用户名: 密码: 验证码:
滴灌双点源三维土壤水分入渗的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滴灌技术是最成熟、最容易推广的节水灌溉技术之一,土壤湿润体的大小和形状、土壤含水量的分布状况等是滴灌系统设计的基础,这些参数均可以通过室外试验求得,但是室外试验耗时费力,而且试验过程中受自然和人为因素的影响,容易产生较大的误差,最近几年随着计算机科学的快速发展,国内外出现了以非饱和水运动理论为基础的数值模拟方法,该方法具有简便、快捷、灵活等特点。本研究以粘壤土、砂壤土双点源滴灌为研究对象,利用HYDRUS3D软件对土壤水分的运移规律进行模拟研究,对比分析了滴头间距、滴头流量、土壤质地和土壤初始含水量对双点源交汇入渗的影响,并对所选模型用现场试验进行验证,主要得出如下结论:
     (1)土壤湿润峰水平、垂直运移距离及水平、垂直运移速率均与入渗时间呈幂函数关系。
     (2)对双点源滴灌,湿润峰交汇时间随着滴头间距的增大呈对数函数增大;交汇处湿润峰的运移速率受滴头间距的影响比较显著,而滴头处湿润峰的运移速率几乎不受滴头间距的影响。
     (3)湿润体形状随着滴头间距的增加,依次从一个近似半球体、近似半药囊形、半花生壳形及两个分离的近似半球体转变,湿润体内高含水量区域也从2个逐渐转化为1个,滴灌结束时(840 min)垂直距离略大于水平距离。
     (4)滴灌结束后,湿润峰运移距离随滴头流量的增加而呈减小趋势,高含水率区域的体积却相反;湿润峰运移距离与入渗时间拟合其系数的变化规律:滴头处垂直方向的入渗指数随滴头流量的增大而减小,而交汇处的却相反;湿润峰运移速率与入渗时间拟合其系数的变化规律:滴头处水平方向和垂直方向的入渗系数均随滴头流量的减小而减小,入渗指数却相反;其他的入渗系数和入渗指数均没有明显的变化趋势。
     (5)滴头处和交汇面处的湿润峰运移距离,含砂量较大的砂壤土大于含砂量较小的,而且随着时间的增加两者的差值呈增大趋势;含砂量较大的砂壤土湿润体体积大于含砂量较小的,而含砂量较小的湿润体内高含水率区域的体积远大于砂壤土的,且呈不断增大的趋势;而含砂量较小的湿润体水平最大距离与垂直方向的相差不大,含砂量较大的砂壤土湿润体垂直最大距离大于水平距离。
     (6)湿润峰运移距离、湿润体体积和湿润体内部高含水率区域体积均随土壤初始含水率的增加而增大;湿润峰运移距离与入渗时间拟合其系数的变化规律:滴头处水平方向的入渗系数随着土壤初始含水率的增大而减小,而交汇处的却相反;入渗指数除交汇处水平方向的随着土壤初始含水率的增大而减小,其他的均相反。
     (7)应用土壤剖面含水率、湿润峰形状和总入渗量等指标对模拟值结果进行了试验验证,结果表明,模拟结果与实测值吻合较好,说明HYDRUS3D软件及相关模型能较准确地反映双点源滴灌入渗条件下粘壤土土壤水分运动规律。
Drip irrigation is one of the most mature and the most easily extension water-thrift irrigation technique. Size and shape of wetted volume and distribution of soil water content is foundation of drip irrigation system.The parameters can obtained by experiment,but it waste time and labor,besides,it may be produce large error during experiment. because of natural and artificial factors. Recent years,with the rapid development of computer science,appearing numerical simulation method of basing on the theory of unsaturated soil water dynamics, it have advantages of simple, rapid, and flexible.The research into clay loam, and sandy loam analyzed effects of dripper spacing, dripper discharge, soil texture and initial water content of soil on soil water infiltration of drip irrigation with two-point source, and test the model with field demonstration.The main conclusions are as follows:
     (1)The relation between horizontal distance and vertical dimension of wetting front with infiltration time showing power function. The relation between horizontal transport velocity and vertical transport velocity of wetting front with infiltration time showing power function.
