用户名: 密码: 验证码:
WDM网络多播业务量疏导和保护算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Internet业务爆炸式增长和高性能光网络设备(如光交叉连接器OXC、光分插复用器OADM)的出现,使波分复用(WDM)技术成为下一代骨干网络的核心技术。通过WDM传输技术和波长路由选择在物理网络上构架光层,可以为高层(如IP层)提供大容量且结构可变的传输通道,这将是下一代骨干网络的核心传输方式。同时,光网络要为不同用户提供各种带宽粒度和可靠性的服务,因此,能够自动完成网络连接、具有独立控制面的智能光传输网应运而生。
     随着光网络的迅速普及,未来Internet骨干支撑的WDM光网络组网技术受到越来越多关注。由于光学技术的日益成熟,功能完善的各种光通信器件和设备也大量涌现,这使许多原来在业务交换层面完成的工作被更多的移植到光层。一个典型的例子是光网络多播技术,在分光器支持下可以实现光层多播路由交叉连接,WDM网状光网络中的单播路状路由也拓展为多播树状路由。多播连接是点对多点的连接请求,在光层构建光树比单播路由问题更加复杂。与IP层多播技术相比,光层多播设计具有一些特殊约束条件,如波长连续性约束、分光器件约束、光收发器约束、能量损伤约束等。基于通用多标记交换(GMPLS)作为控制平面技术的智能光网络,本文主要研究了WDM网状网中的多播业务量的疏导和保护设计问题,提出有效的启发式算法。
     WDM光网络中,每个波长的传输速率越来越高,例如OC-48、OC-192、OC-768对应的速率分别为2.5Gb/s、10Gb/s、40Gb/s,此时网络提供的速率(带宽)是粗粒度的。实际应用中,很多业务的请求速率远远低于一个波长的最高传输速率,如OC-1、OC-3、OC-12(对应速率为51.84Mb/s、155.52Mb/s、622.08Mb/s)。显然,若为每个低速业务请求提供一个专用波长,资源利用率低且不经济。同时由于网络中光纤波长数目和节点光收发器数目的限制,也不可能为每个低速业务请求建立端到端的独立通道连接。因此,需要研究网状WDM光网络中如何有效实现多播业务量疏导(Traffic Grooming)的问题。
     业务量疏导是将多个低速业务连接聚合起来用一个光通道传输,分为静态和动态两个方面。静态业务量疏导对给定业务连接矩阵进行疏导优化计算,主要应用于网络初期规划和周期较长的虚拓扑重配置设计。存实际运行网络中,业务连接请求动态到达和离开。本文主要研究WDM网状网中动态多播业务量的疏导问题。第二章针对网络节点不具有光域波长变换能力,且节点光收发器数目以及光纤波长数目受限的情况,研究多播业务量疏导问题。首先分析了具有多播分光和疏导能力的交叉连接结构(MGC-OXC)以及多播业务量疏导的约束和目标。然后提出几种动态业务疏导策略和基于光树的多播业务量疏导算法LTIG,为WDM网中动态到达的低速多播业务连接请求,进行实时疏导、路由和波长分配(GRWA)计算。
     在WDM网状网中分光器件稀疏配置下研究低速多播业务疏导需要考虑多种约束条件,如分光能力、疏导能力、波长数目、波长连续性、光收发器数目等等,实质是低速业务疏导与多播路由树构造的联合优化问题。在具有光域分光和电域疏导的混合网络中,各种节点共存,为统一考虑这些节点对疏导路由计算的影响,我们对节点进行模型抽象,然后设计一组代价对模型的疏导路由综合取舍。第三章提出了一种新的辅助疏导图模型,这种分层的辅助图可以描述多播节点的分光特性和疏导能力,包含光纤上波长通道信息、节点处空闲可调协光收发器信息、以及每个波长上带宽利用情况,并可以根据网络资源使用情况调整模型中各种边代价值。基于辅助疏导图模型提出一种新的动态多播业务量疏导算法EMGA。仿真表明EMGA算法可以有效利用WDM各种网络资源为低速动态多播业务请求进行疏导计算,具有较低的业务阻塞概率。
     WDM技术提高链路传输容量的同时,也使网络抗毁问题日渐突出。由于每个波长传输容量可以高达吉比特/秒,光网络中承载了大量业务,任何网络故障(如链路断裂、节点故障)会导致巨大损失。因此,需要在WDM光网络中引入有效的生存性机制。光网络生存性机制主要包括保护(Protection)和恢复(Restoration)两大类。保护是指事先为请求业务预留备用资源,当故障发生时,该业务可以由预留的保护资源承载。恢复是指并不事先为请求业务预留备用保护资源,当故障发生后,动态地寻找当前网络中的冗余资源来承载受故障影响的网络业务。由于保护策略具有较短的故障恢复时间,满足实时业务的需求,因此很多研究是基于保护策略的。本文主要研究了网状WDM光网络中动态多播业务的抗毁保护设计问题。
     由于WDM光网络的资源有限,要求每个工作树与保护树完全无重叠地使用资源是不现实的。因此结合考虑树状路由的特点实现多播树的分段保护。为提高光网络抗毁性能,IETF引入共享风险链路组(SRLG)概念,以描述实际网络中光纤链路由于共享相同物理设备(如管道、光缆)而具有的故障相关性。本文第四章研究网状WDM光网络中基于SRLG约束的多播业务保护问题,提出动态多播共享段保护算法DSSPM。该算法为动态多播业务请求寻找最小代价工作光树,并依据工作光树上多播分光节点划分工作段,为每个工作段提供失效风险分离的保护段。根据当前网络状态合理设置链路代价,考虑网络负载均衡度和资源共享度。仿真表明DSSPM算法在WDM网络单SRLG故障下,为网络多播业务连接提供有效保护,具有较好的资源利用率和阻塞概率性能。
     随着网络规模的不断扩大和业务量的不断增加,发生双链路甚至多链路失效的可能性增加,失效导致的破坏性影响也增大。针对WDM光网络中双链路失效下单播业务保护的研究中,完全保护设计为每个业务同时分配一条工作通路和两条链路分离的保护通路,所需备份资源通常是工作资源的2-3倍。很多用户可能无法接受这种高消费的保护措施,因此可以考虑不事先预留多条保护路径的备用资源,而是根据网络业务连接和失效情况进行局部资源重配置。第五章研究WDM网状网中的多播业务共享保护和局部资源重配置方案。分析了失效链路导致的网络不稳定性和多播业务连接的未保护情况,在此基础上提出一种新的具有资源重配置功能的动态多播业务共享保护算法SSPR。算法为网络多播业务提供工作光树和分段共享保护,并在发生链路失效,业务进行保护切换的同时,完成局部资源重配置。仿真表明SSPR算法可以有效降低网络中未被保护的多播业务连接数,在相继多链路失效情况下合理分配备用资源,提高网络抗毁性能。
     WDM光网络中的多播保护设计比单播保护设计更具挑战性。一方面,网络链路失效对多播业务连接产生的影响比单播业务连接更大,一条失效链路下游的多个目的终端会同时接收业务失败;另一方面,网络支持多播业务保护比单播业务保护需要预留更多的备用资源。为了降低动态多播业务阻塞概率,需要考虑如何使网络配置尽量少的备用资源来保护尽量多的业务连接。
     多播树的一个明显特点是树上各链路在发生失效时对多播业务流的影响是不一样的。定性地看,越靠近树根的链路越重要,失效后被中断的业务流也越多。因此,可以针对多播树上链路的重要性进行有区分的保护设计,即在分配网络中有限的波长资源时优先考虑重要链路,或者根据实际用户的特殊需求来预留保护资源。第六章研究了网状WDM光网络中多播业务的部分保护问题,针对网络单链路失效,提出一种基于多播树关键链路的部分保护算法CPPM。该算法对承载多播业务连接的工作光树中连接多个目的节点的链路进行保护,旨在合理配置备用资源,降低多播业务阻塞概率,存网络资源使用和业务保护能力之间进行折中。当发生网络单链路故障,任意工作多播树上最多仅有一个目的节点接收业务失败。仿真表明CPPM算法具有一定的多播业务保护能力,通过减少保护波长资源的分配,有效降低了多播业务的阻塞概率。
     论文第七章介绍了验证和评估WDM网状光网络中多播业务量疏导和保护算法的仿真平台,包括仿真运行环境和软件主体,给出了主要模块设计、重要数据结构及部分伪码。最后对论文工作进行了总结,突出研究重点,并对WDM光网络中多播业务疏导和保护方面有待深入研究的问题进行了归纳和展望。
