用户名: 密码: 验证码:
巨噬细胞和苯妥英钠中介的旁分泌机制在心肌梗死后组织修复中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:心肌梗死后组织修复过程是影响心室重塑发展方向的决定因素。近年来的研究显示,苯妥英钠(PHT)可以通过介导旁分泌机制加速创伤修复,我们实验室的前期工作证实苯妥英钠可加速心肌梗死后组织修复,其可能机制是通过激活巨噬细胞,中介旁分泌机制。巨噬细胞在组织修复中是各种细胞因子和生长因子的重要来源。心肌梗死后早期移植巨噬细胞可促进血管新生、组织修复,改善心室重塑和心脏功能。然而苯妥英钠通过激活巨噬细胞促进心肌梗死后组织修复的具体机制尚不十分清楚。
     目的:本实验建立Wistar大鼠心肌缺血再灌注模型,并在梗死后早期进行同种异体腹腔巨噬细胞心肌内移植,和PHT预刺激的腹腔巨噬细胞心肌内移植,以及梗死后14天持续给予PHT腹腔内注射,观察上述干预因素对组织病理学、分子生物学和血流动力学的综合影响,旨在探讨巨噬细胞和PHT介导的旁分泌机制对心肌梗死后组织修复和心室重塑过程的影响并探讨其可能机制。
     方法:1.细胞实验部分:进行Wistar大鼠腹腔巨噬细胞原代培养,并以苯妥英钠对部分体外培养的巨噬细胞进行预刺激(24h),移植前用荧光染料DAPI标记。2.动物实验部分:建立Wistar大鼠心肌缺血再灌注模型,成活动物随机分为假手术组(Sham组,12只),对照组(AMI组,23只),苯妥英钠组(PHT组,17只),单纯巨噬细胞移植组(Mφ组,20只),以及经苯妥英钠预刺激的巨噬细胞移植组(Mφ-PHT组,16只)。Mφ组和Mφ-PHT组在再灌注同时,向左心室缺血区中心及周边分别以1×10~5细胞/只,100μL的剂量多点注射;AMI组和PHT组注射不完全DMEM培养基(100μL);PHT组从术后第1天开始,连续14天经腹腔注射PHT(75mg/kg/天)。术后第7天,各组分别随机处死部分动物,留取心脏标本,称量双侧心室重量;通过苦味酸-天狼猩红染色测定胶原容积分数(CVF)及膨展指数、梗死面积等,结合环形偏振光分析梗死区胶原成分比例;抗α-SMA免疫荧光染色测定梗死区小动脉密度;抗vWF免疫荧光染色测定梗死区毛细血管密度;抗WGA免疫荧光染色测定非梗死区心肌细胞横截面积(CSA);梗死区血管内皮生长因子(VEGF)、碱性成纤维细胞生长因子(bFGF)、基质金属蛋白酶-2(MMP-2)、金属蛋白酶组织抑制剂-1(TIMP-1)、金属蛋白酶组织抑制剂-2(TIMP-2)蛋白表达水平采用Western blot分析。剩余动物于模型建立后第28天进行有创血流动力学分析,而后处死动物取心脏组织,进行组织病理学分析。
     结果:1.细胞实验部分:1)体外培养的巨噬细胞贴壁生长,培养的细胞群中无分裂相;苯妥英钠刺激后的巨噬细胞仍贴壁良好,生长状况稳定;2)贴壁培养的细胞群中绝大多数细胞呈CD68阳性。3)DAPI标记的巨噬细胞,经紫外光激发后呈现大量圆形或不规则型的蓝色荧光。2.动物实验部分:1)巨噬细胞移植成功的证据:术后1天心肌梗死区组织CD68免疫荧光染色显示DAPI标记的巨噬细胞表达CD68。2)术后第28天血流动力学结果:Mφ-PHT组术后第28天LV+dp/dt_(max)显著高于AMI组;与Mφ组比较,Mφ-PHT组术后第28天LV+dp/dt_(max)亦增高且具有统计学差异。3)心脏重量指标比较:全心室体重比(V/BW)、左室体重比(LV/BW)、右室体重比(RV/BW)在各组间比较无显著差异。4)左室重塑指标结果:与AMI组比较,PHT组、Mφ组和Mφ-PHT组术后第7天和第28天膨展指数均显著减少且具有统计学差异;与AMI组比较,Mφ-PHT组术后第28天梗死面积显著减小;与AMI组比较,PHT组术后7天和第28天梗死面积有减小趋势;与Mφ组比较,Mφ-PHT组术后7天和第28天梗死面积有减小趋势;与AMI组比较,Mφ组和Mφ-PHT组术后7天纤维面积显著减小;与AMI组比较,PHT组、Mφ组和Mφ-PHT组术后第28天纤维面积显著减小;与Mφ组比较,Mφ-PHT组术后第28天纤维面积显著减小;与AMI组比较,Mφ组和Mφ-PHT组术后7天非梗死区CSA显著减小,而PHT组术后7天非梗死区CSA有减小趋势;与AMI组比较,PHT组、Mφ组和Mφ-PHT组术后第28天非梗死区CSA显著减小。5)胶原容积分数结果:与AMI组比较,PHT组、Mφ组和Mφ-PHT组术后第7天和第28天梗死区CVF显著增加;与Mφ组比较,Mφ-PHT组术后第7天梗死区CVF显著增加;与AMI组比较,Mφ组和Mφ-PHT组术后第7天和第28天非梗死区CVF显著减少。6)胶原成分比例结果:与AMI组比较,PHT组、Mφ组和Mφ-PHT组术后第7天和第28天梗死区胶原成熟度显著增加;与MΦ组比较,MΦ-PHT组术后第7天和第28天梗死区胶原成熟度显著增加。7)小动脉密度分析结果:与AMI组比较,PHT组、MΦ组和MΦ-PHT组术后第7天和第28天小动脉密度显著增加;与MΦ组比较,MΦ-PHT组术后第7天和第28天小动脉密度有增加趋势。8)毛细血管密度分析结果:与AMI组比较,PHT组术后第7天和第28天毛细血管密度有增加趋势;与MΦ组比较,MΦ-PHT组术后第7天和第28天毛细血管密度有增加趋势。9)Western blot检测结果:与AMI组比较,MΦ-PHT组术后第7天梗死区b-FGF、MMP-2、TIMP-1和TIMP-2蛋白表达水平显著增强:与AMI组比较,PHT组和MΦ组术后第7天梗死区MMP-2蛋白表达水平显著降低;与MΦ组比较,MΦ-PHT组术后第7天梗死区VEGF、b-FGF、MMP-2、TIMP-1和TIMP-2蛋白表达水平显著增强:与Sham组比较,AMI组术后第7天梗死区MMP-2/TIMP-2比值显著增加。
     结论:1.苯妥英钠可能通过介导旁分泌机制,加速胶原沉积和成熟,并促进小动脉形成,加速组织修复过程,继而改善心肌梗死后心室重塑;2.心肌梗死区巨噬细胞移植亦可通过上述机制加速组织修复、改善心肌梗死后心室重塑;3.苯妥英钠预刺激的巨噬细胞可以对心肌梗死后组织修复过程产生明显的协同作用,可能机制为通过旁分泌效应上调多种与组织修复密切相关的生长因子/关键酶系的蛋白表达水平,加速组织修复过程,且改善左室重塑的效应较单纯巨噬细胞移植更为明显,同时显著改善左室收缩功能。
Background: The tissue repair after myocardial infarction (MI) is the determinativefactorof ventricular remodeling. The recent studies showed that Phenytoin (PHT)through mediated paracrine effect can accelerate wound healing. Our lab research hadalready conformed that Phenytoin (PHT) could accelerate tissue repair after MI, andthe possible mechanism may be that PHT can induce paracrine effect throughactivation of macrophage. Macrophage is the important resource of various cytokinesand growth factors. The implantation of macrophage early after MI can enhanceneovascularization, tissue repair, and improve ventricular remodeling and cardiacfunction. But the mechanism of the role of PHT and macrophage mediated paracrineeffect in tissue repair after MI is unclear.
