用户名: 密码: 验证码:
船用柴油机相继增压系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相继增压技术是改善高增压柴油机低工况性能最有效的方法,可以有效地扩大柴油机低工况运行范围、提高经济性能和减少排放,但它需要采用自动控制技术,如果相继增压的切换点和切换延迟等选择不当,特别是在柴油机瞬态过程中,就容易导致压气机喘振、增压器超速、油耗率增加等问题的出现。本文以某船用带有进排气旁通和高工况放气的相继增压柴油机为研究对象,研究这种相继增压系统性能,以改善增压器与柴油机之间的匹配,并获得增压系统的控制规律。
     本文主要创新点在于:基于MATLAB/SIMULINK仿真平台,开发了带有进排气旁通和高工况放气的相继增压柴油机工作过程仿真程序。建立了相继增压热动力试验台仿真模型,通过仿真计算得到了切换延迟和进气管容积对增压器切换过程的影响规律。建立了采用PID控制的放气阀的相继增压柴油机的瞬态仿真模型,提出了采用可调节放气阀来控制最高爆发压力,确定了PID控制参数,实现了最高爆发压力的优化控制。提出了一种可调相继复合涡轮增压系统。该增压系统将进排气旁通和可调放气措施与相继增压系统相结合使用,扩大了柴油机的工作区域。研究了进排气旁通对相继增压柴油机性能影响,提出了确定进排气旁通区域的方法。
     本文在MATLAB/SIMULINK软件平台上,建立了准一维的压气机瞬态模型。其中,该模型考虑到了气体通过压气机的延迟效果,可以预测压气机系统瞬态性能,包括压气机喘振和旋转失速。并通过试验数据检验了模型的正确性,模拟了压气机瞬态失稳过程。为了确定压气机特性的喘振边界,采用流量偏差、流量振幅、相对压力偏差、压力振幅和压力信号的失稳频率等参数来评价压气机喘振。其结果表明:压力信号失稳频率能灵敏和准确地判断压气机喘振,压气机喘振边界的预测结果与试验结果吻合良好;压缩系统的转动惯量和稳压室容积影响喘振特性。
     为了研究相继增压系统瞬态性能,建立了一个相继增压热动力试验台模型,它主要由两台增压器、燃气阀、空气阀、调节阀和一个单管燃烧室组成,重点研究了从一台增压器工作切换到两台增压器工作的过程,分析了切换延迟和进气管容积对相继增压系统切换过程的影响,其结果表明:过短的切换延迟将导致受控增压器的压气机发生喘振;过长的切换延迟将引起基本增压器的压气机发生喘振;当切换延迟取在中间的一段时间内,可以避免压气机发生喘振。为了避免受控压气机发生倒流,进气管容积既不能太小也不能太大。
     为了研究进排气旁通与相继增压结合使用,在MATLAB/SIMULINK软件平台上,建立了某船用相继增压柴油机稳态性能工作过程仿真模型。对柴油机喘振限制和进排气旁通进行了仿真研究,并结合试验数据,分析了进排气旁通区域,其结果表明:该柴油机的2TC+CAB与2TC的边界线低于2TC喘振限制曲线;当受控压气机发生喘振后,可能诱导基本压气机也发生喘振。针对该柴油机按螺旋桨特性运行情况,对柴油机分别运行在1TC状态、2TC状态和2TC+CAB状态进行稳态性能仿真,研究了扩大进排气旁通区域对柴油机性能的影响。柴油机折合转速在0.8143~0.8762时,开启旁通阀能增加喘振裕度,防止喘振,降低涡轮前温度,扩大柴油机运行范围。
     建立了某船用相继增压柴油机瞬态仿真模型。对柴油机从一台增压器工作切换到两台增压器工作的过程进行了研究,其结果表明:在切换过程中,如果旁通阀与燃气阀同时开启,可防止压气机运行点进入喘振区。对柴油机按螺旋桨特性运行时的加速和减速过程进行了研究,其结果表明:加速过程的切换延迟应该选择较短的切换延迟;减速过程中适当降低受控增压器的切换点,可以防止压气机喘振。该研究成果对进一步推广应用相继增压技术具有重要的指导价值和工程实践意义,拥有广泛的应用前景。
     为了限制缸内最高爆发压力,采用了高工况放气措施。建立了以最高爆发压力为输入,以放气阀开启角度为输出的PID控制模型。对柴油机高工况放气过程进行了研究,确定了放气阀控制策略,整定了控制器PID参数,采用抗积分饱和PI控制算法实现了柴油机放气的控制。
The sequential turbocharging technology is the most effective method that improves the performance of diesel engine at low condition. The technology can widen the operation range of engine at low condition, and improve the economy performance of engine, and reduce the exhaust pollutants of engine. But the technology needs autocontrol technology. If the switch delay and switch point of turbocharger of sequentially turbocharged engine is incorrectly controlled, especially with respect to transient process of the engine, it will result in some problem such as compressor surge, turbocharger overspeed and high oil consumption rate. Study object of this dissertation was a sequentially turbocharged diesel engine with intake exhaust bypass and high load condition release air. The dissertation focused on the performance of sequential turbocharging system in order to optimize the match between diesel engine and turbocharger and gain the control law of tubocharged system.
