用户名: 密码: 验证码:
单角钢连接节点板受压性能及极限承载力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节点板连接已广泛地用于各类钢结构,如桥梁、大型厂房和塔架结构等,但由于节点板连接自身形式的多样性和受力的复杂性,目前对节点板的受力过程、破坏机理及极限承载能力的研究都还不是十分深入。对于单角钢连接的节点板,由于受力时节点板与角钢形心之间存在偏心因素的影响,节点板的受力性能和承载能力与节点板轴心受力时又有很大区别。为了深入了解单角钢连接节点板的受力性能、破坏形态和规律、以及其极限承载能力等,本文以特高压输电线路某塔架结构中典型单角钢连接节点板节点为研究对象,主要完成了以下工作:
     ①进行了单角钢连接节点板足尺试验研究,试验结果表明单角钢连接节点板受压时破坏模式为板平面外的受压失稳;单角钢连接节点板在角钢端部部位受力最为不利,属于节点板的薄弱部位;单角钢连接使节点板在板平面外受到偏心附加弯矩的影响,使板的平面外有弯曲变形,同时由于单角钢杆件受压时的偏心扭转效应,带动节点板在弯曲的同时也伴随有扭转变形;
     ②完成了单角钢连接节点板的有限元模拟分析,并将有限元模拟结果与试验结果进行对比分析,从分析结果可以看出本文采用的ANSYS有限元分析模型模拟单角钢连接节点板的受压性能与试验结果十分吻合,表明该模型能准确模拟节点板的受力性能和承载能力;
     ③分析了部分参数变化对单角钢连接节点板受压性能的影响及其规律:单角钢连接节点板的极限受压承载能力随节点板厚度的增加和节点板无支长度的减小而增加,且其增长趋势近似为线性;同时,其破坏模式由板平面外失稳向材料强度破坏过渡;由于存在受力偏心和平面外刚度变化的影响,其极限受压承载能力较之节点板为等肢双角钢连接时要小,仅为等肢双角钢连接时的60%左右;
     ④将节点板受压承载能力与现行国内外钢结构规范公式计算值进行了比较,验证了现有规范公式对于节点板受压承载力计算的适用性。分析结果表明:现行国内外钢结构规范关于节点板承载能力的计算方法,无论是考虑材料强度破坏的有效宽度理论还是按柱的稳定理论简化考虑节点板的稳定计算公式均不能准确地计算其实际承载能力;本文通过试验及多个有限元模型对单角钢及等肢双角钢连接节点板的受压性能及极限承载能力进行了研究,并参考大量的国内外研究成果,总结提出了一个关于节点板受压承载能力的计算公式,且该公式能较为准确地计算单角钢和等肢双角钢连接节点板的极限受压承载力。
Gusset plate connections are commonly used in bridge trusses, heavy workshop and tower structures to transfer forces from one structural member to another. Due to the multiformity of these connection shapes and complexity of force transfer, it is extremely difficult to investigate the force transfer, breakage mechanism and ultimate carrying capacity of gusset plate. Because of the eccentricity of gusset plate contacted with single angle, the compressive behaviour of gusset plate must be different from other connections. Hence, taked some typical gusset plate connections of tower structure as object, a research program was initiated to investigate the compressive behaviour, modility and rule of breakage, and ultimate strength of gusset plate by full-scale testing and finite element analysis. The main works of this paper as follows:
     ①Two full-scale tset of gusset plate contacted with single angle was completed. And test result showed that the breakage mode of gusset plate was out-plate sway buckling. The weak position of gusset plate are the end of single angle connections plate. Because of the eccentricity between gusset plate and single angle, gusset plate had out-plate bend transfiguration by the impact of additional moment. At the same time, the transfiguration of gusset plate include distortion as the torsion effect of compressive gusset plate.
     ②The finite element analysis of gusste plate contacted single angle were completed, and compared the finite element simulation result and full-scale test result. The analysis result showed that the compressive behavior of gusset plate are very consistent between ANSYS finite element analysis model and full-scale testing. And it is indicated that this finite element model exactly simulate the compressive behavior and carrying capacity.