With the explosive increase in Internet traffic and the emergence of high performance optical network devices, such as OXC and OADM, wavelength-division-multiplexing (WDM) technology will become the core of the next generation backbone networks. Constructing the optical layer over the physical networks through the technique of WDM and wavelength routing can provide huge capacity and re-configurable connections for IP layer, whith will become an important transmission method in the future backbone networks. At the same time, optical networks are required to provide services of high-quality and multi-granularity bandwidth to different users. So it is urgent for optical networks to dynamically set up and tear down connectins on demand. The intelligent optical network (ION) with independent control plane is introduced.
     Technologies of organizing WDM networks have been attracting more and more attention. The mature of optics technical skills and optical equipments drives more and more work to be done on the optical layer, which usually is dealt with on the higher layers. One example is the optical multicast, which realizes one-to-many routing and cross-connection by using light splitters on the optical layer. In WDM networks, the path route for unicast connection is extended to the tree route for multicast connection. Contrasting to the IP multicast, the optical multicast has some special constraints, e.g., wavelength continuity, light-splitter capability, transceiver number, power loss, and so on. In this dissertation, based on the intelligent optical network with its control plane deploying generalized multi-protocol label switching (GMPLS), the problems of traffic grooming and survivability in WDM mesh networks for the multicast traffic are studied.
     In WDM optical networks, each wavelength can be operated at very high speed, e.g., OC-48, OC-192 and OC-768's corresponding rates are 2.5Gb/s, 10Gb/s and 40Gb/s, respectively, and the bandwidth provided is coarse granularity. However, in operational networks, there is a huge bandwidth gap between the capacity of a wavelength and the required bandwidth of low-rate traffic streams, e.g., OC-1, OC-3 and OC-12 (their corresponding rates are 51.84Mb/s, 155.52Mb/s and 622.08Mbs/s, respectively). To accommodate such kind of low-rate traffic stream with one lightpath will lead to inefficient resource utilization. And it may not possible to establish end-to-end wavelength channels for all the low-rate connections due to the limitation of wavelengths per fiber and transceivers per node. So it is necessary to investigate the traffic grooming problem in WDM networks.
     Traffic grooming is the procedure of multiplexing and switching low-speed traffic streams onto high-capacity bandwidth trunks in order to improve bandwidth utilization, optimize network throughput, and minimize network cost. Static traffic grooming can be used for the layout design of WDM grooming networks, or be used for the redesign of network virtual topoloty for a long period. In operational networks, multicast connection requests dynamically arrive and leave. Chapter2 researches the dynamic traffic grooming problem for multicast sessions in WDM mesh networks with the constraints of wavelength continuity, limited wavelengths and transceivers in the network. The node architecture of the multicast and grooming capable cross-connection (MGC-OXC) is presented. The grooming object is analyzed and four multicast groming policies are proposed. We propose a light-tree integrated grooming (LTIG) algorithm to realize multicast traffic grooming in dynamic scenario.