     The primary originalities in this dissertation include some contents as follows. The simulation software of sequential turbocharging diesel engine with intake exhaust bypass and high load condition release air is developed under MATLAB/SIMULINK simulation platform. A model of sequential turbocharging thermodynamic test rig is established. It is gained that the switch delay and volume of inlet pipe have influence on the switch process of turbocharger. A simulation model of sequential turbocharging diesel engine with PID controlled release valve is established. Means that maximum explosion pressure of cylinder is controlled by the regulative release valve is found. Controls parameter of PID is fixed on. PID controller can realize the optimized control of maximum explosion pressure of cylinder. A regulative sequential compound turbocharger system is designed. It can enlarge the operation range of diesel engine. This paper have studied that intake exhaust bypass had influence on the performance of sequential turbocharging diesel engine. How to confirm the region of intake exhaust bypass is answered.
     A transient model of compressor is established in SIMULINK language. To predict compressor surge and rotating stall, a time delay is used for taking into account the departure of the compressor characteristics for its steady state. The model validity is verified by experiment data The dissertation simulated transient unsteady process of compressor. The compressor surge is detected by the parameters such as flow rate deviation, flow rate swing, relative pressure deviation, and pressure swing and pressure frequency. The results show that pressure frequency can sensitively and truly detect the compressor surge, that the predicted surge line of compressor are in good agreement with experiment surge line. Surge characteristics are affected by moment of inertia and volume of plenum.
     A sequential turbocharging thermodynamic test rig model is established in order to investigate the transient performance of the sequential turbocharging system. The test rig is composed of two turbochargers, gas valve, air valve, regulating valve and a combustion chamber. The transient switch process from one turbocharger operation to two turbochargers operation is studied. It is analyzed that the switch delay and volume of inlet pipe have influence on the switch process of sequential turbocharging system. The results show that too short switch delay will induce the controlled turbocharger compressor surge, and that too long switch delay will raise the basal turbocharger compressor surge, and that switch delay in the middle time can avoid the compressor surge. Switch delay in the middle time can avoid the compressor surge. The compressor will not flow backwards if the volume of inlet pipe can not too larger and small.