     (2)To the drip irrigation of two-point source, intersection time of wetting front showing the increase of exponential function with the increase of dripper spacing.The effects of dripper spacing vertical to transport velocity of wetting front of the intersection place is significant,but transport velocity in place of emitter has little effect.
     (3)With the increase of dripper spacing,shape of wetted volume Changing successively from an approximate hemispheroid to an approximate hemi anther sac, an approximate hemi peanut shell and two approximate hemispheroid. High moisture content region in wetted volume are becoming one from two. After drip irrigation(840 min),vertical dimension larger than horizontal distance.
     (4) After drip irrigation,transport distance of wetting front decresed with the increase of dripper discharge,but the change law of high moisture content region is opposite.The change law of the fitting coefficients between transport distance of wetting front and infiltration time:infiltration index of vertical in place of emitter decresed with the increase of dripper discharge,but the change law of intersection is opposite. The change law of the fitting coefficients between transport velocity of wetting front and infiltration time: infiltration coefficients of level and vertical in place of emitter decresed with the decrease of dripper discharge,but the infiltration index is opposite.All others no obvious regular changes.
     (5)Transport distance of wetting front in emitter and intersection,sandy loam soil higer than clay loam soil, and their difference increase with the increase of time. The wetting soil sandy loam soil higer than clay loam, but the volume of high moisture content region clay loam much higher than sandy loam soil. To clay loam, level and vertical distance of wetting front almost same. To sandy loam, vertical distance higer than level’s.
     (6)Transport distance of wetting front,volume of wetting soil and volume of high moisture content region are increasing with the increase of initial water content of soil. The change law of the fitting coefficients between transport distance of wetting front and infiltration time: infiltration coefficient of level in place of emitter decresed with the increase of initial water content of soil, but intersection is opposite.Infiltration index of intersection decresed with the increase of initial water content of soil, all others are opposite.
     (7) verified the model by the measurement of soil moisture content, migration distance of water front, and cumulative infiltration in laboratory test. The results showed that the simulation results agreed well with measurement values. It the software of HYDRUS3D and the three-dimensionalmodel of establishment can reflect the soil water movement of clay loam conditions under drip irrigation accurately.
引文
池宝亮,黄学芳,张冬梅,李保国. 2005.点源地下滴灌土壤水分运动数值模拟及验证.农业工程学报, 21(3): 56-59.
    陈渠昌,吴忠渤,佘国英,容浩. 1999.滴灌条件下沙地土壤水分分布与运移规律.灌溉排水, 18(1): 28-31.
    程先军,许迪. 2001.地下滴灌土壤水运动和溶质运移的数学模型及验证.农业工程学报, 17(6): 1-4.
    付琳. 1983.滴灌时的土壤浸润状况.灌溉排水, 2(3): 36-45.
    费良军,潭奇林,王文焰,张建丰. 1999.充分供水条件下点源入渗特性及其影响因素.土壤侵蚀与水土保持学报, 5(2):70-74.
    费良军,吴军虎,王文焰,丁新利,张江辉. 2001.充分供水条件下单点膜孔入渗湿润性研究.水土保持学报, 15(5): 137-140.
    冯绍元,丁跃元,曾向辉. 2001.温室滴灌线源土壤水分运动数值模拟.水利学报, (2): 59-68.
    高西宁,郭巍,张玉龙. 2006.非饱和土壤水分一维运动的数值模拟.安徽农业科学, 34(16): 3879-3880.
    康绍忠,蔡焕杰,冯绍元. 2004.现代农业与生态节水的技术创新与未来研究重点.农业工程学报, 20(1): 1-6.
    李道西,罗金耀. 2004.地下滴灌土壤水分运动数值模拟.节水灌溉, (4): 4-7.
