用户名: 密码: 验证码:
Survivin、PEDF在恶性黑色素瘤中的表达及其在EGCG诱导A375细胞凋亡中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Survivin、PEDF在皮肤恶性黑色素瘤中的表达及临床意义
     目的探讨生存素(Survivin)及色素上皮源性因子(PEDF)在皮肤恶性黑色素瘤中的表达及其临床意义。
     方法SP免疫组化法检测Survivin、PEDF蛋白在48例原发性皮肤恶性黑色素瘤中的表达水平,以23例色素痣作为对照。
     结果(1)Survivin在皮肤恶性黑色素瘤中的表达明显强于其在色素痣中的表达,PEDF在二者中的表达无明显差异,(2)Survivin和PEDF蛋白表达均与恶性黑色素瘤病理学类型、淋巴结转移、浸润深度及预后相关,(3)Survivin在黑色素瘤中的表达水平与PEDF呈明显负相关。
     结论Survivin与皮肤恶性黑色素瘤的发生发展密切相关,对皮肤恶性黑色素瘤的辅助诊断及预后评估具有重要的临床意义。PEDF在皮肤恶性黑色素瘤发展过程中可能起负性调节作用。
     第二部分EGCG对恶性黑色素瘤A375细胞生物学行为的影响
     目的探讨EGCG对黑色素瘤A375细胞生物学行为的影响。
     方法对人恶性黑色素瘤细胞株A375进行培养传代;活细胞计数法、MTT试验检测EGCG不同浓度和不同时间对A375细胞生长的抑制作用;用相差显微镜、电镜和Hochest核染色观察细胞凋亡的形态学改变;TUNEL法定量检测细胞凋亡;用Annexin V-FITC、PI双染分析细胞凋亡的变化;同时用DNA电泳观察凋亡的生化学改变。
     结果EGCG可明显抑制A375细胞的增殖,其增殖抑制率呈浓度和时间依赖性;细胞凋亡形态学观察到明显凋亡发生;TUNEL染色也观察到凋亡的发生,且凋亡发生和药物浓度、作用时间呈依赖关系;流式细胞技术证实EGCG诱导A375细胞的早期凋亡显示出明显的时间和剂量依赖关系;DNA电泳亦可观察到细胞发生凋亡的典型DNA ladder。
     结论EGCG对黑色素瘤A375细胞的抑制作用与诱导肿瘤细胞的凋亡有关,为进一步研究EGCG的诱导肿瘤细胞凋亡机制奠定了基础。
     第三部分Survivin、PEDF在EGCG诱导A375细胞凋亡中的作用
     目的体外观察EGCG诱导黑色素瘤细胞凋亡过程中凋亡相关蛋白Survivin、PEDF的表达变化及其与EGCG的增殖抑制、凋亡诱导的关系,为更深入地研究EGCG的凋亡调控机制奠定基础。
     方法对人黑色素瘤细胞株A375进行培养传代;运用细胞免疫组化法检测不同浓度EGCG作用肿瘤细胞后Survivin、PEDF蛋白的表达情况;以western-blot法检测不同作用时间EGCG对A375细胞survivin、PEDF蛋白表达的影响;以RT-PCR技术检测不同浓度EGCG对A375细胞survivin、PEDFmRNA表达的影响;同时采用Caspase-3活性检测试剂盒检测不同浓度EGCG作用肿瘤细胞不同时间后的Caspase-3活性。
     结果免疫组化法观测EGCG作用A375细胞后,Survivin蛋白的表达明显减弱,PEDF蛋白的表达则明显增强,且药物浓度越高,变化越明显;免疫印迹法检测显示Survivin、PEDF蛋白表达的变化与药物作用时间呈一定的依赖关系;RT-PCR检测发现Survivin mRNA表达水平随着EGCG作用浓度的增加而下降,PEDF mRNA表达水平则随着EGCG作用浓度的增加而增加,Survivin cDNA/β-actin cDNA比值与细胞增殖抑制率和细胞凋亡率呈负相关(P<0.01),PEDF/β-actin cDNA比值与细胞增殖抑制率和细胞凋亡率呈正相关(P<0.01);Caspase-3活性检测显示Caspase-3的活性变化和药物浓度、作用时间呈依赖关系,且与Survivin的表达下调、PEDF的表达上调呈平行关系。
     结论EGCG可通过线粒体途径(caspase-3)来诱导A375细胞凋亡,Survivin、PEDF可通过与caspase-3的相互作用发挥其抑制/促进凋亡功能,EGCG通过线粒体途径诱导A375细胞的凋亡可能是通过调节凋亡相关基因Survivin、PEDF的表达来实现。
Part I Expression of Survivin and PEDF in Cutaneous Malignant
    Melanoma and the Relationship between them.
