用户名: 密码: 验证码:
银离子印迹膜的制备、表征及其吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属离子的选择性富集和分离是化学领域中一项重要的研究工作,相比较于传统工艺,将分子印迹技术和膜分离技术相结合,制备对目标金属离子具有选择性吸附、识别作用的金属离子印迹膜,具有广阔的研究空间和发展前景。
     本文针对含银废液中银的选择性富集和分离问题,以银离子为模板剂、壳聚糖(CTS)和壳聚糖/聚乙烯醇共混物(CTS/PVA)为功能膜材料,在水相中分别制备了银离子印迹壳聚糖膜Ag(Ⅰ)-ⅡM1和银离子印迹壳聚糖/聚乙烯醇共混膜Ag(Ⅰ)-ⅡM2。实验考察了两种膜对Ag(Ⅰ)的吸附性能以及印迹离子用量、洗脱剂、吸附时间、Ag(Ⅰ)初始浓度、溶液pH值等因素对银离子印迹膜吸附容量的影响,利用FT-IR和UV对Ag(Ⅰ)和活性基团之间的结合机理做了初步探讨,借助SEM和AFM对膜表面形貌进行表征,同时还考察了膜的理化性能、选择性吸附能力和循环使用性能等等。
     研究结果表明,在Ag(Ⅰ)-ⅡM1和Ag(Ⅰ)-ⅡM2中,CTS和PVA中的N、O原子有进入Ag(Ⅰ)最外层空轨道的可能性,双方以金属配键相结合,形成较为稳定的配合物Ag(Ⅰ)-ⅡM1和Ag(Ⅰ)-ⅡM2对Ag(Ⅰ)的吸附容量均随吸附时间和Ag(Ⅰ)初始浓度的增加而不断增大,前者饱和吸附容量Qm为14.02mmol·g-1,后者饱和吸附容量Qm为22.21 mmol·g-1,相同吸附时间和Ag(Ⅰ)初始浓度下,饱和时前者吸附率X为57.94%,后者吸附率X为66.08%,因此经过共混改性,Ag(Ⅰ)-ⅡM1具有更好的吸附性能。
     通过正交试验确定了制备具有较大吸附容量的Ag(Ⅰ)-ⅡM2的最佳条件,当F(CTS)/V(PVA)=4 mL/6 mL, V(AgNO3)=1.2 mL, V(交联剂)=0.8 mL, w(NaOH)=1.0%时,吸附容量Q可达21.41 mmol·g-1;控制温度为70℃、时间为30 min进行热处理,得到的Ag(Ⅰ)-ⅡM2具有较好的强度和吸附容量;采用低浓度的NaOH溶液进行碱处理可以使膜材料完整脱除并具有一定的韧性和机械强度,同时该过程不影响Ag(Ⅰ)和功能单体间的结合;以Na2S2O3为洗脱剂洗脱4个小时,通过直接、间接评价,Ag(Ⅰ)的洗脱率可达70.83%;利用DSC检测得到Ag(Ⅰ)-ⅡM2的玻璃化转变温度Tg为77.85℃,热稳定性较CTS/PVA共混物有所下降,但几种高聚物间的共混相容性较好;由电镜可以明显观察到加入Ag(Ⅰ)之后膜表面呈现的凹凸不平的起伏形貌以及洗脱Ag(Ⅰ)之后留下的较为均匀、规则的孔隙。
     Ag(Ⅰ)-ⅡM2的亲水性较强,含水率和溶胀度分别为164.03%和77.78%,有助于水体中Ag(Ⅰ)的富集分离;Ag(Ⅰ)-ⅡM2对Ag(Ⅰ)具有优先、特异、选择性地吸附和识别作用,能够在废液中含有干扰离子的情况下进行吸附分离,并且具有一定的化学稳定性和较好的循环使用性能,是一类良好的亲水性印迹材料。
The selective enrichment and separation of metal ions is an important research in the field of chemistry, compared with the traditional techniques, combining molecular imprinting with membrane separation and preparing metal-ion imprinted membrane, which has effect on the selective adsorption and recognition of target metal ions, has the wide prospect on research and development.