    李道西,彭世彰. 2004.地下滴灌灌水设计参数对土壤水分分布影响的计算机模拟.沈阳农业大学学报, 35(5~6): 507-509.
    李娟,马孝义,甘学涛,康银红. 2007.重力式地下滴灌点源入渗特征的数值模拟与验证.水土保持通报, 27(6): 95-101.
    李娟. 2007.重力式地下滴灌点源入渗特征的数值模拟. [硕士学位论文].陕西杨凌:西北农林科技大学.
    李就好,谭颖,张志斌,罗锡文. 2005.滴灌条件下砖红壤水分运动试验研究.农业工程学报, 21(6): 36-39.
    李久生,张建君,饶敏杰. 2005.滴灌施肥灌溉的水氮运移数学模拟及试验验证.水利学报, 36(8): 932-938.
    李光永,曾德超,郑耀泉. 1998.地表点源滴灌土壤水分运动的动力学模型与数值模拟.水利学报,(11): 21-25.
    李光永,曾德超,段中锁,曲小红. 1996.地埋点源滴灌土壤水分运动规律的研究.农业工程学报, 12(3): 66-71
    李光永,郑耀泉,曾德超,雷廷武,刘潇. 1996.地埋点源非饱和土壤水运动的数值模拟.水利学报,(11): 47-51.
    李光永,曾德超. 1997.滴灌土壤湿润体特征值的数值算法.水利学报, (7): 1-6.
    李明思,贾宏伟. 2001.棉花膜下滴灌湿润峰的试验研究.石河子大学学报, 5(4): 316-319.
    李明思,康绍忠,孙海燕. 2006.点源滴灌滴头流量与湿润体关系研究.农业工程学报, 22(4): 32-35.
    李晓斌,孙海燕. 2008.不同土壤质地的滴灌点源入渗规律研究. 8(15): 4292-4295.
    刘雪芹,范兴科,马甜. 2006.滴灌条件下砂壤土水分运动规律研究.灌溉排水学报. 25(3): 56-59.
    罗文扬,王一承,习金根. 2006.滴灌条件下土壤水分运移动态研究.华南热带农业大学学报, 12(03):16-19.
    刘晓英,杨振刚,王天俊. 1990.滴灌条件下水分运动规律的研究.水利学报, (1): 21-22.
    罗毅,徐建新,李宝平. 1995.地表下滴灌土壤水分运动数值模拟.华北水利水电学院学报, 16(2): 1-9.
    马学良,吴晓光,苏音,王虎. 2004.我国滴灌技术应用发展若干问题分析.节水灌溉, (5): 21-24.
    马孝义,谢建波,康银红. 2006.重力式地下滴灌土壤水分运动规律的模拟研究.灌溉排水学报, 25(6):5-10.
    倪文进. 2010.中国农村水利发展状况与科技需求.农业工程学报, (3): 1-8.
    彭建萍,邵爱军,段生贵. 1995.田间非饱和土壤水分运动的数值模拟.河北地质学院学报, 18(6): 558-564.
    孙海燕,李明思,王振华,徐永麟. 2004.滴灌点源入渗湿润锋影响因子的研究.灌溉排水学报, 23(3): 14-16.
    施坰林. 2007.节水灌溉新技术.北京:中国农业出版社: 155-156.
    邵明安,王全九,黄明斌. 2006.土壤物理学.北京:高等教育出版社: 94-96.
    汪志荣,王文焰,王全九,张建丰. 2000.点源入渗土壤水分运动规律实验研究.水利学报, (6): 39-44.
    仵峰,彭贵芳,吕超谋,熊明洁. 1996.地下滴灌条件下土壤水分运动模型.灌溉排水, 15(3): 24-29.
    吴普特,冯浩,牛文全,赵西宁. 2007.现代节水农业技术发展趋势与未来研发重点.中国工程科学, 9(2): 12-18.
    吴普特,冯浩,赵西宁,牛文全. 2006.现代节水农业理念与技术探索.灌溉排水学报, 25(4): 1-6.