     Objective: experimental ischemia-reperfusion (I/R) in Wistar rats was induced bycoronary ligation and reperfusion. After early MI, The animals were respectivelyreceived intramyocardial injection of peritoneal macrophages, and PHT-prestimulatingperitoneal macrophages, or peritoneal injection of PHT 14 days after I/R. In order toinvestigate the role and mechanism of macrophage and PHT mediated paracrine effectin the tissue repair and ventricular remodeling, we observe the changes of thehistopathology, molecular biology and hemodynamics by above influencing factors.
     Method: In the experiment in vitro, the peritoneal macrophages were adherentlycultured, and parts of cultured macrophages were prestimulated by PHT, finally all ofmacrophages were labeled by fluorescent dye DAPI before implantation. In theexperiment in vivo, the survival animals induced experimental I/R were randomlydistributed into Sham group (n=12), control group (AMI group, n=23), Phenytoingroup (PHT group, n=17), macrophage group (MΦgroup, n=20), phenytoin-prestimulating macrophage group (MΦ-PHT group, n=16). Animals in MΦgroup andMΦ-PHT group were respectively received macrophages or PHT-prestimulating macrophages (1×105, 100μL) by intramyocardial injection within the central andperi-ischemia area on the reperfusion, while AMI and PHT group received incompleteDMEM (100μL). In addition, animals in PHT group were intraperitoneallyadministrated by PHT 75mg/kg per day. At 7 days after the induction of I/R,Histology examination were analyzed including collagen volume fraction (CVF),index of expansion, infarct size and so on. Proportion of collagen fiber was identifiedby picrosirius staining plus polarized microscopy. Arterioles density and capillarydensity in infarct region were respectively evaluated by anti-α-SMA and anti-vWFimmunofluorescent staining. Cardiocyte cross-sectional area (CSA) in non-infarctregion was assessed by anti-WGA immunofluorescent staining. The levels of proteinexpression of vascular endothelial growth factor (VEGF), basic fibroblast growthfactor (bFGF), matrix metalloproteinase-2 (MMP-2), tissue inhibitor ofmetalloproteinase-1 (TIMP-1), tissue inhibitor of metaltoproteinase-2 (TIMP-2)within infarct region 7 days after MI were determined by Western blot. Thehemodynamic measurement were performed before the remaining rats were sacrificed28 days after MI. histopathogic analysis 28 days after MI were similar to 7 days afterMI.
     Result: 1. in vitro pure macrophages and PHT-stimulating macrophages were bothadherent in the culture stably, and could express CD68 antigen. By DAPI staining, thenuclear of macrophage were labeled successfully.2. in vivo experiment: 1) DAPI-labeled macrophage were located within the infarct region at 1 day after MI. 2)Compared to AMI group, LV+dp/dt_(max) in MΦ-PHT group was significantly increasedat 28th day after MI. LV+dp/dt_(max) in MΦ-PHT group was more than MΦgroup at 28thday after MI. 3) The index that ratio of ventricle and body weight (V/BW), ratio ofleft ventricle and body weight (LV/BW) and ratio of right ventricle and body weight(RV/BW) were not significantly different between each group. 