用户名: 密码: 验证码:
孕期酒精暴露对小鼠视皮质神经元树突棘和突触的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酒精滥用可以导致多组织和器官的损伤,主要影响部位是脑、肝、心血管系统和免疫系统。胎儿酒精综合征(FAS)就是由于孕期母体酒精暴露所导致的胎儿和儿童的严重损害。由于树突棘和突触在学习和记忆方面的特殊功能,因此人们常用它们在孕期或出生后酒精暴露中出现的病理改变来解释患者神经行为障碍的成因。为了更好的揭示孕期酒精暴露对突触和树突棘发育的影响,我们分析了P0—P30生前酒精暴露小鼠视皮质中树突棘和突触的超微结构,及其长时程效应。从妊娠第5天(E5)开始用酒精灌胃直至子鼠出生,建立FAS动物模型。采用DiI散射的方法标记视皮质锥体细胞树突棘,利用透射电子显微镜观察突触的超微结构。结果显示:1.在胚胎15天(E15)可以观察到不成熟的新生的突触,突触前终末内有临近胞体或突起的多形囊泡,突触后膜属于非特化部分,在突触前、后膜之间的突触间隙只有5~10 nm,要比成熟的突触间隙狭窄。随着年龄的增加突触前、后膜逐渐增厚,突触间隙增宽至15~20 nm。到p7时才能看到成熟的突触超微结构,这个时期可观察到Gray’s I型和II型突触。而突触的成熟与树突棘的分化是同步的,突触的特化可能依赖于树突棘的成熟和突触前囊泡成分的表达。同时,研究显示出突触的发生与新皮质的发育和成熟密切相关。2.孕期酒精暴露能够诱导子鼠视皮质锥体细胞树突棘的密度降低、长度增加,该变化具有剂量依赖性和长时程效应。同时突触超微结构也出现一定的改变,如:突触小泡减少和突触间隙变窄。树突棘和突触超微结构的改变可能是视皮质发育滞后的一种表现,其长时程效应则可能是儿童时期FAS中出现智力低下的一种原因。
Alcohol abuse causes injuries of multiple organs and tissues affecting the brain, liver, cardiovascular system, immune system. Fetal alcohol syndrome (FAS) is a serious injury to fetus and child caused by maternal prenatal exposure. Due to their specific functions in learning and memory, the pathologic alterations of synapses and dendritc spines should be used to explain the neurobehavioral deficits after prenatal or postnatal alcohol exposure. To better understand the development of synapse and dendritic spine after prenatal alcohol exposure, we analyzed dendritic spines and synaptic ultrastucture in visual cortex of mice from P0-P30 after prenatal ethanol consumption, and the dose-dependent and long-term affecting alterations of synapse and dendritic spine were investigated in visual cortex. Pregnant mice were intubated ethanol daily from E5 through the pup’s birth to establish mode of prenatal alcohol abuse. The dendritic spines of pyramidal cells in visual cortex of pups were labeled with DiI diolistic assay, and the synaptic ultrastructure was observed under transmission electron microscope. The results show: 1.Nascent synapses were seen as early as E15, although these were immature and were composed of a presumed presynaptic terminal with pleiomorphic vesicles in the vicinity of a partner cell body or projection. The postsynaptic plasmalemma remained unspecialized and the gap between pre- and postsynaptic plasmalemmas was only 5-10 nm, significantly narrower than the mature synaptic cleft. With increasing age there was gradual thickening of both the pre- and postsynaptic membranes, with widening of the synaptic cleft to 15-20 nm. Ultrastructurally mature synapses were not seen until P7; at this time both Gray’s type I and II could be observed. Synapse maturation was synchronous with dendritic spine differentiation, synaptic specialization may be dependent on dendritic spine maturation and the expression of presynaptic vesicle components. In the meantime, the study also indicated that the synaptogenesis was connected with the development and maturation of neocortex. 2. Prenatal alcohol exposure could induce dendritic spines of pyramidal neurons in visual cortex to decrease in their number and elongate in their length. These changes are dose-dependent with long term effect even at postnatal 30. The ultrastructural alterations could also be found in synapse, for example, decreased synaptic vesicle, narrow synaptic cleft. The alterations of dendritic pine and synaptic ultrastructure probably were the manifestations of the retardation of visual cortical development. Their long-term effect is one of the causes of lifelong mental retardation of FAS in childhood.
引文
[1] Lardi-Studler B, Fritschy JM, Matching of pre- and postsynaptic specializations during synaptogenesis, Neuroscientist. 13 (2) (2007) 115-126.