     Aiming at the issue of silver selective enrichment and separation in waste solutions containing silver, silver-ion imprinted chitosan membrane Ag(Ⅰ)-ⅡM1 and silver-ion imprinted chitosan/polyvinyl alcohol blend membrane Ag(Ⅰ)-ⅡM2 were prepared by using Ag(Ⅰ) as template, chitosan and chitosan/polyvinyl alcohol blend as functional materials respectively in aqueous solution in this work. The adsorption properties of these two membranes to Ag(Ⅰ) and the effects including amount of imprinted ions, eluent, adsorption time, Ag(Ⅰ) initial concentration and pH value of solution on adsorption capacity of silver-ion imprinted membrane were investigated. The mechanisms of recognition and binding between Ag(Ⅰ) and active groups were preliminary explored by FI-IR and UV, the morphology of membrane were characterized by SEM and AFM, and the properties of physics and chemistry, selective adsorption and recycling performance of membrane were investigated meanwhile.
     The research shows that the atoms of N and O in CTS and PVA may get into the outer orbits of Ag(Ⅰ), combine with each other according to metal coordination bond and form stable complex. The adsorption capacities of Ag(Ⅰ)-ⅡM1 and Ag(Ⅰ)-ⅡM2 to Ag(Ⅰ) rise with growing adsorption time and Ag(Ⅰ) initial concentration, the former saturated adsorption capacity was 14.02 mmol·g-1, and the latter was 22.21 mmol·g-1. At the same adsorption time and Ag(Ⅰ) initial concentration, the former adsorption rate was 57.94%, and the latter was 66.08%. It can be seen after blending modification, Ag(Ⅰ)-ⅡM2 has better performance on adsorption properties.
     The optimum condition was determined by orthogonal experiment to prepare Ag(Ⅰ)-ⅡM2 with higher adsorption capacity:V(CTS)/V(PVA)=4 mL/6 mL, V(AgNO3) = 1.2 mL, V(cross linker)=0.8 mL, w(NaOH)=1.0%, and the adsorption capacity can reach up to 21.41 mmol·g-1. Ag(Ⅰ)-ⅡM2 with better performance on strength, toughness and adsorption capacity was prepared by heat-treated when controlling the temperature of 70℃and time of 30 minutes, and can be stripped completely in toughness and strength to some extent by lower concentration of NaOH solution, which was no effect on combination between Ag(Ⅰ) and functional monomers. The elution rate of Ag(Ⅰ) can reach up to 70.83% through direct and indirect assessments by using Na2S2O3 as eluent for 4 hours'elution. The glass transition temperature of Ag(Ⅰ)-ⅡM2 detected by DSC was 77.85℃, and the thermal stability decreases comparing with CTS/PVA blends while the polymers have the good performance on blend compatibility. It is obvious to observe by electrical microscope that the morphology of membrane present uneven fluctuations when Ag(Ⅰ) was added while uniform and regular pores when Ag(Ⅰ) was eluted.
     The hydrophilicity and swelling ratio of Ag(Ⅰ)-ⅡM2 were 164.03% and 77.78%, which were beneficial for enrichment and separation of Ag(Ⅰ) in solution. Ag(Ⅰ)-ⅡM2 has the properties of priority, specificity and selectivity to adsorb and recognize Ag(Ⅰ), and can be used in waste solution when interfering ions existed. Furthermore, Ag(Ⅰ)-ⅡM2 has the good performance on chemical stability and recycling, and can be worked as a favorable hydrophilic imprinted material.
引文
[1]Mosbach K., Mayes A. G 213th ACS National Meeting & Exposition Programme. 1997:48-61.
    [2]姜忠义,吴洪.分子印迹技术[M].北京:化学工业出版社,2003.
    [3]Pualing L. A theory of the structure and process of formation of antibodies[J]. Journal of the American Chemical Society,1940,62(3):2643-2657.
    [4]Wulff G, Sarhan A. Use of Polymers with enzyme-analogous structures for the resolution of racemates[J]. Angewandte Chemie International Edition in English, 1972,11(4):341-344.
    [5]Vlatakis G., Andersson L. I., Muller R., et al. Drug assay using anti-body mimics made by molecular imprinting[J]. Nature(London),1993,361:645-647.
    [6]王丹丹.金属离子印迹聚合物的合成及其在分析中的应用研究[D].西安:西北大学,2007.
    [7]Wulff G., Grobe-Einsler R., Vesper W., et al. Enzyme-analogue built polymer,5. On the specificity distribution of chiral cavities prepared in synthetic polymers[J]. Macromolecular Chemistry and Physics,1977,178(10):2817-2825.
    [8]Ekberg B., Mosbach K. Molecular imprinting:A technique for producing specific separation materials[J]. Trends in Biotechnology,1989,7(4):92-96.