4) Compared with AMIgroup, Index of Expansion at 7th day and 28th day were all decreased in PHT group, MΦgroup and MΦ-PHT group; Infarct Size of MΦ-PHT group at 28th day was fewerthan AMI group. Compared with AMI group, Infarct Size at 7th day and 28th day inPHT group had down tendency. Compared with MΦgroup, Infarct Size at.7th day and28th day in MΦ-PHT group had down tendency. Fibrosis area in AMI group at 7th daywas more than in MΦgroup and MΦ-PHT group. Fibrosis area in AMI group at 28thday was also more than in PHT group, MΦgroup and MΦ-PHT group. Comparedwith MΦgroup, Fibrosis area at 28th day in MΦ-PHT group was decreased. Comparedwith AMI group, CSA within non-infarct region at 7th day were reduced in MΦgroupand MΦ-PHT group, while PHT group had down tendency. CSA within non-infarctregion at 28th day in PHT group, MΦgroup and MΦ-PHT group were smaller thanAMI group. 5) Compared with AMI group, CVF in infarct zone at 7th day and 28th daywere larger in PHT group, MΦgroup and MΦ-PHT group. CVF in infarct zone at 7thday in MΦ-PHT group was larger than in MΦgroup. Compared with AMI group,CVF in non-infarct zone at 7th day and 28th day were both smaller in MΦgroup andMΦ-PHT group. 6) Compared with AMI group, Proportion of Collagen Fiber ininfarct zone at 7th day and 28th day had increased in PHT group, MΦgroup andMΦ-PHT group. Proportion of Collagen Fiber in infarct zone at 7th day and 28th day inMΦ-PHT group were higher than MΦgroup. 7) Compared with AMI group, arterioledensity in infarct zone at 7th day and 28th day had increased in PHT group, MΦgroupand MΦ-PHT group. Compared with MΦgroup, MΦ-PHT group at 7th day and 28thday had increasing tendency. 8) Compared with AMI group, capillary density ininfarct zone at 7th day and 28th day had increasing tendency in PHT group. Comparedwith MΦgroup, MΦ-PHT group at 7th day and 28th day also had increasing tendency.9) Compared with AMI group, the levels of bFGF, MMP-2, TIMP-1 and TIMP-2protein expression in infarct zone at 7th day were significantly increased in MΦ-PHTgroup. MMP-2 protein expression in infarct zone at 7th day in PHT group and MΦgroup were fewer than in AMI group. Compared with MΦgroup, the levels of VEGF,bFGF, MMP-2, TIMP-1 and TIMP-2 protein expression in infarct zone at 7th day were significantly increased in MΦ-PHT group. The ratio of MMP-2/TIMP-2 in AMI groupwas more than in Sham group.
     Conclusion: 1. Phenytoin through mediated paracrine effect can accelerate collagendeposition, collagen maturation, and promote neovascularization, cardiac repair,therefore can improve ventricular remodeling after MI. 2. Macrophage ofintramyocardial implantation through the above mechanism can accelerate tissuerepair and improve ventricular remodeling. 3. Phenytoin-prestimulating macrophagethrough mediated paracrine effect can significantly generate synergistic effect oncardiac repair after MI, and the mechanism may be the up-regulation of growth factorsand key enzymes involved in tissue repair through the paracrine effect. For this reason,phenytoin could accelerate tissue repair and improve ventricular remodeling and leftventricular systolic function more effectively than pure macrophage implantation.
引文
1 Ertl G and Frantz S. Healing after myocardial infarction. Cardiovasc Res.2005.66(1):22-32.
    