    Objective To investigate the expression of survivin and PEDF (pigment epithelium derived factor ) and their clinical significance in cutaneous malignant melanoma(CMM).
    Methods The expression of survivin and PEDF was measured by streptavidin-peroxidase complex immunohistochemical technique in 48 cases of CMM and 23 cases of nevus.
    Result The positive expression percentage of survivin in CMM was significantly higer than that of nevus, while the positive expression percentage of PEDF in that was similar. The expression of survivin and PEDF in CMM was positively related to pathological histology、 Clark's grade、 the metastasis to lymph nodes and clinical outcome. The expression of PEDF was inversely correlated with the high expression of survivin in CMM.
    Conclusions Survivin might play important roles in the carcinogenesis process and progression of CMM and have important implications in the diagnosis and prognostic assessment. PEDF might play negative modulation roles in the progression of CMM. Part II Effect of EGCG on the Biological Behavior of Melanoma A375 cells
    Objective TO study the effects of EGCG on the biological behavior of Melanoma A375 cells.
    Method The melanoma cell line A375 was chosen in this experiment. The inhibitory
    effects of chemotherapeutical drugs on A375 cell line were assayed with MTT test.
    The EGCG group was divided into different groups by concentration and time.
    Changes of apoptosis in morphology and chemistry were detected by Phase
    microscope, Electron microscopy and Hochest nuclear staining respectively.
    Apoptosis was quantitatively determined by TUNEL and detected by Annexin V
    staining. Changes of apoptosis in chemistry were detected by DNA electrophoresis as
    well.
    Results EGCG obviously inhibited the A375 cell growth with dose-and
    time-dependent. By Phase microscope, Electron microscopy, Hochest nuclear staining,
    DNA electrophoresis, Annexin V and TUNEL staining, we all detected the occurrence
    of apoptosis. Annexin V and TUNEL staining was in a dose-and time-dependent
    manner.
    Conclusion EGCG can effectively induce apoptosis in A375 cells. Part III The role of Survivin and PEDF in the apoptosis of Melanoma A375 cells induced by EGCG
    Objective To study the role of Survivin and PEDF in the process of apoptosis, so as to provide the basis for validating the mechanisms of EGCG induce apoptosis. Methods The EGCG group was divided into different groups by concentration and time. The survivin and PEDF protein expression was detected with streptavidin-peroxidase complex immunohistochemical technique and westen blot. Expression of Survivin and PEDF mRNA was detected by RT-PCR. The caspase 3 activities was detected by caspase kit. Results The Survivin protein expression was decreased with the increasing of EGCG
    concentration while the expression of PEDF protein was increased by immunohistochemical detection. Western blot showed that the increased expression of Survivin protein and the decreased expression of PEDF in melanoma A375 cells induced by EGCG which is time-dependent. Survivin mRNA was down-regulated and PEDF mRNA was up-regulated with the increase of dose of EGCG The ratio of Survivin and β-actin was negatively associated with the inhibitory rate of cell proliferation and the rate of apoptosis (p<0.01). The ratio of PEDF and β-actin was positively associated with the inhibitory rate of cell proliferation and the rate of apoptosis (p<0.01). The change of caspase-3 activity was in a dose-and time-dependent manner. The increase of of caspase-3 activity positively associated with the decreased expression of Survivin and the decreased expression of PEDF. Conclusion Survivin and PEDF gene expression may play a critical role in the apoptosis of melanoma A375 cells induced by EGCG which throught modulation the caspase-3 activity.