     A simulation model was designed for the steady state performance of the turbocharger diesel engine based on MATLAB/SIMULINK in order to study the performance of sequential turbocharging system combining with intake exhaust bypass system. Surge limit and intake exhaust bypass of diesel engine are studied by simulation. The region of intake exhaust bypass is analyzed by experimentation results. The results show that borderline of 2TC+CAB and 2TC of the diesel engine is under the surge limit curve of 2TC. If the controlled compressor occur surge, it will raise the surge of basic compressor. It is simulated the steady performance of the diesel engine that operated 1TC state, 2TC state and 2TC+CAB state under screw propeller characteristic operation. Under screw propeller characteristic operation, it is studied that the widen region of intake exhaust bypass affects the performance of sequential turbocharging diesel engine. When the reduced rotation speed of diesel engine is with the range of 0.8143 and 0.8762, opening of intake exhaust bypass valve can increase surge margin, and avoid compressor surge, and reduce the turbine inlet temperature, and enlarge the operation range of diesel engine.
     Finally, transient simulative model of sequential turbocharging diesel engine are established. The switch process of diesel engine from one turbocharger operation to two turbochargers operation is studied. The studied results show that it can be avoid that operation point of compressor enter into surge region if bypass valve and gas valve are opened at the same time during the switch process. The speedup and speeddown process of diesel engine under screw propeller characteristic operation is studied. The results show that best switch delay of speedup process should be selected short delay. If the switch point of controlled turbocharger is properly lowered, the compressor surge can be avoided. The results of this research have important guiding value and engineering practice meaning to further popularize and apply sequential turbocharging technology. The results have wide application prospect.
     Release boost air of the diesel engine is used in order to limit maximum explosion pressure of cylinder. PID controller model is designed. Its input signal is maximum explosion pressure. Its output signal is angle of release valve. The process of release boost air of the diesel engine is studied. Control strategy of release valve is obtained. The PID parameters of controller are turned. Use of antiwindup PI control arithmetic realizes the control of release boost air of diesel engine.
引文
[1]顾宏中著.涡轮增压柴油机性能研究.上海交通大学出版社.1998:135-137页.
    [2]顾宏中,邬静川.柴油机增压及其性能优化.上海交通大学出版社.1989:154-181页.
    [3]路家祥.柴油机涡轮增压技术.机械工业出版社.2004:1-33页.
    [4]蒋德明.内燃机的涡轮增压.中国铁道出版社.1986:207-205页.
    [5]朱大鑫编著.涡轮增压与涡轮增压器.兵器工业第七0研究所.1997:500-511页.
    [6]Kunberger,Klaus.New MTU 595 engine.Diesel & Gas Turbine Worldwide,1990,22(22):40-43P.
    [7](德)Ruprechit Lattemiann.用于高速列车的高速柴油机.国外内燃机车.1995,10(304):3-11页.
    [8][西德]H.Dinger等.MTU 956/1163系列柴油机的进一步发展.CIMAC 14.1987:3-7页.
    [9]郭连振,高德明.MTU8000系列柴油机.柴油机.2001,5:16-18页.
    [10]蔡毓国,刘景宝.MTU公司2002年发动机技术回顾.国外内燃机车.2003,5(371):35-36页.
    [11]Gunnar Stiesch,Hermann Baumann,Volker Wachter,Josef Schmitz,Christoph Teetz.Utilizing Multiple Injections for Optimized Performance and Exhaust Emissions with the MTU Series 2000 Common Rail Marine Engines.CIMAC 25,2007:Paper No.50.
    [12]Lothar Czerny,Ingo Wintruff,Ulrich Schmid,Joem Baumgarten.Future Potential of Series 4000 Marine Engines.CIMAC 25,2007:Paper No.156.
    [13]Stefan Mueller.Field Experiences with MTU 20V 8000 engines in various Marine Applications.CIMAC 25,2007:Paper No.240.
    [14]Norbert Veser,Ame Schneemann,Wemer Kasper,Bertram Wollmann.Development of the high-speed diesel engine 20V 8000 M71.CIMAC 25,2007:Paper No.153.
    [15]李元钟.SEMT-PA6相继增压柴油机的发展.技术经济信息.1992,6:39-40页.
    [16]柳祖德.PA6柴油机STC增压系统简介.陕西省内燃机学会论文.1990:10-39页.