     Grooming low-rate multicast streams in the sparse-splitting WDM mesh network needs to consider several constraints (e.g. lighting splitting, gromging capability, wavelength number, wavelength conversion, tunable transceiver number and so on), which is a combination optimal problem of multicast routing and low-rate stream grooming. In grooming networks, a node with both the optical splitting and cross-connection architecture and the electronic grooming architecture should be abstracted and described correctly. In Chapter3, a novel auxiliary grooming graph (AGG) is proposed. Through the layered grooming graph model, the multicast light-splitting character, grooming capability and current network resource can be provided. A new efficient multicast traffic grooming algorithm (EMGA) based on the auxiliary graph is proposed, which realizes multicast routing and wavelength assignment for low-speed connection requests in WDM network with sparse-splitting capability. Simulation results show that EMGA has lower traffic blocking probability and good network resource utilization. Since each wavelength channel has the transmission rate over several gigabits per second, the failures of fiber links or nodes may lead a lot of services to be blocked. Therefore, the survivability has emerged as one of important issues in the design of WDM optical networks. The strategy of survivability mainly includes protection and restoration. In protection, the backup resources will be pre-assigned to against the future unknown failures. In restoration, no backup resource is pre-assigned. Only after a failure occurs, the backup resources would be assigned dynamically with the redundant resources in current network. The protection has shorter failures recovery time than the restoration. This dissertation investigates the protection design for multicast sessions in WDM mesh networks, and proposes efficient heuristic algorithms.
     The concept of shared-risk link groups (SRLG) is introduced by IETF to make networks more robust. In actual networks, different fiber links have the relationship of risks if they traverse the same physical resources (e.g. conduit, cable). Chapter4 investigates the multicast protection problem under the SRLG constraints and proposes an algorithm called dynamic segment shared protection for multicast traffic (DSSPM). The DSSPM adjusts link-cost according to the current network resource state and establish a primary light-tree as well as conrresponding SRLG-disjoint backup segments for a dependable multicast connection request. A backup segment can efficiently share the wavelength capacity of its working tree and the common resources of other backup segments based on SRLG-disjoint constraints. Simulations show that DSSPM not only can protect the multicast sessions against a single-SRLG breakdown, but also can make better use of wavelength resources and lower traffic blocking probability in the network.
     As the size and complexity of mesh optical networks continue to grow, the multiple failures become increasing probable. Some researches begin to investigate the multiple-link failures problem for unicast traffic. Two link-disjoint backup paths or sub-paths can be pre-computed for each connection and provide complete protection when dual-link failures occur in the network. But the backup resources are occupied more than two times of the primary resources, which may not be afforded for many users. Chapter5 focuses on the shared protection and wavelength capacity reservation for multicast traffic under dual-link failure consideration in WDM optical networks. The network's vulnerable situation and unprotected segments due to link failure are analyzed, and an algorithm called shared segment protection with reprovisioning (SSPR) is proposed. The SSPR can lower the number of unprotected multicast connections, and with the efficient allocation of backup resources it greatly improves mulricast traffic restorability.
     In the survivability design of WDM optical networks, multicast protection is more complicated and resource consuming than unicast protection. How to reserve less backup resource to protect more multicast sessions in the network and lower the traffic blocking probability is becoming an important research issue.
     One characteristic of multicast tree is that a failure tree-link may have different effects to the traffic flows carried on the tree. By observing the topoloty of a light-tree, the closer a link is to the tree root, the more important the link is; because more terminals would be disrupted from receiving information from the source due to the link failure. It's important to consider more cost-effectively protecting multicast tree according to differential needs, and reserving backup resource for the critical links under the limited network resources. Chaper6 investigates the partial protection problem for multicast sessions in WDM meshed networks. The aims are to lower traffic blocking probability and achieve tradeoff between protection ability and wavelength resource utilization. A new algorithm called critical-link based partial protection for multicast (CPPM) is proposed. The tree links which carry traffic for multiple destination nodes will be the protection candidates and only one destination node will not receive the data when a single link fails in the network. Simulations show that CPPM can provide certain protection ability and lower multicast traffic blocking probability.
     To verify and evaluate the proposed algorithms in this dissertation, simulation platform and software is developed. Based on the platform, the performances of all proposed algorithms are evaluated. The platform, model structure and some pseudo codes are given in Chapter7. At last the dissertation is concluded and some research expectatios on multicast traffic groomging and protection design are proposed.
引文
[1] B.Mukherjee. Optical communication networks. New York, Mc-Graw-Hill, 1997.
    [2] 李乐民.宽带骨干通信网的研究与发展.电子科技大学学术论文集,PP.10-15,1999.
    [3] P. Tomsu, C. Schmutzer. Next generation optical networks: the convergence of IP intelligence and optical technologies, version 1. Prentice Hall PTR, 2001.
    [4] C.R.R.Murthy, M.Gurusamy. WDM optical networks: concepts, design, and algorithms. Prentice Hall PTR, 2002.
    [5] 韦乐平.光网络的发展、演进和面临的挑战.中兴通讯技术,vol.8,pp.1-5,2002.
    [6] 顾婉仪,张杰.全光通信网.北京邮电大学出版社,2001
    [7] D.Cavendish. Evolution of optical transport technologies: from SONET/SDH to WDM. IEEE Communications Magazine, vol.38, pp. 164-172, 2000.
    [8] 徐宁榕,周春燕.WDM技术与应用.人民邮电出版社,2002.
    [9] 吴建学,李耀文.自动交换光网络.北京邮电大学出版社,2003.
    [10] ITU-T G.872, Architecture of optical transport networks (AOTN).
    [11] 徐荣,龚倩.高速宽带光互联网技术.人民邮电出版社,2002.
    [12] S.Sengupta, R.Ramamurthy. From network design to dynamic provisioning and restoration in optical corss-connect mesh networks: an architectural and algorithm overview, IEEE Network, vol. 15, pp.46-54, 2001.
    [13] 龚倩,徐荣,张民,等.光网络的组网与优化设计.北京邮电大学出版社,2002.
    [14] ITU-T G.807/Y.1302, Requirements for the automatic switched transport network (ASTN).
    [15] ITU-T G.8080/Y. 1304, Architecture for the automatic switched optical network (ASON).
    [16] ITU-T G.7713.1/Y.1704.1, Distributed call and connection (DCM) management based on PNNI.
    [17] ITU-T G.7713.2/Y.1704.2, DCM signaling mechanism using GMPLS RSVP-TE.
    [18] ITU-T G.7713.3/Y.1704.3, DCM signaling using GMPLS CR-LDP.
    [19] ITU-T G.7714/Y. 1705, Generalized automatic discovery techniques.