引文
1.丁健,抗肿瘤药物的研究新进展。中国新药杂志,2000,9:3
    2. Noguchi M, Yokoyama M, Watanabe S, et al. Inhibitory effect of the tea polyphe -nol, (-)-epigallocatechin gallate, on growth of cervical adenocarcinoma cell lines. Cancer Lett. 2006, 234(2): 135-42
    3. Hastak K, Agarwal MK, Mukhtar H, et, al. Ablation of either p21 or Bax prevents p53-dependent apoptosis induced by green tea polyphenol epigallocatechin-3-gallate. FASEB J, 2005, 19(7): 789-91
    4. Ambrosini G, Adida C, Altieri DC, et al. Anovel anti-apoptosis gene, Survivin, expressed in cancer and lympHoma. Nat Med, 1997, 3: 917-921
    5. Shin S, Sung BJ, Cho YS, et al. An anti-apoptotic protein human Survivin is a direct inhibitor of caspase-3 and caspase-7. Biochemistry, 2001, 4: 1117-1123
    6. Kamihira S, Yamada Y, Hirakata Y, et al. Aberrant expression of caspase cascade regulatory genes in adult T-cell leukemia: Survivin is an important determinant for prognosis. Br J Haematol, 2001, 1: 63-69
    7. Tombran-Tink J, Johnson LU. Neuronal differentiation of retinoblastoma cells induced by medium conditioned by human RPE cells. Invest Ophthalmol Vis Sci, 1989, 30(8): 1700-1707
    8. Karakousis PC, John SK, Behling KC, et al. Localization of Pigment epithelium derived factor (PEDF) in developing and adult human ocular tissues. Mot Vis, 2001, 7: 154-163
    9. Ogata N, Wada M, Otsuji T, et al. Expression of pigment epitheli-um-derived factor in normal adult rat eye and experimental choroidatneovascularization. Invest Ophthalmol Vis Sci, 2002, 43(7): 1168-1175
    10. Palmieri D, Watson JM, Rinehart CA. Age-related expression of PFDF/EPC-1 in human endometrial stromal fibroblasts: implications for interactive senescence. Exp Cell Res, 1999, 247(1): 142-147
    11. Doll JA, Stellmach VM, Bouck NP, et al Pigment epithelium-derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med, 2003, 9(6): 774-780
    12. Takenaka K, Yamagishi S, Jinnouchi Y, et al. Pigment epithelium-derived factor (PEDF)-induced apoptosis and inhibition of vascular endothelial growth factor (VEGF) expression in MG63 human osteosarcoma cells. Life Sci. 2005 Nov 4, 77(25): 3231-41
    1. Palmieri D, Watson JM, Rinehart CA. Age-related expression of PEDF/EPC-1 in human endometrial stromal fibroblasts: implications for interactive senescence. E-xp Cell Res. 1999, 247(1): 142-7
    2. Sugita Y, Becerra SP, Chader G J, et al. Pigment epithelium-derived factor (PEDF) has direct effects on the metabolism and proliferation of microglia and indirect effects on astrocytes. J Neurosci Res. 1997, 49(6): 710-8
    3. Wang L, Schmitz V, Perez-Mediavilla A, et al. Suppression of angiogenesis and tumor growth by adenoviral-mediated gene transfer of pigment epithelium-derived factor. Mol Ther. 2003, 8(1): 72-9
    4. Fesus L, Szondy Z, Uray I. Probing the molecular program of apoptosis by cancer chemopreventive agents. J Cell Biochem Suppl. 1995, 22: 151-61
    5. Kawasaki H, Toyoda M, Shinohara H, et al. Expression of Survivin correlates with apoptosis, proliferation, and angiogenesis during human colorectal tumorigenesis. Cancer. 2001, 91(11): 2026-32