    [2] Goda Y, Davis GW, Mechanisms of synapse assembly and disassembly, Neuron, 40 (2) (2003) 243-264.
    [3] Ahmari SE, Smith SJ, Knowing a nascent synapse when you see it, Neuron. 34 (3) (2002) 333-336.
    [4] Hatada Y, Wu F, Silverman R, Schacher S, Goldberg DJ, En passant synaptic varicosities form directly from growth cones by transient cessation of growth cone advance but not of actin-based motility, J Neurobiol. 41 (2) (1999) 242-251.
    [5] Jontes JD, Buchanan J, Smith SJ, Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo, Nat Neurosci. 3 (3) (2000) 231-237.
    [6] Hall AC, Lucas FR, Salinas PC, Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling, Cell. 100 (5) (2000) 525-535.
    [7] Fox MA, Umemori H, Seeking long-term relationship: axon and target communicate to organize synaptic differentiation, J Neurochem. 97 (5) (2006) 1215-1231.
    [8] Salinas PC, Zou Y, Wnt signaling in neural circuit assembly, Annu Rev Neurosci. 31 (2008) 339-358.
    [9] Tashiro A, Dunaevsky A, Blazeski R, Mason CA, Yuste R, Bidirectional regulation of hippocampal mossy fiber filopodial motility by kainate receptors: a two-step model of synaptogenesis, Neuron. 38 (5) (2003) 773-784.
    [10] Hering H, Sheng M, Dendritic spines: structure, dynamics and regulation, Nat Rev Neurosci. 2 (12) (2001) 880-888.
    [11] Yuste R, Bonhoeffer T, Morphological changes in dendritic spines associated with long-term synaptic plasticity, Annu Rev Neurosci. 24 (2001) 1071-1089.
    [12] Nimchinsky EA, Sabatini BL, Svoboda K, Structure and function of dendritic spines, Annu Rev Physiol. 64 (2002) 313-353.
    [13] Deng J, Dunaevsky A, Dynamics of dendritic spines and their afferent terminals: spines are more motile than presynaptic boutons, Dev Biol. 277 (2) (2005) 366-377.
    [14] Waites CL, Craig AM, Garner CC, Mechanisms of vertebrate synaptogenesis, Annu Rev Neurosci, 28 (2005) 251-274.
    [15] Drenhaus U, Voigt T, Rager G, Onset of synaptogenesis in the plexiform layers of the chick retina: a transmission electron microscopic study, Microsc Res Tech. 70 (4) (2007) 329-335.
    [16] Bayer SA, Altman J, Neocortical Development, Raven Press, New York(MA), 1991.
    [17] Bourne JA, Rosa MG, Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT), Cereb Cortex. 16 (3) (2006) 405-414.
    [18] Franklin KBJ, Paxino G, The mouse brain in stereotaxic coordinates, Academic Press, San Diego(MA), 1997.
    [19] Quatacker J, Partoens P, De Potter W, Differential ultrastructural distribution of synapsin and synaptophysin proximal to a ligation in bovine splenic nerve, Brain Res. 802 (1-2) (1998) 281-284.
    [20] Gan WB, Grutzendler J, Wong WT, Wong RO, Lichtman JW, Multicolor "DiOlistic" labeling of the nervous system using lipophilic dye combinations, Neuron. 27 (2) (2000) 219-225.
    [21] Deng JB, Yu DM, Wu P, Introduction of DiI diolistic assay to label the nervous cell and glia, Acta Anatomica Sinica. 37 (2006) 596-598.
    [22] Smith MA, Hilgenberg LG, Agrin in the CNS: a protein in search of a function, Neuroreport. 13 (12) (2002) 1485–1495.
    [23] Cowan WM, Sudhof TC, Stevens CF, Synapses, The Johns Hopkins University Press, Baltimore, Maryland, 2001.
    [24] Akins MR, Biederer T, Cell-cell interactions in synaptogenesis, Curr Opin Neurobiol. 16 (1) (2006) 83-89.
    [25] Furutani Y, Matsuno H, Kawasaki M, Sasaki T, Mori K, Yoshihara Y, Interaction between telencephalin and ERM family proteins mediates dendritic filopodia formation, J Neurosci. 27 (33) (2007) 8866-8876.
    [26] Nikonenko I, Jourdain P, Muller D, Presynaptic remodeling contributes to activity-dependent synaptogenesis, J Neurosci, 23 (24) (2003) 8498-8505.
    [27] Fiala JC, Feinberg M, Popov V, Harris KM, Synaptogenesis via dendritic filopodia in developing hippocampal area CA1, J Neurosci. 18 (21) (1998) 8900-8911.
