的影响因子分析.林业科学,2005a 41(4):189-193
    [74]张远东,刘世荣,马姜明,等..川西亚高山桦木林的林地水文效应.生态学报,2005b 25(11):2939-2946
    [75]向成华等.恢复生态学的研究动态[J].四川林业科技,2003,24(2):17-21.
    [76]能源部,水利部成都,昆明勘测设计院.雅砻江、金沙江、澜沧江、怒江洪水特性及统计参数分析[M].成都:水电站设计编辑部,1989.
    [77]岑慧贤,王树功.生态恢复与重建[J].环境科学进展,1999,7(6):110-115.
    [78]杨玉坡,李承彪主编四.川森林[M]中.国林业出版社,1992.
    [79]李承彪主编四川森林生态研究[M].四川科学技术出版社,1990.
    [80]钟章成主编.绿阔叶林生态系统研究[M].西南师范大学出版,1992.
    [81]王金锡,许金铎等著.江上游高山高原林区迹地生态与营林更新技术[M].中国林业出版社,1995.
    [82]朱鹏飞,李德融编著四川森林土壤[M].四川科学技术出版社,1989.
    [83]张金屯著.植被数量生态学方法[M].中国科学技术出版社,1995.
    [84]赵常明,陈庆恒,乔永康,等.青藏东缘岷江上游亚高山针叶林人工恢复过程中物种多样性动态.植物生态学报,2002 26(增刊):20-29
    [85][英]S.B.查普曼等著,阳含熙等译植物生态学的方法[M].科学出版社,1980.
    [86][美]Rexford Daubenmire著,陈庆诚译,李世英校.植物群落-植物群落生态学教程[M].人民教育出版社,1981.
    [87]四川省林业科学研究所,高山林业研究资料集刊第二集[M].1979.
    [88]彭少麟等.林动态学与植被恢复生态学研究[M].国科学院华南植物研究所,中山大学,广东省昆虫研究所.2003.
    [89]Aronson.J.Restoration and rehabilitation of degraded ecosystems in arid and semi-arid lands.I view form the south.Restoration Ecology,1993,1(1):8-17.
    [90]Aber.J.D.&W.Jordan.Restoration ecology:An environmental middle ground.Bioscience.1985,35(7):339
    [91]Bao Weikai & Chen Qingheng.Restoration and Rehabilitation of degener ate upland ecosystem.Natural Disaster reduction in China,1999,8(3):121-127.
    [92]Berger,J.J.ed.Ecological restoration in the San Francisco Bay Area.Restoring the Earth,Berkeley,1990.
    [93]Braeshaw A D.The reconstruction of ecosystem.Journal of Ecology,1983,20:1-17.
    [94]Braeshaw A.D.Restoration:An Acid test for Ecology.In Jordon,Ⅲ.WR.et al (eds).Restoration ecology.Cambridge University,U.K.1987,23-29
    [95]Caims,J et al.Recovery and restoration of damaged ecosystems..Univ,Press of Virginia.Charlottesville,1977,1-80
    [96]Cains,JT.The status of the theoretical and applied science of restoration ecology.The Environmental Professional,1991,13..186-194
    [97]Cairns,J.Jr.Restoration ecology.Encyclopedia of Environmental Biology.1995,(3):223-225
    [98]Chadwich,OA et al.Changing sources of nutrients during four million years of ecosystem development,nature,1999,397:491-497
    [99]Ewdl J J.Restoration is the ultimate test of ecology theory.In Restoration Ecology.Cambridge University Press.U.K.1987,31-33
    [100]Forman,R.T.T.land Mosaics.Cambridge:Cambridge University Press,1995
    [101]Foster,DR,Abet JD,Melillo,JM,et al,Forest response to disturbance and anthropogenic stress.BioScience.1993,47(7):437-445
    [102]Gaynor,V.Prairie restoration on a corporate sity.Restoration and Reclamation Review.1990,1(1):35-40
    [103]Harper,J.L.Self-effacing Art:Restoration as Imitation of Nature.In:W.R.Ⅲ.Jordon,N.Gilpin and J.Aber eds.Restoration Ecology:A synthetic Approach to Ecological Research.Cambridge:Cambridge University Press.1987,35-45.
    [104]Henry C.P.and Amore C.Restoration ecology of riverine wetlands:A scientific base. Environmental Management.1995,19 (6):891~902
    [105]Hobbs,R.J.,& Norton D.A.Towards a conceptual framework for restoration ecology.Restoration Ecology.1996,4 (2):93~110
    [106]Ishida H,Hattori T,Takeda Y.2005 Comparison of species composition and richness between primary and secondary lucidophyllous forests in two altitudinal zones of Tsushima Island,Japan.Forest Ecology and Management,213:273-287
    [107]Jackson,L.L.,D Lopoukine & D.Hillgard.Ecological restoration:a definition and comments.Restoration Ecology.1995,3 (2):71~75
    [108]Kusler J.A.et al.Wetland Scientific American.1994,1:58~62
    [109]Leach,JH.Non-indigenous species in the Great Lakes:Were colonization and damage to ecosystem health predictable? Journal of Aquatic Ecosystem Health.1995,4:117~128
    [110]Likens,GE,Driscoll CT & Buso DC.Long-term effects of acid rain:response and recovery of a forested ecosystem.Science,1996-272:244~246
    [111]Mansfield,B.& D.Towns.lLessons of the Islands:Restoration in New Zealand.Restoration and Management Notes,1997,15 (2):150~154
    [112]Middleton,B.Wetland restoration:Flood Pulsing and Disturbance Dynamics.New York:John wiley & Sons,Inc,1999
    [113]Naeem,S et al.Declining biodiversity can alter the performance of ecosystem.Nature.1994,368:734~737
    [114]Rapport,DJ & Whitford WGHow ecosystems respond to stress.Bio-Science.,1999,49 (3):193~204
    [115]Ruiz-Jaen M C,Aide TM.2005 Restoration success:how is it being measured? Restoration Ecology,13 (3):569-577
    [116]Tilman,D et al.Productivity and sustainability influenced by diversity in grassland ecosystems.Nature,1996,379:718~72
    [117]Van der valk.Succession theory and wetland restoration.Proceedings of INTECOL'V International Wetlands Conference,Perth,Australia,1999,31~47
    [118]Wilson,EO,Integrated science and the coming century of the environment.Science.1998,279:2048~2049
    [119]Wu Ning.Ecological Situation of High-frigid Rangeland and Its sus-tainability.Dietrich reamer Verlad.Berlin,1997
    [120]Zerbe S,Kreyer D.2006 Introduction to special section on“ecosystem restoration and biodiversity:how to assess and measure biological diversity?”Restoration Ecology,14(1):103-104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700