    [17]Borila Y G.A Sequential Turbocharging Method for Highly-rated Truck Diesel Engine.1986,SAE paper 860074.
    [18]Borila Y G.Some Aspects of Performance Optimization of the Sequentially Turbocharged Highly-rated Track Diesel Engine with Turbochargers of Unequal Size and A Pulse Converter.IMechE,1986,C 105/86:251-260P.
    [19]Seiji Tashima,Tomoo Taqdokoro,Haruo Okimoto,Yasushi Niwa.Development of Sequential Twin Turbo System for Rotary Engine.SAE Technical Paper Series,1991,910624:1-10P.
    [20]张洪义,曲哲.旁通补燃及相继增压组合系统的理论分析.内燃机车.1989,12.21-24页.
    [21]王银燕,田祥裕.带有相继增压的旁通补燃动力涡轮复合式发动机的计算分析.内燃机学报.1994,12(3):276-282页.
    [22]高维成,孙富田.舰船用PA6柴油机相继增压试验研究.中外船舶科技.1995,4(23):18-21页.
    [23]王银燕,李晓波.带有旁通补燃的相继增压柴油机的计算分析.哈尔滨工程大学学报,1991,20(1):36-40页.
    [24]王银燕,高维成.应用MPC-相继增压系统改善船用柴油机低负荷性能的研究.内燃机学报,1999,17(1):13-17页.
    [25]阿荣其其格.16PA6V-280相继增压柴油机性能研究.哈尔滨工程大学硕士论文.1998(3):1-6页.
    [26]郭元梅,羊正仪.12V280ZJ型柴油机起动试验与分析.内燃机车,2000,8:4-6页.
    [27]仲怀清,李友峰,王敏鸿.12V280ZJ型柴油机相继增压系统的试验研究.内燃机车,2007,3:8-10,16页.
    [28]胡宗杰.机车柴油机相继增压系统研究.大连铁道学院硕士学位论文.2002:39-50页.
    [29]王俊平.内燃机车柴油机相继增压系统研究.南京理工大学硕士学位论文.2004:24-33页.
    [30]顾宏中.舰船柴油机技术发展.柴油机.2004(1):1-4页.
    [31]李恒芳,朱大鑫.应用MPC-顺序增压系统改善车用柴油机低速性能的研究.内燃机工程,1991年,12(1):24-31页.
    [32]梁桂森,范建新.柴油机相继增压系统设计及性能模拟.柴油机,1998,4:23-24页.
    [33]梁桂森,陈瑾.船用柴油机相继增压系统性能研究.柴油机,1999,6:10-14页.
    [34]林剑峰,欧阳光耀.相继增压柴油机控制系统及实验研究.中国造船,2001,42(4):88-91页.
    [35]任自中,王忠斌.高增压系统相继增压技术的试验研究.柴油机,2001,6:18-23,29页.
    [36]冯明志,吴珊等.柴油机相继增压控制阀及其电控系统的研究.柴油机,2002,1:23-25,49页.
    [37]王贺春.TBD234V12柴油机相继增压技术研究.哈尔滨工程大学硕士学位论文,2004,6:60页.
    [38]王都.TBD234V12相继增援柴油机试验台监控系统硬件设计.哈尔滨工程大学硕士学位论文,2006,2:75-76页.
    [39]杜鸿震.基于VC6.0的相继增压柴油机试验台监控系统软件设计.哈尔滨工程大学硕士学位论文,2006,2:71-72页.
    [40]Ren Z,Compbell T,Yang J.Theoretical and Experimental Study on the Performance of a Sequentially Turbocharged Diesel Engine.IMechE ConfPub,1998,C554/010:103-114P.
    [41]Ren Z.Theoretical and Experiments Study on Sequentially Turbocharged Diesel Engine Performance.PhD thesis,GCU,1998.