    [28] Spoerri PE, Wolff JR, Effect of GABA-administration on murine neuroblastoma cells in culture. I. Increased membrane dynamics and formation of specialized contacts, Cell Tissue Res, 218 (3) (1981) 567-579.
    [29] Harris KM, Kater SB, Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function, Annu Rev Neurosci 17 (1994) 341–371.
    [30] Spruston N, Pyramidal neurons: dendritic structure and synaptic integration, Nat Rev Neurosci. 9 (3) (2008) 206-221.
    [31] Bergstrom RA, Sinjoanu RC, Ferreira A, Agrin-induced morphological and structural changes in growth cones of cultured hippocampal neurons, Neuroscience. 149 (3) (2007) 527-536.
    [32] Goda Y, Davis GW, Mechanisms of synapse assembly and disassembly, Neuron. 40 (2) (2003) 243-264.
    [33] De Camilli P, Vitadello M, Canevini MP, Zanoni R, Jahn R, Gorio A, The synaptic vesicle proteins synapsin I and synaptophysin (protein P38) are concentrated both in efferent and afferent nerve endings of the skeletal muscle, J Neurosci. 8 (5) (1988) 1625-1631.
    [34] Chi P, Greengard P, Ryan TA, Synapsin dispersion and reclustering during synaptic activity, Nat Neurosci. 4 (2001) 1187–1193.
    [35] Castejón OJ, Fuller L, Dailey ME, Localization of synapsin-I and PSD-95 in developing postnatal rat cerebellar cortex, Brain Res Dev Brain Res. 151 (1-2) (2004) 25-32.
    [36] Zurm?hle UM, Herms J, Schlingensiepen R, Schlingensiepen KH, Brysch W, Changes of synapsin I messenger RNA expression during rat brain development, Exp Brain Res. 99 (1) (1994) 17-24.
    [37] Zito K, Svoboda K, Activity-dependent synaptogenesis in the adult Mammalian cortex, Neuron, 35 (6) (2002) 1015-1017.
    [38] Glantz LA, Gilmore JH, Hamer RM, Lieberman JA, Jarskog LF, Synaptophysin and postsynaptic density protein 95 in the human prefrontal cortex from mid-gestation into early adulthood, Neuroscience. 149 (3) (2007) 582-591.
    [39] Marrone DF, Petit TL, The role of synaptic morphology in neural plasticity: structural interactions underlying synaptic power, Brain Res Brain Res Rev, 38 (3) (2002) 291-308.
    [40] Mattila PK, Lappalainen P, Filopodia: molecular architecture and cellular functions, Nat Rev Mol Cell Biol. 9 (6) (2008) 446-454.
    [41] Petit TL, LeBoutillier JC, Gregorio A, Libstug H, The pattern of dendritic development in the cerebral cortex of the rat, Brain Res. 469 (1-2) (1988) 209-219.
    [1] Fillmore MT. Drug abuse as a problem of impaired control: current approaches and findings [J]. Behavioral and Cognitive Neuroscience Reviews, 2003, 2:179–197, Review.
    [2] Frank J, Witte K, Schrodl W. et al . Chronic alcoholism causes deleterious conditioning of innate immunity [J]. Alcohol and Alcoholism, 2004, 39:386–392, Review.
    [3] Ikonomidou C, Bittigau P , Ishimaru MJ . et al . Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome [J]. Science, 2000, 287(5455):1056-1060.
    [4] Mukherjee RA, Hollins S, Abou-Saleh MT. et al . Low level alcohol consumption and the fetus [J]. BMJ, 2005, 330(7488):375-376.
    [5] Sampson PD, Streissguth AP, Bookstein FL , et al . On categorizations in analyses of alcohol teratogenesis [J]. Environ Health Perspect , 2000 ,108 (3):421-428, Review.
    [6] Whitcher LT, Klintsova AY. Postnatal binge-like alcohol exposure reduces spine density without affecting dendritic morphology in rat mPFC [J] . Synapse., 2008, 62(8):566-573.
    [7] González-Burgos I, Alejandre-Gómez M, Olvera-Cortés ME. et al . Prenatal-through-postnatal exposure to moderate levels of ethanol leads to damage on the hippocampal CA1 field of juvenile rats: a stereology and Golgi study [J]. Neurosci Res, 2006, 56(4):400-408.
    [8] Han JY, Joo Y, Kim YS. et al . Ethanol induces cell death by activating caspase-3 in the rat cerebral cortex [J]. Molecules and Cells, 2005, 20: 189–195.