    [20] ITU-T G.7715/Y.1706, Architecture and requirements for routing in the automatically switched optical network.
    [21] E.Mannie. Generalized Multi-Protocol Label Switching (GMPLS) Architecture.
    [22] A.Banerjee, L.Drake, L.Lang. Generalized multi-protocol label switching: an overview of signaling enhancements and recovery techniques. IEEE Communications Magazine, vol.39, pp.144-151, 2001.
    [23] A.Banerjee, J.Drake, J.P.Lang. Generalized multi-protocol label switching: an overview of routing and management enhancements. IEEE Communications Magazine, vol.39, pp. 144-150, 2001.
    [24] E.Rosen, A.Viswanathan, R.Callon. Multi-protocol Label Switching Architecture, RFC3031, 2001.
    [25] D.O.Awduche, Y.Rekhter, J.Drake. Multi-protocol lambda switching: combining MPLS traffic engineering control with optical cross-connects.
    [26] D.Basak, D.O.Awduche, J.Drake. Multi-protocol Lambda Switching: Issues in Combining MPLS Traffic Engineering Control with Optical Cross-connects.
    [27] L.Berger. Generalized Multi-Protocol Label Switching (MPLS) signaling functional description, FC3471, 2003.
    [28] L.Berger. Generalized Multi-protocol label switching signaling resource reservation protocol traffic engineering (RSVP-TE) extensions. RFC3473. 2003.
    [29] P.A.Smith, L.Berger. Generalized Multi-protocol label switching signaling constraint based routed label distribution protocol (CR-LDP) extensions. RFC3472. 2003.
    [30] D.Papadimitriou. Generalized MPLS signaling extensions for G.709. Optical Transport Networks Control.
    [31] T.D.Nadeau, C.Srinivasan, A.Farrel. Generalized multi-protocol label switching traffic engineering management information base.
    
    [32] K.Kompella, Y.Rekhter. OSPF extensions in support of generalized MPLS.
    [33] K.Kompella, Y.Rekhter, D.O.Awduche. Extensions to IS-IS/OSPF and RSVP in support of MPLS.
    
    [34] J.Lang. Link management protocol (LMP).
    [35] A.Fredette, J.Lang. Link management protocol for dense wavelength division multiplexing (DWDM) optical line systems.
    [36] User network interface (UNI) 1.0 signaling specification. OIF Draft Implementation Agreement, 2001.
    [37] C.Wright. Experiences with optical internetworking forum (OIF) user to network interface (UNI) interoperability trials, Proceedings of Optical Fiber Communication Conference (OFC'02) and Exhibit, 2002.
    [38] S.Kano, T.Soumiya, M.Miyabe. A study of GMPLS control architecture in photonic IP networks. Proceedings of High Performance Switching and Routing (HPSR'02) Merging Optical and IP Technologies, 2002.
    [39] P.Iovanna, R.Sabella, M.Settembre. A traffic engineering system for multilayer networks based on the GMPLS paradigm. IEEE Network, vol.17, pp.28-37, 2003.
    [40] A.Ding, GS.Poo. A survey of optical multicast over WDM networks. Computer Communications, vol.26, pp. 193-200, 2003.
    [41] D.Thaker, GN.Rouskas. Multi-destination communication in broadcast WDM networks: a survey. Optical Networks Magazine, vol.3, pp.34-44, 2002.
    [42] L.H.Sahasrabuddhe, B.Mukherjee. Light-trees: optical multicasting for improved performance in wavelength routed networks. IEEE Communications Magazine, vol.37, pp.67-73, 1999.
    [43] W.S.Hu, Q.J.Zeng. Multicasting optical cross connects employing splitter-and-delivery switch. IEEE Photonics Technology Letters, vol.10, pp.970-972, 1998.
    [44] M.Ali, J.S.Deogun. Power-efficient design of multicast wavelength-routed networks. IEEE Journal on Selected Areas in Communications, vol. 18, pp. 1852-1862, 2000.
    [45] M.Ali, J.S.Deogun. Cost-effective implementation of multicasting in wavelength-routed networks. Journal of Lightwave Technology, vol.18, pp. 1628-1638,2000.
    [46] R.L.Hadas. Efficient collective communication in WDM networks with a power budget. Proceedings of the Ninth International Conference on Computer Communications and Networks, 2000.
    [47] X.H.Jia, D.Z.Du, X.D.Hu, M.K.Lee, J.Gu. Optimization of wavelength assignment for QoS multicast in WDM networks. IEEE Transactions on Communications, vol. 49, pp.341-350, 2001.
    [48] GSahin, M.Azizoglu. Multicast routing and wavelength assignment in wide-area networks. Proceedings of SPIE, vol. 3531, pp. 196-208, 1998.
    [49] S.Ramesh, GN.Rouskas, GPerros. Computing call blocking probabilities in multi-class wavelength routing networks with multicast traffic. IEEE Journal on Selected Areas in Communications, vol.20, pp.89-96, 2002.
    [50] A.E.Kamal, A.K.A.Yatama. Blocking probabilities in circuit-switched wavelength division multiplexing networks under multicast service. Performance Evaluation, vol.47, pp.43-71, 2002.
    [51] R.L.Hadas, R.Melhem. Multicast routing and wavelength assignment in multi-hop optical networks. IEEE Transactions on Networking, vol.10, pp.621-629, 2002.
    [52] X.Zhang, J.Y.Wei, C.Qiao. Constrained multicast routing in WDM networks with sparse light splitting. Journal of Lightwave Technology, vol.18, pp. 1917-1927, 2000.
    [53] W.Y.Tseng, S.Y.Kuo. All-optical multicast on wavelength-routed WDM networks with partial replication. Proceedings of the fifteenth International Conference on Information Networking, 2001.
    [54] S.Yan, J.S.Deogun, M.Ali. Routing in sparse splitting optical networks with multicast traffic. Computer Networks, vol.41, pp.89-113, 2003.
    [55] A.Zsigri, A.Guitton, M.Molnar. Construction of light-trees for WDM multicasting under splitting capability constraints. Proceedings of the tenth International Conference on Telecommunications, 2003.