    2 Thorn T, Haase N, Rosamond W, et al. Heart disease and stroke statistics-2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation.2006.113(6):e85-151.
    
    3 Pfeffer MA and Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990.81 (4): 1161-1172.
    
    4 Holmes JW, Yamashita H, Waldman LK, et al. Scar remodeling and transmural deformation after infarction in the pig. Circulation. 1994.90(1):411-420.
    
    5 Lu L, Gunja-Smith Z, Woessner JF, et al. Matrix metalloproteinases and collagen ultrastructure in moderate myocardial ischemia and reperfusion in vivo. Am J Physiol Heart Circ Physiol.2000.279(2):H601 -609.
    
    6 Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res.2004.94(5):678-685.
    
    7 Kinnaird T, Stabile E, Burnett MS, et al. Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res.2004.95(4):354-363.
    
    8 Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med.2005.11(4):367-368.
    
    9 Laflamme MA, Zbinden S, Epstein SE, et al. Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu Rev Pathol Mech Dis 2007.2(1):307-339.
    
    10 Anstead GM, Hart LH, Sunahara JF, et al. Phenytoin in wound healing. Ann Pharmacother. 1996.30(768-775.
    
    11 Zhou X, Li YM, Ji WJ, et al. Phenytoin can accelerate the healing process after experimental myocardial infarction? Int J Cardiol.2006.107(1):21-29.
    
    12 Dill RE, Miller EK, Weil T, et al. Phenytoin increases gene expression for platelet-derived growth factor B chain in macrophages and monocytes. J Periodontol.1993.64(3):169-173.
    
    13 Weihrauch D, Arras M, Zimmermann R, et al. Importance of monocytes/macrophages and fibroblasts for healing of micronecroses in porcine myocardium. Mol Cell Biochem.1995.147(1-2):13-19.
    
    14 Nakade O, Baylink DJ and Lau KH. Phenytoin at micromolar concentrations is an osteogenic agent for human-mandible-derived bone cells in vitro. J Dent Res.1995.74(1):331-337.
    
    15 Swamy SM, Tan P, Zhu YZ, et al. Role of phenytoin in wound healing: microarray analysis of early transcriptional responses in human dermal fibroblasts. Biochem Biophys Res Commun.2004.314(3):661-666.
    
    16 Danon D, Madjar J, Edinov E, et al. Treatment of human ulcers by application of macrophages prepared from a blood unit. Exp Gerontol .1997.32(6):633-641.
    
    17 Zuloff-Shani A, Kachel E, Frenkel O, et al. Macrophage suspensions prepared from a blood unit for treatment of refractory human ulcers. Transfus Apher Sci.2004.30(2):163-167.
    
    18 Orenstein A, Kachel E, Zuloff-Shani A, et al. Treatment of deep sternal wound infections post-open heart surgery by application of activated macrophage suspension. Wound Repair Regen.2005.13(3):237-242.
    