    [9] Young C., Roth KA, Klocke BJ. et al . Role of caspase-3 in ethanol-induced developmental neurodegeneration [J]. Neurobiology of Disease, 2005, 20:608–614.
    [10] Jiang Q, Hu Y, Deng J. et al . Prenatal alcohol exposure and the neuroapoptosis with long-term effect in visual cortex of mice [J]. Alcohol & Alcoholism, 2007,42(4): 285-290.
    [11] Stoltenburg-Didinger G,Spohr HL. Fetal alcohol syndrome and mental retardation: spine distribution of pyramidal cells in prenatal alcohol-exposed rat cerebral cortex; a Golgi study [J]. Brain Research, 1983, 313:119–123.
    [12] Pentney RV, Cotter JR and Abel EL. Quantitative measures of matureneuronal morphology after in utero ethanol exposure [J]. Neurobehavioral Toxicology and Teratology, 1984, 6:59–65.
    [13] Qiang M., Wang MW and Elberger AJ. Second trimester prenatal alcohol exposure alters development of rat corpus callosum [J]. Neurotoxicology and Teratology, 2002, 24:719–732.
    [14] Deng J. & Elberger AJ. Corpus callosum and visual cortex of mice with deletion of the NMDA-NR1 receptor. II. Attenuation of prenatal alcohol exposure effects [J]. Brain Res Dev Brain Res, 2003, 144(2): 135-150.
    [15] Lolova I, Lolov V, Petkov VV, Vaglenova J. Changes in the synapses of rat hippocampus following pre- and postnatal alcohol exposure [J]. Anat Anz, 1989,169(4): 285-294.
    [16] Hoff SF. Synaptogenesis in the hippocampal dentate gyrus: effects of in utero ethanol exposure [J]. Brain Res Bull, 1988, 21(1): 47-54.
    [17] Lancaster F, Delaney C, Samorajski T. Synaptic density of caudate-putamen and visual cortex following exposure to ethanol in utero [J]. Int J Dev Neurosci, 1989,7(6):581-589.
    [18] Ferrer I, Fabregues I, Rairiz J, Galofre E. Decreased numbers of dendritic spines on cortical pyramidal neurons in human chronic alcoholism [J]. Neurosci. Lett, 1986, 69:115–119.
    [19] Lescaudron L, Jaffard R, Verna A. Modifications in number and morphology of dendritic spines resulting from chronic ethanol consumption and withdrawal: a Golgi study in the mouse anterior and posterior hippocampus [J]. Exp. Neurol, 1989,106:156–163.
    [20] Tavares MA, Paula-Barbosa MM, Gray EG. Dendritic spine plasticity and chronic alcoholism in rats [J]. Neurosci. Lett, 1983, 42: 235–238.
    [21] Walker DW, Hunter BE, Abraham WC. Neuroanatomical and functional deficits subsequent to chronic ethanol administration in animals [J]. Alcohol Clin. Exp. Res, 1981, 5 :267–282.
    [22] Cadete-Leite A, Alves MC, Paula-Barbosa MM. et al . Quantitative analysis of basal dendrites of prefrontal pyramidal cells after chronic alcohol consumption and withdrawal in the adult rat [J]. Alcohol , 1990, 25:467–475.
    [23] Cadete-Leite A, Tavares MA, Uylings HB. et al . Granule cell loss and dendritic regrowth in the hippocampal dentate gyrus of the rat after chronic alcohol consumption [J]. Brain Res, 1988, 473: 1–14.
    [24] Lescaudron L, Verna A. Effects of chronic ethanol consumption on pyramidal neurons of the mouse dorsal and ventral hippocampus: a quantitative histological analysis [J]. Exp. Brain Res., 1985, 58:362–367.
    [25] Ferrer I, Galofre E, Fabregues I, Lopez-Tejero D. Effects of chronic ethanol consumption beginning at adolescence: increased numbers of dendritic spines on cortical pyramidal cells in the adulthood [J]. Acta Neuropathol, 1989, 78:528–532.
    [26] Gan WB, Grutzendler J, Wong WT. et al .Multicolor "DiOlistic" labeling of the nervous system using lipophilic dye combinations [J]. Neuron, 2000, 27 (2) : 219-225.
    [27] Deng JB, Yu DM, Wu P. Introduction of DiI diolistic assay to label the nervouscell and glia [J]. Acta Anatomica Sinica, 2006, 37(5):596-598..
    [28] Thiel G, Synapsin I. synapsin II, and synaptophysin: marker proteins of synaptic vesicles [J]. Brain Pathol, 1993, 3(1): 87-95.