    [56] GN.Rouskas. Light-tree routing under optical layer power budget constrains. Proceedings of the seventeenth IEEE Computer Communications, 2002.
    [57] K.D.Wu, J.C.Wu, C.S.Yang. Multicast routing with power consideration in sparse splitting WDM networks. Proceedings of IEEE International Conference on Communications (ICC'01),2001.
    [58] GN.Rouskas. Optical layer multicast: rationale, building blocking, and challenges. IEEE Network, vol.17, pp.60-65, 2003.
    
    [59] T.Cinkler. Traffic and lambda grooming. IEEE Network, vol. 17, pp. 16-21, 2003.
    [60] R.S.Barr, R.A.Patterson. Grooming telecommunication networks. Optical Networks Magazine, vol.2, pp.20-23, 2001.
    [61] K.Zhu, B.Mukherjee. A review of traffic grooming in WDM optical networks: Architectures and challenges. Optical Networks Magazine, vol.4, pp.55-64, 2003.
    [62] E.Modiano. Traffic grooming in WDM networks. IEEE Communications Magazine, vol.39, pp. 124-129, 2001.
    [63] K.Zhu, B.Mukherjee. Traffic grooming in an optical WDM mesh network. IEEE Journal on Selected Areas in Communications, vol.20, pp. 122-133, 2002.
    [64] R.Dutta, GN.Rouskas. A survey of virtual topology design algorithms for wavelength routed optical networks. Optical Networks Magazine, vol.1, pp.73-89, 2000.
    [65] S.Thiagarajan, A. K. Somani. Traffic grooming for survivable WDM mesh networks. Optical Networks Magazine, vol., pp.88-98, 2002.
    [66] P.J.Wan, GCalinescu, O.Frieder. Grooming of arbitrary traffic in SONET/WDM BLSRs. IEEE Journal on Selected Areas in Communications, vol. 18, pp. 1995-2003, 2000.
    [67] A.L.Chiu, E.H.Modiano. Traffic grooming algorithms for reducing electronic multiplexing costs in WDM ring networks. Journal of Lightwave Technology, vol.18, pp.2-12, 2000.
    [68] R.Dutta, GN.Rouskas. On optimal traffic grooming in WDM rings. IEEE Journal on Selected Areas in Communications, vol.20, pp.110-121, 2002.
    [69] V.R.C.Konda. Algorithm for traffic grooming in optical networks to minimize the number of transceivers. Proceedings of High Performance Switching and Routing (HPSR'01) Conference, 2001.
    [70] R.Srinivasan, A.K.Somani. Request-specific routing in WDM grooming networks. Proceedings of IEEE International Conference on Communications (ICC'02), 2002.
    [71] R.Srinivasan, A.K.Somani. Dynamic routing in WDM grooming networks. Photonic Network Communications, vol.5, pp.123-135, 2003.
    [72] K.Zhu, B.Mukherjee. On-line approaches for provisioning connections of different bandwidth granularities in WDM mesh networks, Proceedings of Optical Fiber Communication Conference (OFC'02), 2002.
    [73] H.Zhu, H.Zang, K.Zhu, B.Mukherjee. A novel generic graph model for traffic grooming in heterogeneous WDM mesh networks. IEEE/ACM Transactions on Networking, vol.11, pp.285-299, 2003.
    [74] K.Zhu, H.Zhu, B.Mukherjee. Traffic engineering in multi-granularity heterogeneous optical WDM mesh networks through dynamic traffic grooming. IEEE Network, vol.17, pp.8-15, 2003.
    [75] X.Zhang, C.Qiao. An effective and comprehensive approach for traffic grooming and wavelength assignment in SONET/WDM rings. IEEE/ACM Transactions on Networking, vol.8, pp.608-617, 2000.
    [76] J.Wang, W.Cho, V.R.Vemuri. Improved approaches for cost-effective traffic grooming in WDM ring networks: ILP formulations and single-hop and multi-hop connections. Journal of Lightwave Technology, vol.19, pp.1645-1653, 2001.
    [77] J.Wang, B.Mukherjee. Interconnected WDM ring networks: strategies for interconnection and traffic rooming. Optical Networks Magazine, vol.3, pp. 10-20, 2002.
    [78] O.Gerstel, R.Ramaswami, G.H.Sasaki. Cost-effective traffic grooming in WDM rings. IEEE/ACM Transactions on Networking, vol.8, pp.618-630, 2000.
    [79] M.Brunato, R.Battiti. A Multistart Randomized Greedy Algorithm for Traffic Grooming on Mesh Logical Topologies, Proceedings of the Sixth Working Conference on Optical Network Design and Modelling, Torino, Italy, 2002.
    [80] S.Thiagarajan, A.K.Somani. Capacity fairness of WDM networks with grooming capabilities. Optical Networks Magazine, vol.2, pp.24-32, 2001.
    [81] R.Srinivasan, A.K.Somani. A generalized framework for analyzing time-space switched optical networks. IEEE Journal on Selected Areas in Communications, vol.20, pp.202-215, 2002.
    [82] J.L.A.Cox, J.R.Sanchez. Cost savings from optimized packing and grooming of optical circuits: mesh versus ring comparisons. Optical Networks Magazine, vol.2, pp.72-90,2001.
    [83] A.Lardies, R.Gupta, R.A.Patterson. Traffic grooming in a multilayer network. Optical Networks Magazine, vol.2, pp.91-99, 2001.
    
    [84] H.Zhu, K.Zhu, H.Zang, B.Mukherjee. Cost-effective WDM backbone network design with OXCs of different bandwidth granularities. IEEE Journal on Selected Areas in Communications, vol.21, pp. 1452-1466, 2003.
    [85] C.Ou, K.Zhu, H.Zang, B.Mukherjee. Traffic grooming for survivable WDM networks-shared protection. IEEE Journal on Selected Areas in Communications, vol.21, pp. 1367-1383, 2003.
    [86] S.Sengupta, R.Ramamurthy. From network design to dynamic provisioning and restoration in optical cross-connect mesh networks: an architectural and algorithmic overview. IEEE Network, vol.15, pp.46-54, 2001.