    19 Danon D, Kowatch MA and Roth GS. Promotion of wound repair in old mice by local injection of macrophages. Proc Natl Acad Sci U S A.1989.86(6):2018-2020.
    
    20 Leor J, Rozen L, Zuloff-Shani A, et al. Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation.2006.114(1 Suppl):194-100.
    
    21 van Amerongen MJ, Harmsen MC, van Rooijen N, et al. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol.2001.170(3):818-829.
    
    22 Dill RE, Davis WL and Zimmermann ER. Quantitation of phagocytic cells in phenytoin-induced connective tissue proliferation in the rat. J Periodontol. 1988.59(3): 190-197.
    
    23 Dill RE and Iacopino AM. Myofibroblasts in phenytoin-induced hyperplastic connective tissue in the rat and in human gingival overgrowth. J Periodontol.1997.68(4)375-380.
    
    24 Hochman JS and Choo H. Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage. Circulation.1987.75(1):299-306.
    
    25 Reffelmann T, Hale SL, Dow JS, et al. No-reflow phenomenon persists long-term after ischemia/reperfusion in the rat and predicts infarct expansion. Circulation.2003.108(23):2911-2917.
    
    26 Eaton LW, Weiss JL, Bulkley BH, et al. Regional cardiac dilatation after acute myocardial infarction: recognition by two-dimensional echocardiography. N Engl J Med. 1979.300(2):57-62.
    
    27 Entman ML and Smith CW. Postreperfusion inflammation: a model for reaction to injury in cardiovascular disease. Cardiovasc Res.1994.28(9):1301-1311.
    
    28 Mehta JL and Li DY. Inflammation in ischemic heart disease: response to tissue injury or a pathogenetic villain? Cardiovasc Res.1999.43(2):291-299.
    
    29 Bolli R. Oxygen-derived free radicals and postischemic myocardial dysfunction ("stunned myocardium"). J Am Coll Cardiol.1988.12(1):239-249.
    
    30 Bolli R and Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev.1999.79(2):609-634.
    
    31 Libby P, Maroko PR, Bloor CM, et al. Reduction of experimental myocardial infarct size by corticosteroid administration. J Clin Invest. 1973.52(3):599-607.
    
    32 Roberts R, DeMello V and Sobel BE. Deleterious effects of methylprednisolone in patients with myocardial infarction. Circulation. 1976.53(3 Suppl):I204-206.
    
    33 Kloner RA, Fishbein MC, Lew H, et al. Mummification of the infarcted myocardium by high dose corticosteroids. Circulation. 1978.57(1):56-63.
    
    34 Fujiwara N and Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy.2005.4(3):281-286.
    
    35 Frangogiannis NG, Smith CW and Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res.2002.53(1):31-47.
    
    36 Birdsall HH, Green DM, Trial J, et al. Complement C5a, TGF-beta 1, and MCP-1, in sequence, induce migration of monocytes into ischemic canine myocardium within the first one to five hours after reperfusion. Circulation.1997.95(3):684-692.
    
    37 Kumar AG, Ballantyne CM, Michael LH, et al. Induction of monocyte chemoattractant protein-1 in the small veins of the ischemic and reperfused canine myocardium. Circulation. 1997.95(3):693-700.
    
    38 Trial J, Baughn RE, Wygant JN, et al. Fibronectin fragments modulate monocyte VLA-5 expression and monocyte migration. J Clin Invest. 1999.104(4):419-430.
    
    39 Frangogiannis NG, Youker KA, Rossen RD, et al Cytokines and the microcirculation in ischemia and reperfusion. J Mol Cell Cardiol. 1998.30(12):2567-2576.
    
    40 Trial J, Rossen RD, Rubio J, et al. Inflammation and ischemia: macrophages activated by fibronectin fragments enhance the survival of injured cardiac myocytes. Exp Biol Med (Maywood).2004.229(6):538-545.
    
    41 Moldovan NI, Goldschmidt-Clermont PJ, Parker-Thornburg J, et al. Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res.2000.87(5):378-384.
    
    42 Dewald O, Zymek P, Winkelmann K, et al. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res.2005.96(8):881-889.
    
    43 Rehman J, Li J, Orschell CM, et al. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation.2003.107(8): 1164-1169.
    
    44 Frangogiannis NG, Mendoza LH, Lindsey ML, et al. IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J Immunol .2000.165(5):2798-2808.
    