    [9]Hwang Ching-Chiang, Lee Wen-Chien. Chromatographic characteristics of cholesterol-imprinted polymers prepared by covalent and non-covalent imprinting methods[J]. Journal of Chromatography A,2002,96(1):69-78.
    [10]Wulff G Selective binding to polymers via convalent bonds-the construction of chiral cavities as specific receptos sites [J]. Pure and Applied Chemistry,1982, 54(11):2093-2102.
    [11]Sellergren B., Lepisteo M., Mosbach K. Highly enantio-selective and substrate-selective polymers obtained by molecular imprinting based on non-covalent interactions [J]. Reactive Polymers,1989,10(2):306-312.
    [12]Kempe M. Doctoral thesis[M]. Univ.of Lund,1994.
    [13]王晓琳,丁宁.反渗透和钠滤技术与应用[M].北京:化学工业出版社,2005.
    [14]Peter A. G., Amaia Z. E. Molecularly imprinted polymers:synthesis and characterization[J]. Journal of Chromatography A,2001,906(1-2):227-252.
    [15]Stevenson D. Molecular imprinted polymers for solid-phase extraction[J]. Trend in Analytical Chemistry,1999,18(3):154-158.
    [16]Mathias U. Membrane separations using molecularly imprinted polymers[J]. Journal of Chromatography B:Biomedical Sciences and Applications,2004,804(1): 113-125.
    [17]Ent E. M. vander, Riet K. van't, Keurentjes J. T. F., et al. Design criteria for dense permeation-selective membranes for enantiomer separations[J]. Journal of Membrane Science,2001,185(2):207-221.
    [18]Sellergren B., Shea K. J. Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers[J]. Journal of Chromatography A,1993,635(1):31-49.
    [19]Piletsky S. A., Alcock S., Turner A. P. F. Molecular imprinting:at the edge of the third millennium[J]. Trends in Biotechnology,2001,19(1):9-12.
    [20]姜忠义,喻应霞,吴洪.分子印迹聚合物膜的制备及其应用[J].膜科学与技术,2006,26(1):78-84.
    [21]Sergeyeva T. A., Piletsky S. A., Piletska E. V., et al. In situ formation of porous molecularly imprinted polymer membranes[J]. Macromoleculars,2003,36(19): 7352-7357.
    [22]郝明燕,胡小玲,管萍等.分子印迹膜的制备及应用进展[J].化学通报,2006,69:1-9.
    [23]卢春阳,马向霞,何锡文等.药物氟哌酸分子印迹聚合物膜的制备及其渗透性质研究[J].高等学校化学学报,2005,26(7):1356-1359.
    [24]郝明燕,胡小玲,管萍等.分子印迹膜制备方法比较与评述[J].高分子通报,2007,(6):8-14.
    [25]Sergeyeva T. A., Piletsky S. A., Brovko A. A., et al. Selective recognition of atrazine by molecularly imprinted polymer membranes[J]. Analytica Chimica Acta, 1999,392(2-3):105-111.
    [26]Hedborg E., Winquist F., Lundstrom I., et al. Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices[J]. Sensors and Actuators A,1993, (37-38):796-799.
    [27]Kriz D., Ramstrom O., Svensson A., et al. A Biomimetic Sensor Based on a Molecularly ImPrinted Polymer as a Recognition Element Combined with Fiber-Optic Detection[J]. Analytical Chemistry,1995,67:2142-2144.
    [28]杨座国,许振良,邴乃慈.分子印迹膜的研究进展[J].化工进展,2006,25(2):131-135.
    [29]孟范平,刘娇.分子印迹聚合物及其在固相萃取中的应用[J].中国海洋大学学报,2008,38(2):237-243.
    [30]Marcel Mulder著,李琳译.膜技术基本原理[M].北京:清华大学出版社,1999.
    [31]肖淑娟,李红霞,于守武.分子印迹聚合物在分离领域的应用[J].化工新型材料,2007,35(2):4-5.
    [32]Kobyashi T., Wang H. Y., Fujii N. Synthesis of castasterone selective polymers prepared by molecular imprinting[J]. Analytica Chimica Acta,1998,365(1-3): 81-88.
    [33]Uibricht M., Oechel A., Lehmann C., et al. Gas-phase photoinduced graft polymerization of acrylic acid onto polyacrylonitrile ultrafiltration membranes[J]. Applied Polymer Science,1995,55(13):1707-1723.
    [34]Wull G. Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates-A Way towards Artificial Antibodies[J].Angewandte Chemie International Edition,1995,34(17):1812-1832.