    [42]Ren Z,Compbell T,Yang J.Investigation on a Computer Controlled Sequential Turbocharging System for Medium Speed Diesel Engines.SAE,1998,981480:1-10P
    [43]任自中.柴油机相继增压系统的理论与试验研究.内燃机工程,2001,22(1):32-37页.
    [44]马捷.复合增压系统瞬态响应模拟与试验研究.上海交通大学博士学位论文,1988:2-1,2-15页.
    [45]杨世友,顾宏中,郭中朝.大功率16缸柴油机采用相继涡轮增压系统得模拟计算与研究.中国造船,2002,43(1):82-87页.
    [46]张哲,王希波,邓康耀.大小涡轮相继涡轮增压系统性能研究.中国内燃机学会第四届青年学术年会论文集,2006,9:248-250页.
    [47]Zhang Zhe,Wang Xi-bo,Deng Kang-yao.Experimental Investigation on Performance of Vehicle Diesel Engine with Sequential Turbocharging System.Journal of Beijing Institute of Technology,2006,15,suppl.:46-52P.
    [48]Kech J M,Klotz H.Model-Based Sequential Turbocharging Optimization for Series 8000 M70/M90 Engines.SAE,2002,2002-01-0378:1-10P.
    [49]Hetet Jean-Francois,Chesse Pascal,Inozu Bahadir.A.C.S.L.Simulation for Optimum Operation of Turbocharged Marine Diesel Engines.American Society of Mechanical Engineers,1994,94-ICE-7:1-12P.
    [50]Chesse Pascal,Hetet Jean-Francois,Tauzia Xavier,Frayret Jean-Pierre.Influence of the Alteration of the Compressor Surge Line on the Operation Limit of a Turbocharged Marine Diesel Engine.American Society of Mechanical Engineers,Internal Combustion Engine Division ICE,Simulations Controls and Lubrications,1995,25(2):51-57P.
    [51]Chesse Pascal,Hetet Jean-Francois,Tauzia Xavier,Roy Philippe,Inozu Bahadir.Performance Simulation of Sequentially Turbocharged Marine Diesel Engines with Applications to Compressor Surge.American Society of Mechanical Engineers,Internal Combustion Engine Division ICE,New Developments in Engine Design,Aspiration,and Lubrication,1998,30(2),98-ICE-93:31-40P.
    [52]Yauzia X,Hetet J F,Chesse P,Grosshans G,Mouillard L.Computer Aided Study of the Transient Performances of a Highly Rated Sequentially Turbocharged Marine Diesel Engine.Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,1998,212(3):185-196P.
    [53]Hetet J F,Inozu B,Roy P,Tauzia X,Chesse P.Performance Simulation of Marine Diesel Engines with SELENDIA.Journal of Ship Research,1999,43(4):201-217P.
    [54]Chesse P,Chalet D,Tauzia X,Hetet J F,Inozu B.Real-Time Performance Simulation of Marine Diesel Engines for the Training of Navy Crews.Marine Technology,2004,41(3):95-101P.
    [55]林杰伦.内燃机工作过程数值计算.西安交通大学出版社.1986(9):251-254页,57页.
    [56]朱访君,吴坚.内燃机工作过程数值计算及其优化.国防工业出版社.1997(7):90页.
    [57]K Zinner.内燃机增压与匹配-理论、计算及实例.北京:北京工业出版社,1982.
    [58]朱小慧.MIXPC涡轮增压系统非定常流动研究.上海交通大学博士学位论文.2000,12:13-16页.
    [59]顾宏中.内燃机中的气体流动及其数值分析.北京:国防工业出版社,1985.
    [60]王慧,顾宏中,周建华.中速柴油机MPC系统用高精度一维非定常流动模型的流动误差研究.船舶工程,1996,5:34-38页.
    [61]张江城,顾宏中.内燃机进排气管有限容积法一维非定常流模拟.上海交通大学学报 1999,33(3):339-341页.
    [62]杨林,顾宏中.内燃机增压系统一维非定常流混合模型的研究.内燃机学报,1999,17(4):409-412页.