    45 Ganz T. Macrophage function. New Horiz. 1993.1(1):23-27.
    
    46 Rapalino O, Lazarov-Spiegler O, Agranov E, et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med.1998.4(7):814-821.
    
    47 Yaari Y, Selzer ME and Pincus JH. Phenytoin: mechanisms of its anticonvulsant action. Ann Neurol.1986.20(2):171-184.
    
    48 Talas G, Brown RA and McGrouther DA. Role of phenytoin in wound healing-a wound pharmacology perspective. Biochem Pharmacol.1999.57(10):1085-1094.
    
    49 Kato T, Okahashi N, Ohno T, et al. Effect of phenytoin on collagen accumulation by human gingival fibroblasts exposed to TNF-alpha in vitro. Oral Dis.2006.12(2):156-162.
    
    50 Jugdutt BI. Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord.2003.3(1):1-30.
    
    51 Olivetti G, Anversa P and Loud AV. Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. II. Tissue composition, capillary growth, and sarcoplasmic alterations. Circ Res.l980.46(4):503-512.
    
    52 Blankesteijn WM, Creemers E, Lutgens E, et al. Dynamics of cardiac wound healing following myocardial infarction: observations in genetically altered mice. Acta Physiol Scand.2001. 173(1):75-82.
    
    53 Jugdutt BI. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation.2003.108(11):1395-1403.
    54 Sato S, Ashraf M, Millard RW, et al Connective tissue changes in early ischemia of porcine myocardium: an ultrastructural study. J Mol Cell Cardiol.1983.15(4):261-275.
    
    55 Willems IE, Havenith MG, De Mey JG, et al. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol.1994.145(4):868-875.
    
    56 Knowlton AA, Connelly CM, Romo GM, et al. Rapid expression of fibronectin in the rabbit heart after myocardial infarction with and without reperfusion. J Clin Invest.1992.89(4):1060-1068.
    
    57 Whittaker P, Boughner DR and Kloner RA. Role of collagen in acute myocardial infarct expansion. Circulation.1991.84(5):2123-2134.
    
    58 Jugdutt BI. Left ventricular rupture threshold during the healing phase after myocardial infarction in the dog. Can J Physiol Pharmacol.1987.65(3):307-316.
    
    59 Jugdutt BI and Amy RW. Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J Am Coll Cardiol.1986.7(1):91-102.
    
    60 Jugdutt BI, Joljart MJ and Khan MI. Rate of collagen deposition during healing and ventricular remodeling after myocardial infarction in rat and dog models. Circulation. 1996.94(1):94-101.
    
    61 Covell JW. Factors influencing diastolic function. Possible role of the extracellular matrix. Circulation. 1990.81(2 Suppl):III155-158.
    
    62 Whittaker P, Boughner DR and Kloner RA. Analysis of healing after myocardial infarction using polarized light microscopy. Am J Pathol. 1989.134(4):879-893.
    
    63 Cleutjens JP, Verluyten MJ, Smiths JF, et al. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol.1995.147(2):325-338.
    
    64 Cleutjens JP and Creemers EE. Integration of concepts: cardiac extracellular matrix remodeling after myocardial infarction. J Card Fail.2002.8(6 Suppl):S344-348.
    
    65 Gabbiani G. Evolution and clinical implications of the myofibroblast concept. Cardiovasc Res.1998.38(3):545-548.
    
    66 Desmouliere A, Geinoz A, Gabbiani F, et al. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993.122(1): 103-111.
    
    67 Bishop JE and Laurent GJ. Collagen turnover and its regulation in the normal and hypertrophy ing heart. Eur Heart J. 1995.16 Suppl C(38-44.
    
    68 Carver W, Nagpal ML, Nachtigal M, et al. Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res.1991 .69(1):116-122.
    
    69 Eghbali M, Tomek R, Woods C, et al. Cardiac fibroblasts are predisposed to convert into myocyte phenotype: specific effect of transforming growth factor beta. Proc Natl Acad Sci US A.1991.88(3):795-799.
    
    70 Vracko R and Thorning D. Contractile cells in rat myocardial scar tissue. Lab Invest.1991.65(2):214-227.
    
    71 Sun Y and Weber KT. Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol.1996.28(5):851-858.
    
    72 Ben-Assayag E, Shenhar-Tsarfaty S, Bova I, et al. Triggered C-reactive protein (CRP) concentrations and the CRP gene -717A>G polymorphism in acute stroke or transient ischemic attack. Eur J Nenrol.2007.14(3)315-320.
    