    [35]Fujii Y, Matsutani K., Kikuchi K. Journal of the Chemical Society,Chemical Communications.1985, (7):415-417.
    [36]Ersoz A., Say R., Denizli A. Ni(II)ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns[J]. Analytica Chimica Acta,2004,502(1):91-97.
    [37]周杰,何锡文,史慧明.金属配位模板聚合物的分子识别特性的研究[J].分析科学学报,1999,15(2):89-93.
    [38]王学军,许振良,杨座国等.配合物分子印迹聚合物的识别性能[J].华东理工大学学报(自然科学版),2006,32(6):690-694.
    [39]朱建华,李欣,强亮生.铜离子印迹聚合物的制备及性能[J].高等学校化学学报,2006,27(10):1853-1855.
    [40]吴昌贤,李荣春.脱乙酰壳多糖混凝剂应用研究的进展[J].环境科学,1986,
    7(1):81-85.
    [41]钟世安,袁周率,李维等.铜离子印迹聚合物膜的制备及其渗透性能[J].应用化学,2008,25(8):989-991.
    [42]叶连斌,陶玉贵,汪耀明等.Cu2+印迹杂化膜的制备、表征及其吸附特性优化[J].安徽工程科技学院学报,2007,22(4):33-37.
    [43]丁纯梅,苏云,章筱婷等.壳聚糖及壳聚糖膜对水中镉的吸附性能的研究[J].环境与健康杂志,2007,24(6):393-395.
    [44]丁纯梅,宋庆平,孔霞等.壳聚糖/Pb(Ⅱ)模板壳聚糖膜与Pb(Ⅱ)螯合反应的动力学及机理探讨[J].无机化学学报,2004,20(6):711-714.
    [45]丁纯梅,陈宁生,李倩等.壳聚糖和Ag(Ⅰ)空位壳聚糖膜与Ag(Ⅰ)的螯合反应[J].应用化学,2005,22(3):312-315.
    [46]徐志祥,方国臻,王硕.分子印迹技术及其在现代生物化工领域应用研究进展[J].现代化工,2007,27增刊(1):137-141.
    [47]汪竹青,沈玉永,吴根华.分子印迹聚合物的制备技术及展望[J].科技资讯,2008,(7):5.
    [48]曹绍文.从含银废液中提取白银的方法[J].今日科技,1995,(7):13-14.
    [49]刘芳.废液中银的回收[J].安阳师范学院学报,2000,(4):38-39.
    [50]范望喜,秦中立,李文元等.我国含银废料来源及银的回收方法[J].武汉生物工程学院学报,2007,3(1):55-58.
    [51]漆安慎,杜婵英.力学[M].北京:高等教育出版社,1997.
    [52]黄美荣,李振宇,李新贵.含银废液来源及其回收方法[J].工业用水与废水,2005,36(1):9-12.
    [53]戴素珍.从含银实验废液中回收银[J].河北北方学院学报(自然科学版),2005,21(3):22-24.
    [1]严俊.甲壳素的化学和应用[J].化学通报,1984,(11):26-31.
    [2]Muzzeralli R. A. A. Chitin. Oxford:Pergamon Press,1977:56.
    [3]吴昌贤,李荣春.脱乙酰壳多糖混凝剂应用研究的进展[J].环境科学,1986,7(1):81-85.
    [4]季君晖.Cu2+-壳聚糖螯合物及壳聚糖吸附Cu2+机理的XPS研究[J].应用化学,2000,17(1):115-116.
    [5]王爱勤,李洪启,俞贤达.甲壳胺与Zn(Ⅱ)的配位作用及其红外光谱[J].应用化学,1999,16(1):77-79.
    [6]丁纯梅,宋庆平,叶生梅.Zn2+-壳聚糖螯合物的制备及其IR、XPS分析[J].华东理工大学学报,2003,29(3):315-316.
    [7]丁纯梅,陈宁生,李倩,张志国,乔永波.壳聚糖和Ag(Ⅰ)空位壳聚糖膜与Ag(Ⅰ)的螯合反应[J].应用化学,2005,22(3):312-315.
    [8]徐伟伟,姚子华,马晓莉.多孔壳聚糖膜的渗透性及其对Cd(Ⅱ)离子的吸附性能研究[J].河北大学学报(自然科学版),2005,25(6):623-628.
    [9]彭湘红,王敏娟,徐述华.壳聚糖/SiO2复合膜的制备及性能研究[J].江汉大学学报(自然科学版),2007,35(3):25-29.