    [63]邓康耀.内燃机中一维非定常流动计算的特征线法与有限体积法的比较.上海交通大学学报,1999,33(8):949-953页.
    [64]方适应,邓康耀等.进排气管一维非定常流动计算方法的比较.车用发动机,2000,3:22-25页.
    [65]朱小慧,顾宏中.模拟一维非定常流动的FVM-TVD法.内燃机学 报,2001,19(2):169-172页.
    [66]邓康耀,顾宏中,等.旋流排气管的一维非定常流动计算工程.热物理学报,2002,23(1):39-42页.
    [67]朱伟平,高大明.旋流排气管的一维非定常流动研究.华北电力大学学报,2005,32(6):25-28页.
    [68]Morel T,Flemming M F etc.Characterization of Manifold Dynamics in the Chrysler 2.2 S.T.Engine by Measurements and Simulations.SAE,1990,900679.
    [69]Changyou Chen,Ali veshagn,W J Wallace.A Comparison Between Alternative Method for Gas Flow and Performance Prediction of Internal Combustion Engines.SAE,1992,921734.
    [70]Claudio Mattiussi.An Analysis of Finite Volume,Finite Element,Finite Difference Methods Using Some Concepts from Algebraic Topology.J Comp Phys,1997:133P,289-309P.
    [71]R J Pearson,D E Winterbone.Calculation of One-dimensional Unsteady Flow in Internal Combustion Engines -How Long Should It Take?IMechE,1996,PartC:193-200P.
    [72]AVL Boost Version 4.0.3 User's Guide.AVL LIST GmbH,2003,7:2-49,2-50,2-51P.
    [73]GT-POWER User's Manual Version 6.2.Gamma Technologies,2006,9:7-31P.
    [74]G Benvenuto,U Campora.Dynamic Simulation of a High-performance Sequentially Turbocharged Marine Diesel Engine.IMech,Int J Engine Research 2002,3(3):115-125P.
    [75]刘永文,张会生,苏明.舰船柴油机的模块化建模与仿真.船舶工程2002,1:14-17页.
    [76]刘永文.基于通用平台的系统建模和半物理仿真及其在舰船动力装置中的应用.上海交通大学博士学位论文,2002.
    [77]刘永文,苏明,翁史烈.相继增压柴油机的动态建模和仿真.中国造船,2003,44(3):44,80-84页.
    [78]刘强,陈华清,张宁.柴油机相继增压系统仿真分析.柴油机,2004年增刊:88-91页.
    [79]Greizter E M.Surge and Rotating Stall in Axial Flow Compressors,Part Ⅰ:Theoretical Compression System Model.Journal of Engineering for Power,1976,4:190-198P.
    [80]Greizter E M.Surge and Rotating Stall in Axial Flow Compressors,Part Ⅱ:Experimental Results and Comparison with Theory.Journal of Engineering for Power,1976(4):199-217P.
    [81]Hansen K E,Jorgensen P,Larsen P S.Experimental and Theoretical Study of Surge in a Small Centrifugal Compressor.Journal of Fluids Engineering,1981:391-394P.
    [82]Moore F K.A Theory of Rotating Stall of Multistage Axial Compressors:Part Ⅰ-Small Disturbances,Ⅱ-Finit Disturbances,Ⅲ-Limit Cycles.Journal of Engineering for Gas Turbines and Power,1984(4),106:313-336P.
    [83]Moore F K,Greitzer E M.Theory of Post-Stall Transients in Axial Compression Systems:Part Ⅰ-Development of Equations,Part Ⅱ-Application.Journal of Engineering for Gas Turbines and Power,1986,108:68-76,231-238P.
    [84]Fink D A,Cumpsty N A,Greitzer E M.Surge Dynamics in a Free-spool Centrifugal Compressor System.Journal of Turbomachinery,1992(4),114(2):321-332P.