    [87] S.Sengupta, V.Kumar, D.Saha. Switched optical backbone for cost-effective scalable core IP networks. IEEE Communications Magazine, vol.41, pp.60-70, 2003.
    [88] J.Strand, A.L.Chiu, R.Tkach. Issues for routing in the optical layer. IEEE Communications Magazine, vol.39, pp.81-87, 2001.
    [89] B.T.Doshi, S.Dravida, P.Harshavardhana. Optical network design and restoration. Bell Labs Technical Journal, vol.4, pp.58-84, 1999.
    [90] P. Demeester, et al. Resilience in multi-layer network. IEEE Communications Magazine, vol.37, pp.70-75, 1999.
    [91] H.Kerivin, A.R.Mahjoub. Design of survivable networks: A survey. IEEE Networks, vol.46, pp. 1-21,2005.
    [92] S.Tak, E.K.Park. Modeling and performance study of restoration framework in WDM optical networks. Computer Networks, vol.49, pp.217-242, 2005.
    
    [93] 王烨,李乐民,王晟.网状WDM网络的抗毁设计. 通信学报,vol.22, pp.22-29,2001.
    [94] Y.Wang, L.Li, S.Wang. Design protection for WDM optical networks with considering load balancing and capacity constraints of physical links. Proceedings of Asia Pacific Communication Conference (APCC'00), Seoul, Korea, 2000.
    [95] S. Ramamurthy, L. Sahasrabuddhe, B. Mukherjee. Survivable WDM mesh networks. IEEE/OSA Journal of Lightwave Technology, vol.21, pp.870-883, 2003.
    [96] H.S.Choi, S.Subramaniam, H.A.Choi. On double-link failure recovery in WDM optical networks. In Proceedings of IEEE INFOCOM'02, vol.2, pp.808 -816, 2002.
    [97] H.S.Choi, S.Subramaniam, H.A.Choi. Loopback recovery from double-link failures in optical mesh networks. IEEE/ACM Transactions on Networking, vol. 12, pp. 1119-1130, 2004.
    [98] B.GJozsa, D.Orincsay, A.Kern. Surviving multiple network failures using shared backup path protection. Proceedings of IEEE ISCC'03, Kemer-Antalya, Turkey, pp. 1333-1340, 2003.
    [99] W.He, A.KSomani. Path-based protection for surviving double-link failures in mesh-restorable optical networks. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM'03), Hongkong, China, vol.5, pp.2558-2563, 2003.
    [100] W.He, M.Sridharan, A.K.Somani. Capacity optimization for surviving double-link failures in mesh-restorable optical networks. Photonic Network Communications, vol.9, pp.99-111, 2005.
    [101] D.Papadimitriou, F.Poppe, J.Joneset. Inference of shared risk link groups. IETF draft many inference srlg-00.txt, 2001.
    [102] 温海波,王晟,李乐民.一种不共享风险的双路径选路算法.电子与信息学报,vol.25,pp.824-830,2003.
    [103] H.Wen, L.Li, S.Wang. A routing algorithm for finding low-cost pair of no-shared-risk paths. Proceedings of the sixth World Multiconference on Systematics, Cyberntics and Informatics (SCI'02), Orlando, USA, pp.430-434, 2002.
    [104] J.W.Suurballe, R.E.Tarjan. A quick method for finding shortest pairs of disjoint paths. IEEE Networks, vol. 14, pp.325-336, 1984.
    [105] D.Dunn, W.Grover, M.Gregor. Comparison of k-shortest paths and maximum flow routing for network facility restoration. IEEE Journal on Selected Areas in Communications, vol.12, pp.88-99, 1994.
    [106] J.Yen. Finding the k shortest loopless paths in a network. Management Science, vol.17, pp.712-716, 1971.
    [107] D.M.Topkis. A k shortest path algorithm for adaptive routing in communications networks. IEEE Transanctions on Communicaitons, vol.36, pp.855-859, 1988.
    [108] L.Shen, X.Yang, B.Ramamurthy. Shared risk link group (SRLG)-diverse path provisioning under hybrid service level agreements in wavelength routed optical mesh networks. IEEE/ACM Transactions on Networking, vol. 13, pp.918-931, 2005.
    [109] D.H.Xu, Y.Z.Xiong, C.M.Qiao. Trap avoidance and protection schemes in networks with shared risk link groups. Journal of Lightwave Technology, vol.21, pp.2683-2693, 2003.
    [110] L.Guo, H.Yu, L.Li. A new shared path protection algorithm under shared risk link group constraints for survivable WDM mesh networks. Optics Communications, vol.246, pp.285-295, 2005.
    [111] 温海波,李乐民,虞红芳,王晟.支持不同可靠性要求的WDM网状网业务量疏导算法.通信学报,vol.25,PP.1-9,2004.
    [112] W.Yao, B.Ramamurthy. A link bundled auxiliary graph model for constrained dynamic traffic grooming in WDM mesh networks. IEEE Journal on Selected Areas in Communications, vol.23, pp. 1542-1555, 2005.
    [113] X.Huang, F. Farahmand, J.P.Jue. Efficient online traffic grooming algorithms in WDM mesh networks with drop-and-continue node architecture. Proceedings of the First International Conference on Broadband Networks (BroadNets'04), 2004.
    [114] G.Huiban, S.Perennes, M.Syska. Traffic grooming in WDM networks with multi-layer switches. Proceedings of IEEE International Communications Conference (ICC'02) 2002.
    [115] R.Srinivasan, A.K.Somani. Analysis of multi-rate traffic in WDM grooming networks. Proceedings of the Eleventh International Conference of Computer Communications and Networks, 2002.
    [116] R.Lingampalli, P.Vengalam. Effect of wavelength and waveband grooming on all-optical networks with single layer photonic switching. Proceedings of Optical Fiber Communication Conference (OFC'02), pp.501-502, 2002.
    [117] R.Dutta, GN.Rouskas. Traffic grooming in WDM networks: past and future. IEEE Network, vol.16, pp.46-56, 2002.