    [29] Mingshan Li, Zhanjun Cui, Jinbo Deng. et al .Synaptogenesis in the developing mouse visual cortex [J]. Brain Research Bulletin (in press). (2009)
    [30] Hering H, Sheng M. Dendritic spines: structure, dynamics and regulation [J]. Nat Rev Neurosci, 2001, 2(12): 880-888.
    [31] Yuste R, Bonhoeffer T. Morphological changes in dendritic spines associated with long-term synaptic plasticity [J]. Annu Rev Neurosci, 2001, 24 : 1071-1089.
    [32] Nimchinsky EA, Sabatini BL, Svoboda K. Structure and function of dendritic spines [J]. Annu Rev Physiol, 2002, 64 :313-353.
    [33] Deng J, Dunaevsky A. Dynamics of dendritic spines and their afferent terminals: spines are more motile than presynaptic boutons[J]. Dev Biol, 2005, 277 (2): 366-377.
    [34] Wenisch S, Fortmann B, Steinmetz T. et al .3-D confocal laser scanning microscopy used in morphometric analysis of rat Purkinje cell dendritic spines after chronic ethanol consumption [J] .Anat Histol Embryol, 1998, 27(6):393-7.
    [35] Ahmari SE, Smith SJ. Knowing a nascent synapse when you see it [J]. Neuron, 2002 , 34(3):333-336.
    [36] Butterworth RF, Kril, J J. and Harper. C G. Thiamine-dependent enzyme changes in the brains of alcoholics: relationship to the Wernicke-Korsakoff syndrome [J]. Alcohol: Clinical and Experimental Research 1993,17:1084–1088.
    [1] Kaprielian A, Runko E, Imondi R. Axon guidance at the midline choice point[J]. Develpmental Dynamics, 2001, 221(2): 154-181.
    [2] Bouquet C, Nothias F. Molecular mechanisms of axonal growth[J]. Adv Exp Med Biol, 2007, 621: 1-16.
    [3] Bamburg J R. Introduction to cytoskeletal dynamics and pathfinding of neuronal growth cones[J]. J Histochem Cytochem, 2003, 51(4): 407-409.
    [4] Cooper H M. Axon guidance receptor direct growth cone pathfinding: rivalry at the leading edge[J]. International Journal of Developmental Biology, 2002, 46(4): 621-631.
    [5] Mortimer D, Fothergill T, Pujic Z, et al. Growth cone chemotaxis[J]. Trends Neurosci,2008, 31(2): 90-98.
    [6]吴坚,张沛云.关于轴突生长的导向分子机理的探讨[J].神经解剖学杂志, 2005, 21(3): 317-322.
    [7]马振莲,刘少君.轴突导向信号的研究进展[J].军事医学科学院院报, 2006, 30(2): 180-182.
    [8] Webber A, Raz Y.Axon guidance cues in auditory development[J]. Anat Rec A Discov Mol Cell Evol Biol, 2006, 288(4): 390-396.
    [9] Charron F, Tessier-Lavigne M. The Hedgehog, TGF-beta/BMP and Wnt families of morphogens in axon guidance[J]. Adv Exp Med Biol, 2007, 621(期): 116-133.
    [10] Aletsee C, Brors D, Mlynski R, et al. Branching of spiral ganglion neurites is induced by focal application of fibroblast growth factor-1[J].Laryngoscop, 2003, 113(5): 791-796.
    [11] Hernández-Montiel H L, Tamariz E, Sandoval-Minero M T, et al. Semaphorins 3A, 3C, and 3F in mesencephalic dopaminergic axon pathfinding[J]. Comp Neurol, 2008, 506(3): 387-397.
    [12] Moore S W, Tessier-Lavigne M, Kennedy T E. Netrins and their receptors[J]. Adv Exp Med Biol, 2007, 621: 17-31.
    [13] Couch J, Condron B. Axon guidance: Comm Hither, Robo[J]. Current Biology, 2002, 12(21): R741- R742.
    [14] Brose K, Bland K S, Wang K H, et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance[J]. Cell, 1999, 96(6): 795-806.
    [15] Ceranik K, Deng J, Heimrich B, et al. Hippocampal Cajal-Retzius cells project to the entorhinal cortex: retrograde tracing and intracellular labelling studies[J]. Eur J Neurosci, 1999, 11(12): 4278-4290.
    [16] Deng J, Elberger A J. Corticothalamic and thalamocortical pathfinding in the mouse: dependence on intermediate targets and guidance axis[J]. Anat Embryol (Berl), 2003, 207(3): 177-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700