    [10]朱翠芳.关于硫代硫酸钠与硝酸银反应的探讨[J].河池师专学报(理科),1996,16(2):93-94.
    [11]喻应霞.分子印迹膜分离水溶液中苯丙氨酸异构体研究[D].天津:天津大学,2006.
    [1]徐又一,徐志康.高分子膜材料[M].北京:化学工业出版社,2005.
    [2]严瑞煊,水溶性聚合物[M].北京:化学工业出版社,1998.
    [3]金喆民,秦培勇,陈翠仙等.交联聚乙烯醇膜材料结构与性能的相关性[J].膜科学与技术,2003,23(4):16-18.
    [4]Sanderson R. D., Immelman E., Bezuidenhout D., et al. Polyvinyl alcohol and modified polyvinyl alcohol reverse osmosis membranes [J]. Desalination,1993, 90(1-3):15-29.
    [5]杨金华,刘白玲.聚乙烯醇与Cu2+的配位反应及其对生物降解性影响的研究[J].高分子材料科学与工程,1997,13(5):40-45.
    [6]陈义镛.功能高分子[M].北京:化学工业出版社,1989.
    [7]Mircea B., Victor K., Carmen P., et al., Journal of Physics D:Applied Physics,2004, 37(17):2437.
    [8]Hirankumar G., Selvasekarapandian S., Bhuvaneswari M. S., et al. AC impedance studies on proton conducting polymer electrolyte complexes (PVA+CH3COONH4) [J]. Journal of Solid State Electrochemistry,2004,10(1-2):135-138.
    [9]Shirai H. Chemical Soceity:Japan,1973,94:384.
    [10]Tsuchida E, Shigehara K., Kurimura Y. Outer-sphere electron-transfer reactions of co(Ⅲ)-polymer complexes in relation to its polymer effects [J]. Journal of Polymer Science Part A:Polymer Chemistry,1975,13(6):1457-1469.
    [11]Rabie S. M., Abdel-Hakeem N., Moharram M. A. Effect of Y-irradiation and temperature on the structure of metal-chloride-treated poly(vinyl alcohol) [J]. Journal of Applied Polymer Science,1990,40(7-8):1163-1176.
    [12]苏英草,程传煊.铜(Ⅱ)-聚丙烯酰胺和铜(Ⅱ)-聚乙烯醇配位聚合物的配位数[J].应用化学,1994,11(5):31-35.
    [13]陶庭先,吴之传,汪学骞等.聚乙烯醇纤维金属配合物的合成和表征[J].高分子学报,2006,(3):387-390.
    [14]陈培根,吴之传,汪学骞等.聚乙烯醇纤维-Fe(Ⅲ)配位反应动力学[J].应用化学,2007,24(3):314-317.
    [15]章汝平,丁马太.聚乙烯醇/壳聚糖共混膜的制备及表征[J].功能材料,2007,38 (12):2004-2007.
    [16]吴国杰,崔英德,柳宁等.聚乙烯醇-壳聚糖互穿网络水凝胶的合成与性能研究[J].现代化工,2006,26(S1):159-161.
    [17]李春利,萨莎.戊二醛交联聚乙烯醇膜在醇水介质中溶胀性能的研究[J].河北工业大学学报,2005,34(6):35-38.
    [18]徐铜文.膜化学与技术教程[M].合肥:中国科学技术大学出版社,2003.
    [19]Seong S. K., Seon J. K., Yoon D. M., et al. Thermal characteristics of chitin and hydroxypropyl chitin[J]. Polymer,1994,35(15):3212-3216.
    [20]王康建,但卫华,曾睿等.壳聚糖/聚乙烯醇共混膜的结构表征及性能研究[J].材料导报:研究篇,2009,23(5):102-105.
    [21]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990.
    [22]曾一鸣,王志刚,万立骏等.聚合物致密膜中球粒状结构的形成机制[J].膜科学与技术,2002,22(4):1-6.
    [1]Andac M., Say R., Denizli A. Molecular recognition based cadmium removal from human plasma[J]. Journal of Chromatography B:Biomedical Sciences and Applications,2004,811(2):119-126.
    [2]Dai S., Burleigh M. C., Shin Y., et al. Imprint coating:a novel synthesis of selective functionalized ordered mesoporous sorbents[J]. Angewandte Chemie International Edition,1999,38(9):1235-1239.
    [3]黄文强.吸附分离材料[M].北京:化学工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700