    [85]Jan Tommy Gravdahl.Modeling and Control of Surge and Rotating Stall in Compressors.N-7034 Trondhein,Norway:Norwegian University of Science and Technology,Dr.ing.thesis,1998:1-9P.
    [86]Chesse P.Determination des Limintes D'exploitation des Diesel de Forte Puissance.Incidence des Circuits de Liaison Moteur-Turbocompresseur.Instabilites et Pompage des Compresseures.France:Universite de Nantes and Ecole Centrale de Nantes,Ph.D.Thesis,1995:47-121P.
    [87]Theotokatos G,Kytrtatos N P.Investigation of a Large High-Speed Diesel Engine Transient Behavior Including Compressor Surging and Emergency Shutdown.ASME Journal of Engineering for Gas Turbines and Power,2003,125:580-589P.
    [88]Theotokatos G,Kyrtatos N P.Diesel Engine Transient Operation with Turbocharger Compressor Surging.SAE,2001,No.2001-01-1241:1-15P.
    [89]Schmitz M B,Fitzky G.Surge Cycle of Turbochargers:Simulation and Comparison to Experiments.Proceedings of ASME Turbo Expo 2004:GT2004-53036.
    [90]胡世民,徐东升.一种直升机涡轴发动机加速自适应控制研究.航空动力学报,1998,13(1):45-48页.
    [91]胡世民,孙建国等.双转子发动机含喘振的动态模型.航空学报,1991,6(6):300-303页.
    [92]聂超群,陈静宜.压缩系统喘振现象主动控制的实验研究.工程热物理学报,1995,16(2):166-171页.
    [93]聂超群,戴冀等.离心压缩系统喘振先兆的实验研究.工程热物理学报.1997,5(3):306-310页.
    [94]戴冀,聂超群,陈静宜.低压离心压缩系统喘振发生过程的实验研究. 工程热物理学报.1997,9(5):574-579页.
    [95]程晓斌,聂超群.轴流压气机旋转失速先兆过程中的频率阶跃现象.工程热物理学报,2000,21(1):29-33页.
    [96]王云辉.湿压缩对压缩系统性能分析.哈尔滨工程大学博士学位论文.2002,7:1-9页.
    [97]Minghong Li,Qun Zheng.Wet Compression System Stability Analysis.Part Ⅰ -Wet Compression Moore Greitzer Transient Model.Vienna,Austria:Proc.of ASME Turbo Expo 2004,2004,6:GT2004-54018.
    [98]Qun Zheng,Minghong Li.Wet Compression System Stability Analysis.Part Ⅱ -Simulations and Bifurcation Analysis.Vienna,Austria:Proc.of ASME Turbo Expo 2004,2004,6:GT2004-54020.
    [99]Corina H J Meuleman.Measurement and Unsteady Flow Modelling of Centrifugal Compressor Surge.Ph.D.thesis,Eindhoven:Technische Universiteit Eindhoven,2002:29-43P,102-105P.
    [100]Galindo J,Serrano J R,Gurdiola C,et al.Surge Limit Definition in a Specific Test Bench for the Characterization of Automotive Turbochargers.Experimental Thermal and Fluid Science,2006,30:449-462P.
    [101]钟华贵,刘坤,文国治.车用涡轮增压器试验台与试验技术.燃气涡轮试验与研究,2003(11),16(4):37-44页.
    [102]刘金琨著.先进PID控制MATLAB仿真.第二版.北京:电子工业出版社,2006:29页.
    [103]Payri F,Benajes J,Galindo J,Serrano J R.Modelling of turbocharged diesel engines in transient operation.Part 2:Wave action models for calculating the transient operation in a high speed direct injection engine.Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2002,216(6):479-493P.
    [104]K 齐纳著.内燃机增压与匹配--理论、计算及实例.第一版.北京:国防工业出版社.1982:42-45页.
    [105]陈华清,敖晨和.舰船推进系统仿真中的柴油机数学模型.船舶工程.2000(5):33-37页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700