    [118] D.Buchfuhrer, T.Carnes, B.Tagiku, E.Celis. Traffic grooming for single-source multicast communication in WDM rings. Proceedings of IEEE International Conference on Communications (ICC'05), vol.3, pp. 1613-1619, 2005.
    [119] N.K.Singhal, B.Mukherjee. Architectures and algorithms for multicasting in optical WDM mesh networks using opaque and transparent optical cross-connects. Proceedings of Optical Fiber Communication Conference (OFC'01), Anaheim, USA, 2001.
    [120] X.Huang, F.Farahmand, J.P.Jue. An algorithm for traffic grooming in WDM mesh networks with dynamic changing light-trees. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM'04), pp. 1813-1817, 2004.
    [121] N.Singhal, C.Ou, B.Mukerjee. Shared protection for multicast sessions in meshed WDM networks. Proceedings of Optical Fiber Communication Conference (OFC'05), 2005.
    [122] T.Rahman, G.Eilinas. Protection of multicast sessions in WDM mesh optical networks. Proceedings of Optical Fiber Communication Conference (OFC'05), vol.2, pp.6-11, 2005.
    [123] J.Li, H.Zhang, B.Zhou, Y.Guo. A novel fast multicast algorithm with enhanced survivability in WDM optical networks. Photonic Network Communications, vol.8, pp.223-232, 2004.
    [124] J.Wei, W.Sun, Y.Jin, Y.Zhu. Multicast protection with differential leaf availability requirements in WDM mesh networks. Proceedings of SPIE, APOC'05, vol.6022, 2005.
    [125] A.Khalil, A.Hadjiantonis, GEilinas. M.Ali. Pre-planned multicast protection approaches in WDM mesh networks. Proceedings of ECOC'05, vol.1, 2005.
    [126] J.He, H.GChan, D.H.K.Tsang. Multicasting in WDM networks. IEEE Communication Surveys, vol.1, pp.2-20, 2002.
    [127] A.E.Kamal, R.UI-Mustafa. Multicast traffic grooming in WDM networks. Proceedings of SPIE Opticomm'03, Dallas, USA, 2003.
    [128] A.R.B.Billah, B.Wang, A.A.S.Awwal. Multicast traffic grooming in WDM optical mesh networks. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM'03), San Francisco, USA, vol.5, pp.2755-2760, 2003.
    [129] N.K.Singhal, L.H.Sahasrabuddhe, B.Mukerjee. Optimal multicasting of multiple light-trees of different bandwidth granularities in a WDM mesh network with sparse splitting capabilities. IEEE/ACM Transactions on Networking, vol. 14, pp. 1104-1117, 2006.
    [130] X.Huang, F.Farahmand, T.Zhang, J.P.Jue. Dynamic multicast traffic grooming in WDM networks with reconfigurable light-trees. Optical Society of America, 2004. Http://www.utdallas.edu/~ffarid/published/dynamic_multicast.pdf.
    
    [131] A.Khalil, A.Hadjiantonis, GEllinas. M.Ali. Sequential and hybrid grooming approaches for multicast traffic in WDM Networks. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM'04), vol.3, pp. 1808-1812, 2004.
    [132] H.Takahashi, A.Matsuyama. An approximate solution for the Steiner problem in graphs. Math Japonica, vol.24, pp.573-577, 1980.
    [133] Y.R.Yoon, T.J.Lee, M.Y.Chung, H.Choo. Traffic groomed multicasting in sparse splitting WDM backbone networks. Proceedings of ICCSA'06, pp.524-544, 2006.
    [134] GV.Chowdhary, C.S.R.Murthy. Dynamic traffic engineering in WDM groomed mesh networks. Proceedings of the First International Conference on Broadband Networks (BroadNets'04), 2004.
    [135] GV.Chowdhary, C.S.R.Murthy. Grooming of multicast sessions in WDM mesh networks. Proceedings of the First International Conference on Broadband Networks (BroadNets'04), 2004.
    [136] A.Khalil, A.Hadjiantonis, C.M.Assi, A.Shami. Dynamic provisioning of low-speed unicast/multicast traffic demands in mesh-based WDM optical networks. Journal of Lightwave Technology, vol.24, pp.681-693, 2006.
    [137] R.UI-Mustafa, A.E.Kamal. Design and provisioning of WDM networks with multicast traffic grooming. IEEE Journal on Selected Areas in Communicasts, vol.24, pp.37-53, 2006.
    [138] X.Huang, F.Farahmand, J.P.Jue. Multicast traffic grooming wavelength-routed WDM mesh networks using dynamic changing light-trees. Journal of Lightwavce Technology, vol.23, pp.3178-3187, 2005.
    [139] A.Fei, J.Cui, M.Gerla, D.Cavendish. A "dual-tree" scheme for fault-tolerant multicast. Proceedings of IEEE International Communications Conference (ICC'01), pp.690-694, 2001.
    [140] Y.Zhang, D.Sidhu. A multicast protection algorithm for optical WDM networks. Computer Communications and Networks, pp.315-320, 2004.
    [141] E.Oki, N.Matsuura, K.Shiomoto. A disjoint path selection scheme with SRLG in GMPLS networks. Proceedings of HPSR'02, pp.88-92, 2002.
    [142] D.Xu, Y.Xiong, C.Qiao. Novel algorithms for shared segment protection. IEEE Journal on Selected Areas in Communications, vol.21, pp. 1320-1331, 2003.
    [143] 何荣希,张治中,李乐民,王晟.IP/MPLS over WDM网中基于共享风险链路组限制的共 享通路保护算法. 电子学报,vol.30, pp.1638-1642, 2002
    [144] S.L.Yuan, J.P.Jue. Dynamic lightpath protection in WDM mesh networks under wavelength continuity and risk disjoint constraints. Computer Networks, vol.48, pp.91-112, 2005.
    [145] D.Xu, Y.Xiong, C.Qiao. Failure protection in layered networks with shared risk link groups. IEEE Network, vol.18, pp.36-41, 2004.
    [146] N.K.Singhal, B.Mukerjee. Protection multicast sessions in WDM optical mesh networks. Journal of Lightwave Technology, vol.21, pp.884-891, 2003.