    6. Grossman D, McNiff JM, Li F, et al. Expression and targeting of the apoptosis inhibitor, Survivin, in human melanoma. J Invest Dermatol. 1999, 113(6): 1076-81
    7. Gradilone A, Gazzaniga P, Ribuffo D, et al. Survivin, bel-2, PEDF, and bcl-X gene expression in sentinel lymph nodes from melanoma patients. J Clin Oncol. 2003, 21(2): 306-12
    8. Takenaka K, Yamagishi S, Jinnouchi Y, et al. Pigment epithelium-derived factor (PEDF)-induced apoptosis and inhibition of vascular endothelial growth factor (VEGF) expression in MG63 human osteosarcoma cells. Life Sci. 2005, 77(25): 3231-41
    9. Abe R, Shimizu T, Yamagishi S, et al. Overexpression of pigment epithelium -derived factor decreases angiogenesis and inhibits the growth of human malignant melanoma cells in vivo. Am J Pathol. 2004, 164(4): 1225-32
    10. Garcia M, Femandez-Garcia NI, Rivas V, et al. Inhibition of xenografted human melanoma growth and prevention of metastasis development by dual antiangiogenic/antitumor activities of pigment epithelium-derived factor. Cancer Res. 2004, 64(16): 5632-42
    11. Nihal M, Ahmad N, Mukhtar H, et al. Anti-proliferative and proapoptotic effects of (-)-epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma. Int J Cancer. 2005, 114(4): 513-21
    12. Altieri DC. Survivin and apoptosis control. Adv Cancer Res, 2003, 88: 31-52
    13. Shin S, Sung B J, Cho YS, et al. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and caspase-7. Biochemistry, 2001, 40(4): 1117-1123
    1.丁健,抗肿瘤药物的研究新进展。中国新药杂志,2000,9:3
    2. Noguchi M, Yokoyama M, Watanabe S, et al. Inhibitory effect of the tea polyphe -nol, (-)-epigallocatechin gallate, on growth of cervical adenocarcinoma cell lines. Cancer Lett. 2006, 234(2): 135-42
    3. Hastak K, Agarwal MK, Mukhtar H, et, al. Ablation of either p21 or Bax prevents p53-dependent apoptosis induced by green tea polyphenol epigallocatechin-3-gall -ate. FASEB J. 2005, 19(7): 789-91
    4. Fesus L, Szondy Z, Uray I. Probing the molecular program of apoptosis by cancer chemopreventive agents. J Cell Biochem Suppl. 1995, 22: 151-61
    5. Nihal M, Abroad N, Mukhtar H, et al. Anti-proliferative and proapoptotic effects of (-)-epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma. Int J Cancer. 2005, 114(4): 513-21
    6. Ray S, Ponnatpur V, Huang Y, et al. 1-beta-D-arabinofuranosy-lcytosine-, mitoxan -trone-, and paclitaxel-induced apoptosis in HL-60 cells: improvedmethod for detection of intemucleosomal DNA fragmentation. Cancer Chemotherp Harmacol, 1994, 34: 365-371
    7. Hill PA, Tumber A, Meikle MC. Multipleextracellular signals promote osteoblast survival and apoptosis. Endocrinol, 1997, 138: 3849
    8. Mizukami S, Kikuchi K, Higuchi T, et al. Imagine of caspase-3 activation in HeLa cells stimulated with etoposide using a noval fluorescent probe. FEES Lett 1999, 453: 356
    9. Herrmannm M, Lorenz HM, Voll R et al. A Rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acid Res. 1994, 22: 5506
    1. Luo X, Budihardjo I, Zou H, et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998, 94(4): 481-490
    2. Zhang YK, Fujita N, Tsuruo T. Caspase-mediated cleavage of p21~(Wafi/CaPl) Converts cells from growth arrest to undergoing apoptosis. Oncogene 1999, 18: 1131