     ③The influence and rule was analysed for comporessive behavior of gusset plate with different parameter. It is showed that the ultimate compressive carrying capacity of gusset plate contacted with single angle increase along with the increase of thickness and decrease of supportless length of gusset plate, and the breakage mode translated from out-plate sway buckling to material intensity yielding at the same time. Because of the loading eccentricity and the influence of out-plane rigidity, the ultimate compressive carrying capacity of gusset plate decreased to just about 0.6 times compared with the gusset plate contacted with double angles.
     ④Compared the compressive carrying capacity with the formula calculated values in the existing steel structure norms at home and abroad, and checked the applicability of calculated compression capacity for gusset plate contacted with single angle in existing norms. It’s showed that whatever the efficient width theory (Whitmore theory) which take material intensity fielding into account and the stabilization calculation formula(Thorndon theory) which take menber buckling into account, the formula in the existing steel structure norms couldn’t calculate the real ultimate compressive carrying capacity of gusset plate exactly. Through the investigation of compressive behavior and ultimate strength of gusset plate by full-scale testing and finite element analysis, consulted a lot of research information, a calculation formula about compressive carrying capacity of gusset plate was summarized and suggested, and the advanced formula could exactly simulate the compressive carrying capacity of gusset plate contacted single angle and double angles.
引文
[1]中华人民共和国国家标准(GB50017-2003).钢结构设计规范[S].中国建筑工业出版社, 2003.
    [2] ANSI/AISC360-05, Specification for Structural Steel Building[S]. American institute of steel construction, INC., 2005.
    [3]中华人民共和国国家标准(GB50223-2005). 100~500KV架空送电线路施工及验收规范[S].中国计划出版社, 2005.
    [4] R.E.Whitmore. Experimental investigation of stresses in gusset plate[J]. Engineering Experiment Station, University of Tennessee, 1952.
    [5] S.K.Chakrabrati. Tests of gusset plate connections[D]. University of Arizona, 1983.
    [6] S.K.Chakrabrati. Inelastic buckling of gusset plates[D]. University of Arizona, 1987.
    [7] D.A.Rabern. Stress, strain and force distributions in gusset plate connections[D]. University of Arizona, 1983.
    [8] W.A.Thornton. Bracing connections for heavy construction[J]. Engineering Journal AISC, 1984,(3):pp139-148.
    [9] Reidar Bjorhovde, S.K.Chakrabrati. Tests of full-size gusset plate connections[J]. Journal of Structural Engineering, 1985, 111(3):pp667-684.
    [10] G.C.Williams. Steel connection designs based on inelastic finite element analysis [D]. University of Arizona,1986.
    [11] S.Z.Hu, J.J.R.Cheng. Compressive behavior of gusset plate connections[D]. Structural Engineering Report No.153, University of Alberta, 1987.
    [12] J.Fung. Inelastic finite element analysis of small gusset plates[D]. University of Arizona, 1987.
    [13] K.Yamamoto, N.Akiyama, T.Okumura. Elastic analysis of gusseted truss joints[J]. Journal of Structural Engineering, 1985,111(12):pp2545-2563.
    [14] K.Yamamoto, N.Akiyama, T.Okumura. Buckling strength of gusseted truss joints[J]. Journal of Structural Engineering, 1988,114(3):pp575-590.
    [15] V.L.Brown. Stability of gusseted connections in steel structure[D]. Department of Civil Engineering, University of Delaware, 1988.
    [16] J.L.Gross, G.Cheok. Experimental study of gusseted connections for laterally braced steel buildings[J]. National institute of standards and technology report No.NISTIR88-3849, Gaithersburg, Maryland, 1988.
    [17] J.L.Gross. Experimental study of gusseted connections[J]. Engineering Journal AISC, 1990, 27(3):pp89-97.
    [18] W.A.Thornton. On the analysis and design of bracing connections[A]. National steel construction conference[C]. 1991.
    [19] J.S.Rabinovitch. Cyclic behavior of steel gusset plate connections[D]. Structural Engineering Report No.193, University of Alberta, 1993.
    [20] M.C.H.Yam, J.J.R.Cheng. Experimental investigation of the compressive behavior of gusset plate connections[D]. Structural Engineering Report No.194, University of Alberta, 1993.
    [21] J.J.R.Cheng, M.C.H.Yam, S.Z.Hu. Elastic buckling strength of gusset plate connections[J]. Journal of Structural Engineering, 1994, 120(2):pp538-559.