    [147] N.K.Singhal, L.H.Sahasrabuddhe, B.Mukerjee. Provisioning of survivable multicast sessions against single link failures in optical WDM mesh networks. Journal of Lightwave Technology, vol.21, pp.2587-2594, 2003.
    [148] C.Boworntummarat, L.Wuttisittikulkij, S.Segkhoomthod. Light-tree based protection strategies for multicast traffic in transport WDM mesh networks with multi-fiber systems. Proceedings of IEEE International Conference on Communications (ICC'04), 2004.
    [149] R.Ramamurthy, A.Akyamac, J.F.Labourdette, S.Chaudhuri. Pre-emptive re-provisioning in mesh optical networks. Proceedings of Optical Fiber Communication Conference (OFC'03), USA, vol.2, pp.785-787, 2003.
    [150] P.Leelarusmee, C.Boworntummarat, L.Wuttisittikulkij. Design and analysis five protection scheme for preplanned recovery for multicast WDM networks. Proceedings of IEEE Symposium on Advances in Wired and Wireless Communication, pp. 167-170, 2004.
    [151] L.Guo, H.Yu, L.Li. Path protection algorithm with trade-off ability for survivable wavelength division multiplexing mesh networks. Optics Express, vol.12, pp.5834-5839, 2004.
    [152] D.A.Schupke, R.Prinz. Performance of path protection and rerouting for WDM networks subject ro dual failures. Proceedings of Optical Fiber Communication Conference (OFC'03), pp.209-210,2003.
    [153] J.Zhang, K.Zhu, B.Mukherjee. Acomprehensive study on backup re-provisioning to remedy the effect of double-link failures in WDM mesh networks. Proceedings of IEEE International Communications Conference (ICC'04), vol.27, pp. 1654-1658, 2004.
    [154] S.Kim, S.Lumetta. Evaluation of protection reconfiguration for multiple failures in WDM mesh networks. Proceedings of Optical Fiber Communication Conference (OFC'03), pp.785-787, 2003.
    [155] E.Oh, H. Choi, J.S.Kim. Double-link failure recovery in WDM optical torus networks. Lecture Notes in Computer Science, vol.3090, pp.708-717, 2004.
    [156] 郭磊,虞红芳,李乐民.WDM网状网中双链路火效的保护设计.电子学报,vol.33,pp.883-888.2005.
    [157] L.Guo, H.Yu, L.Li. Segment shared protection for survivable meshed WDM optical networks. Optics Communications, vol.251, pp.328-338, 2005.
    [158] C.Assi, W.Huo, A.Shami, N.Ghani. Analysis of capacity re-provisioning in optical mesh networks. IEEE Communications Letters, vol.9, pp.658-660, 2005.
    [159] J.Zhang, K.Zhu, B.Mukherjee. Backup re-provisioning to remedy the effect of multiple link failures in WDM mesh networks. IEEE Journal of Selected Areas in Communications, vol.24, pp.57-67, 2006.
    [160] M.Mellia, A.Nucci, A.Grosso, E.Leonardi, M.A.Marsan. Optical design of Logical Topologies in Wavelength-Routed Optical Networks with Multicast Traffic. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM'01), pp. 1520-1525, 2001.
    [161] D.Yang, W.Liao. Design of Light-tree based logical topologies for multicast streams in wavelength routed optical networks. Proceedings of IEEE INFOCOM'03, San Francisco, USA, vol.22, pp.32-41, 2003.
    [162] H.Wen, R.He, L.Li, S.Wang. Dynamic grooming algorithms for survivable WDM mesh networks. Photonic Network Communications, vol.6, pp.253-263, 2003.
    [163] R.He, H.Wen, L.Li, G.Wang. Shared sub-path protection algorithm in traffic grooming WDM mesh networks. Photonic Network Communications, vol.8, pp.239-249, 2004.
    [164] A.Fumagalli, M.Tacca, F.Unghvary. Shared path protection with differentiated reliability. Proceedings of IEEE International Conference on Communications (ICC'02), vol.4, pp.2157-2161,2002.
    [165] C.V.Saradhi, C.S.R.Murthy. Routing differentiated reliable connections in WDM optical networks. Optical Networks Magazine, vol.3, pp.50-67, 2002.
    [166] H.Yu, H.Wen, S.Wang, L.Li. Shared-path protection algorithm with differentiated reliability for WDM mesh networks. Proceedings of SPIE, APOC'03, vol.5282, pp.682-687,2004.
    [167] J.Cao, L.Guo, H.Yu, L.Li. Dynamic segment shared protection algorithm for reliable wavelength division multipliexing mesh networks. Optics Express, vol.13, pp. 3087-3095, 2005.
    [168] P. Ho, J.Tapolcai, T.Cinkler. Segment shared protection in mesh communications networks with bandwidth guaranteed tunnels. IEEE/ACM Transaction on Networking, vol.12, pp.1105-1118, 2004.
    [169] D.Xu, Y.Xiong, C.Qiao. A new PROMISE algorithm in networks with shared risk link groups. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM'03), vol.5, pp.2536-2540, 2003.
    [170] D.A.Schupke, R.GPrinz. Capacity efficiency and restorability of path protection and rerouting in WDM networks subject to dual failures. Photonic Network Communications, vol.8, pp. 191-207, 2004.
    [171] D.Zhou, S.Subramaniam. Survivability in optical networks. IEEE Network, vol. 14, pp.16-23, 2000.
    [172] P.Ho, H.T.Mouftah. Shared protection in WDM mesh networks. IEEE Communications Magazine, vol.42, pp.70-76, 2004.
    [173] 熊光楞,肖田元,张燕云.连续系统仿真与离散事件系统仿真:清华大学出版社,1991.
    [174] 顾启泰.应用仿真技术:国防工业出版社,1995.
    [175] R.C.Leinechker, T.Archor. Visual C++ Bible, IDG Book World Wide Inc., 1998.
    [176] P.J.Plauger, A.A.Stepanov, M.Lee. The C++ Standard Template Library. Prentice Hill, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700