    吴普特,冯浩. 2005.中国节水农业发展战略初探.农业工程学报, 21(6): 152-157.
    杨弘,裴铁璠,李忠,王安志,关德新,金昌杰,朱教君. 2007.一维垂向非饱和土壤水分运动的数值模拟.应用生态学报, 18(1): 41-46.
    朱德兰,李昭军,王健,贾锐鱼. 2000.滴灌条件下土壤水分分布特性研究.水土保持研究, 7(1): 81-84.
    朱德兰,汪志农,王得祥,朱首军,俞发军. 2000.不同土壤中滴灌水分分布与设计参数的确定.西北农业大学学报, 28(2): 45-49.
    赵梦玲,张德生,窦建坤,李渊,郑建军. 2005.二维非饱和土壤水分运动的数值模拟.纺织高校基础科学学报, 18(3): 254-257.
    张振华,蔡焕杰,杨润亚. 2004.地表滴灌土壤湿润体特征值的经验解.土壤学报, 41(6): 870-875.
    张振华,刘继龙,蔡焕杰,谢恒星. 2006.基于地上可视湿润体距离的地表滴灌入渗深度估算模式研究.灌溉排水学报, 25(1): 10-13.
    张振华,蔡焕杰,杨润亚,王健. 2004.间歇供水对点源入渗土壤湿润体及水分分布的影响.灌溉排水学报, 23(4): 29-31.
    张振华,蔡焕杰,郭永昌,耿宝江. 2002.滴灌土壤湿润体影响因素的实验研究.农业工程学报, 18(2): 17-20.
    张振华,蔡焕杰,杨润亚,赵永. 2004.滴灌入渗土壤水分分布的数值研究.水土保持研究, 11(3): 91-94.
    郑园萍,吴普特,范新科. 2008.双点源滴灌条件下土壤湿润峰运移规律研究.灌溉排水学报, 27(1): 28-30.
    Khan A A,Yitayew M,Warrick A W. 1996. Field evaluation of water and solute distribution from a points source .Irr. and Drain. Eng, 122 (4): 221-227.
    Brandt A,Bresler E,Ben-Asher. 1971. Infiltration from a Trickle source: I.Mathematical Models. Soil Sci.soc.Amer.Proc, (35): 675-682.
    Shu-Tung Chu. 1994. Green-Ampt analysis of wetting patterns for surface emitters. J. of Irr. and Drain. engi-neering, 120 (2): 414-420.
    Ben-Asher J,CharachC, ZemelA. 1986. Infiltration and water extraction from trickle irrigation source: the effective hemisphere model. Soil SciSocAm Proc,(50): 882-887.
    Ben-Asher J,Lomen D O,Warrick A W. 1978. Linear and nonlinear models of infiltration from a point source .Soil Sci. Soc. Am, 42(1): 3-6.
    Simunek J,van Genuchten , M. sejna.2007. The HYDRUS software package for simulating the two- and three-dimensional movement of water,heat,and multiple solutes in variably-saturated media(User Manual version 1.0).Calif: PC-Progress, Prague, Czech Republic: 43-44.
    Simunek J,van Genuchten,M. sejna. 2006. The HYDRUS software package for simulating the two- and three-dimensional movement of water,heat, and multiple solutes in variably-saturated media(Technical Manual version 1.0).Calif: PC–Progress, Prague,Czech Republic: 5-8.
    Neuman S P. 1973.Saturated-unsaturated seepage by finite elements .Hydraulic Div ASCE, 99(12): 2233-2250.
    T. H. Skaggs , T. J. Trout,J.Simunek ,and P. J. Shouse. 2004. Comparison of HYDRUS-2D Simulations of Drip Irrigation with Experimental Observations. Journal of irrigation and drainage engineering, 8(7): 304-310.
    GardnerW R,MayhughM S. 1958. Solution and tests of the diffusion equation for themoremeat of water in soil. Soil Sci Amer. proc,(22): 197-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700