    [22] M.C.H.Yam,J.J.R.Cheng. Analytical investigation of the compressive behavior and strength of steel gusset plate connections[D]. Structural Engineering Report No.207, University of Alberta, 1994.
    [23] S.S.Walbridge, G.Y.Grondin, J.J.R.Cheng. An analysis of the cyclic behavior of steel gusset plate connections[D]. Structural Engineering Report No.225, University of Alberta, 1998.
    [24] T.E.Nast, G.Y.Grondin, J.J.R.Cheng. Cyclic behavior of stiffened gusset plate-brace member assemblies[D]. Structural Engineering Report No.229, University of Alberta, 1999.
    [25] M.C.H.Yam, J.J.R.Cheng. Behavior and design of gusset plate connections in compression [J]. Journal of Constructional Steel Research, 2002, 58:pp1143-1159.
    [26] N.Sheng, M.C.H.Yam, V.P.Iu. Analytical investigation and the design of the compressive strength of steel gusset plate connections[J]. Journal of Constructional Steel Research, 2002, 58:pp1473-1493.
    [27] C.M.Hewitt, W.A.Thornton. Rationale behind and proper application of the ductility factor for bracing connections subjected to shear and transverse loading[J]. Engineering Journal, 2004, 41(1):pp3-6.
    [28] D.G.Lutz, R.A.LaBoube. Behavior of thin gusset plates in compression[J]. Thin-Walled structures, 2005, 43:pp861-875.
    [29] B.Dowswell, S.Barber. Buckling of gusset plates: A comparison of design equations to test data[A]. Proceedings of the annual stability conference, Structural stability research council[C]. Rolla, MO, 2004.
    [30] Min-Lang Lin, Keh-Chyuan Tsai, Po-Chien Hsiao, Cheng-Yu Tsai. Compressive behavior of buckling-restrained brace gusset connections[A]. The first international conference on advances in experimental structural engineering AESE[C]. Nagoya, Japan, 2005.
    [31] Janice J.Chambers. Brace frame gusset plate research[M]. University of Utah, 2005.
    [32]沈泽渊,赵熙元.焊接钢桁架外加式节点板静力性能的研究[J].工业建筑, 1987, (8):pp19-27.
    [33]李光照.钢桁架节点板弹塑性工作过程及破坏机理试验研究[J].建筑结构学报, 1987, (2):pp10-22.
    [34]陈绍蕃.钢结构稳定设计讲座:第七讲板件的稳定[J].钢结构, 1993, 20(8):pp38-50.
    [35]傅俊涛.大跨越钢管塔节点强度理论与试验研究[D].同济大学. 2006.
    [36]曾程.大跨越输电塔结构极限承载力分析[D].同济大学. 2006.
    [37]王志宇.静力、循环荷载下高强度螺栓端板连接节点的性能研究[D].四川大学. 2005.
    [38]李戌中.高强度螺栓延伸端板连接钢框架有限元整体分析与研究[D].四川大学. 2005.
    [39]匡祯斌.钢结构螺栓端板连接节点的受力性能研究[D].浙江大学. 2004.
    [40]孙德发,刘向东,张春梅.钢塔结构中的节点设计[J].黑龙江八一农垦大学学报, 1999, 11(4): 39-42.
    [41]金晓华,傅俊涛,邓洪洲.输电塔十字插板连接节点强度分析[J].工程设计, 2006, 21(5): 41-44.
    [42]吴静,邓洪洲,傅俊涛.输电塔圆钢管相贯节点强度分析[J].特种结构, 2006, 23(3): 63-65.
    [43]卢林枫,顾强,苏明周,申林,胡天兵.交错桁架典型节点设计[J].四川建筑科学研究, 2005, 31(5):25-28.
    [44]付涛,刘永健.交错桁架结构中节点板计算方法研究[J].长沙交通学院学报, 2006, 22(1):27-31.
    [45]陈宏,石永久,王元清,赵大伟.刚框架梁柱节点受力性能的非线性分析[J].工业建筑, 2001, 31(5):56-58.
    [46]刘洪斌,赵松.吊车桁架节点板应力测试和分析计算[J].鞍山科技大学学报, 2005, 28(6):447-449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700