    73 Penttinen RP, Kobayashi S and Bornstein P. Transforming growth factor beta increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability. Proc Natl Acad Sci U S A .1988.85(4):1105-1108.
    
    74 Visse R and Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res.2003.92(8):827-839.
    
    75 Etoh T, Joffs C, Deschamps AM, et al. Myocardial and interstitial matrix metalloproteinase activity after acute myocardial infarction in pigs. Am J Physiol Heart Circ Physiol .2001.281(3):H987-994.
    
    76 Romanic AM, Burns-Kurtis CL, Gout B, et al. Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life Sci.2001.68(7):799-814.
    
    77 Sun Y, Zhang JQ, Zhang J, et al. Cardiac remodeling by fibrous tissue after infarction in rats. J Lab Clin Med.2000.135(4):316-323.
    
    78 Cleutjens JP, Kandala JC, Guarda E, et al. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol.1995.27(6):1281-1292.
    
    79 Roten L, Nemoto S, Simsic J, et al. Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice. J Mol Cell Cardiol.2000.32(1):109-120.
    
    80 Rohde LE, Ducharme A, Arroyo LH, et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation.1999.99(23):3063-3070.
    
    81 Ducharme A, Frantz S, Aikawa M, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest.2000.106(1):55-62.
    
    82 Emanueli C and Madeddu P. Angiogenesis gene therapy to rescue ischaemic tissues: achievements and future directions. Br J Pharmacol.2001.133(7):951-958.
    
    83 Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science.1983.219(4587):983-985.
    
    84 Dvorak HF, Brown LF, Detmar M, et al. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol.1995.146(5):1029-1039.
    
    85 Ferrara N and Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun.1989.161(2):851-858.
    
    86 Connolly DT, Heuvelman DM, Nelson R, et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest.1989.84(5):1470-1478.
    
    87 Ferrara N, Houck K, Jakeman L, et al. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev.l992.13(1):18-32.
    
    88 Tuder RM, Flook BE and Voelkel NF. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest .1995.95(4):1798-1807.
    
    89 Lee SH, Wolf PL, Escudero R, et al. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med.2000.342(9):626-633.
    
    90 Li J, Brown LF, Hibberd MG, et al. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol. 1996.270(5 Pt 2):H1803-1811.
    
    91 Levy AP, Levy NS, Wegner S, et al. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem.1995.270(22):13333-13340.
    
    92 Burgess WH and Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem. 1989.58(575-606.
    
    93 Schaper W and Scholz D. Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol.2003.23(7):1143-1151.
    
    94 Gospodarowicz D and Cheng J. Heparin protects basic and acidic FGF from inactivation. J Cell Physiol. 1986.128(3):475-484.
    
    95 Gospodarowicz D. Expression and control of vascular endothelial cells: proliferation and differentiation by fibroblast growth factors. J Invest Dermatol.1989.93(2 Suppl):39S-47S.
    
    96 Spirito P, Fu YM, Yu ZX, et al. Immunohistochemical localization of basic and acidic fibroblast growth factors in the developing rat heart. Circulation.1991.84(1):322-332.
    
    97 Folkman J and Klagsbrun M. Angiogenic factors. Science.1987.235(4787):442-447.
    
    98 Pasumarthi KB, Kardami E and Cattini PA. High and low molecular weight fibroblast growth factor-2 increase proliferation of neonatal rat cardiac myocytes but have differential effects on inucleation and nuclear morphology. Evidence for both paracrine and intracrine actions of fibroblast growth factor-2. Circ Res.1996.78(1):126-136.
    
    99 Speir E, Tanner V, Gonzalez AM, et al. Acidic and basic fibroblast growth factors in adult rat heart myocytes. Localization, regulation in culture, and effects on DNA synthesis. Circ Res.l992.71(2):251-259.
    
    100 Bernotat-Danielowski S, Sharma HS, Schott RJ, et al. Generation and localisation of monoclonal antibodies against fibroblast growth factors in ischaemic collateralised porcine myocardium. Cardiovasc Res.l993.27(7):1220-1228.
    
    101 Maulik N. Angiogenic signal during cardiac repair. Mol Cell Biochem.2004.264(1-2):13-23.
    
    102 Heymans S, Luttun A, Nuyens D, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med. 1999.5(10);1135-1142.
    1. Zuloff-Shani, A., et al., Macrophage suspensions prepared from a blood unit for treatment of refractory human ulcers. Transfus Apher Sci, 2004. 30(2): p. 163-7.
    2. Danon, D., et al., Treatment of human ulcers by application of macrophages prepared from a blood unit. Exp Gerontol, 1997. 32(6): p. 633-41.
    3. Karnovsky, M.L., Metchnikoff in Messina: a century of studies on phagocytosis. N Engl J Med, 1981. 304(19): p. 1178-80.
    4. van Furth, R., et al., The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ, 1972. 46(6): p. 845-52.
    5. Naito, M. and K. Takahashi, The role of Kupffer cells in glucan-induced granuloma formation in the liver of mice depleted of blood monocytes by administration of strontium-89. Lab Invest, 1991. 64(5): p. 664-74.
    6. Yamada, M., M. Naito, and K. Takahashi, Kupffer cell proliferation and glucan-induced granuloma formation in mice depleted of blood monocytes by strontium-89. J Leukoc Biol, 1990. 47(3): p. 195-205.
    7. Fujiwara, N. and K. Kobayashi, Macrophages in inflammation. Curr Drug Targets Inflamm Allergy, 2005. 4(3): p. 281-6.
    8. Dipietro, L.A., et al., Modulation of macrophage recruitment into wounds by monocyte chemoattractant protein-1. Wound Repair Regen, 2001. 9(1): p. 28-33.
    9. Martin, P., Wound healing—aiming for perfect skin regeneration. Science, 1997. 276(5309): p. 75-81.
    10. Jedynak, M. and A. Siemiatkowski, [The role of monocytes/macrophages and their cytokines in the development of immunosuppression after severe injury]. Pol Merkur Lekarski, 2002. 13(75): p. 238-41.
    11. Portera, C.A., et al., Effect of macrophage stimulation on collagen biosynthesis in the healing wound Am Surg, 1997. 63(2): p. 125-31.
    12. Gillitzer, R. and M. Goebeler, Chemokines in cutaneous wound healing. J Leukoc Biol, 2001. 69(4): p. 513-21.
    13. O'Kane, S., Wound remodelling and scarring. J Wound Care, 2002. 11(8): p. 296-9.
    14. Frangogiannis, N.G., C.W. Smith, and M.L. Entman, The inflammatory response in myocardial infarction. Cardiovasc Res, 2002. 53(1): p. 31-47.
    15. Birdsall, H.H., et al., Complement CSa, TGF-beta 1, and MCP-1, in sequence, induce migration of monocytes into ischemic canine myocardium within the first one to five hours after reperfusion. Circulation, 1997. 95(3): p. 684-92.
    16. Kumar, A.G., et al., Induction of monocyte chemoattractant protein-1 in the small veins of the ischemic and reperfused canine myocardium. Circulation, 1997. 95(3): p. 693-700.
    17. Trial, J., et al., Fibronectin fragments modulate monocyte VLA-5 expression and monocyte migration. J Clin Invest, 1999. 104(4): p. 419-30.
    18. Frangogiannis, N.G., et al., Cytokines and the microcirculation in ischemia and reperfusion. J Mol Cell Cardiol, 1998. 30(12): p. 2567-76.
    19. Weihrauch, D., et al., Importance of monocytes/macrophages and flbroblasts for healing of micronecroses in porcine myocardium. Mol Cell Biochem, 1995. 147(1-2): p. 13-9.
    20. Trial, J., et al., Inflammation and ischemia: macrophages activated by fibronectin fragments enhance the survival of injured cardiac myocytes. Exp Biol Med (Maywood), 2004. 229(6): p. 538-45.
    21. Moldovan, N.I., et al., Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res, 2000. 87(5): p. 378-84.
    22. Dewald, O., et al., CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res, 2005. 96(8): p. 881-9.
    23. Rehman, J., et al., Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation, 2003. 107(8): p. 1164-9.
    24. Leor, J., et al., Ex vivo activated human macrophages improve healing, remodeling, and fimction of the infarcted heart. Circulation, 2006. 114(1 Suppl): p. I94-100.
    25. Arras, M., et al., Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest, 1998. 101(1): p. 40-50.
    26. Rapalino, O., et al., Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med, 1998. 4(7): p. 814-21.
    27. Orenstein, A., et al., Treatment of deep sternal wound infections post-open heart surgery by application of activated macrophage suspension. Wound Repair Regen, 2005. 13(3): p. 237-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700