    3. Kitsch DG, Doseff A, Nelson-Chau B, Lim DS, de Souza-Pinto NC, Hansford R, et al. Caspase-3-dependent cleavage of bcl-2 promotes release of cytochrome c. J Biol Chem 1999, 274, 21155
    4. Doerfler P, Forbush KA, Perlmutter RM. Caspase enzyme activity is not essential for apoptosis during thymocyte development. J Immunol 2000, 164: 4071
    5. Wolf BB, Schulert M, Echeverri F, Green DR. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Bio Chem 1999, 43: 3065
    6. Ambrosini G, Adida C, Altieri DC, et al. A novel anti-apoptosis gene, Survivin, expressed in cancer and lympHoma. Nat Med, 1997, 3: 917-921
    7. Shin S, Sung BJ, Cho YS, et al. An anti-apoptotic protein human Survivin is a direct inhibitor of caspase-3 and caspase-7. Biochemistry, 2001, 4: 1117-1123
    8. Kamihira S, Yamada Y, Hirakata Y, et al. Aberrant expression of caspase cascade regulatory genes in adult T-cell leukemia: Survivin is an important determinant for prognosis. Br J Haematol, 2001, 1: 63-69
    9. Tombran-Tink J, Johnson LU. Neuronal differentiation of retinoblastoma cell-sinduced by medium conditioned by human RPE cells. Invest Ophthalmol Vis Sci, 1989, 30(8): 1700-1707
    10. Karakousis PC, John SK, Behling KC, et al. Localization of Pigment epithelium derived factor (PEDF) in developing and adult human ocular tissues. Mot Vis, 2001, 7: 154-163
    11. Ogata N, Wada M, Otsuji T, et al. Expression of pigment epitheli-um-derived factor in normal adult rat eye and experimental choroidatneovascularization. Invest Ophthalmol Vis Sci, 2002, 43(7): 1168-1175
    12. Palmieri D, Watson JM, Rinehart CA. Age-related expression of PFDF/EPC-1 in human endometrial stromal fibroblasts: implications for interactive senescence. Exp Cell Res, 1999, 247(1): 142-147
    13. Doll JA, Stellmach VM, Bouck NP, et al Pigment epithelium-derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med, 2003, 9(6): 774-780
    14. Takenaka K, Yamagishi S, Jinnouchi Y, et al. Pigment epithelium-derived factor (PEDF)-induced apoptosis and inhibition of vascular endothelial growth factor (VEGF) expression in MG63 human osteosarcoma cells. Life Sci. 2005, 77(25): 3231-41
    15. Volpert OV, Zaichttk T, Zhou W, et al. Inducer-stimulated Fas targets activated endothelium for destruction anti-angiogenic thrombospondi-1 and pigment epithelium-derived factor. Nat Med, 2002, 8(4): 349-357
    1. Ambrosini G, Adida C, Altieri DC, et al. A novel anti-apoptosis gene, Survivin, expressed in cancer and lympHoma. Nat Med, 1997, 3: 917-921
    2. Altieri DC. Validating Survivin as a cancer therapeutic target. Nat Rev. Cancer, 2002, 3: 46-53
    3. Adida C, Crotty PL, McGrath J, et al. Developmentally regulated expression of the novel cancer anti-apoptosis gene in human and mouse differentiation. Am J Pathol, 1998, 152: 43-49
    4. Tamm I, Wang Y, Sausville E, et al. IAP -family protein Survivin inhibits caspase activity and apoptosis induced by Fas(CD95), Bax, caspase, and anticancer drugs. Cancer Res, 1998, 58: 5315-5320
    5. Xing N, Qian J, Bostwick D, et al. Neuroendocrine cells in human prostate over-express the anti-apoptosis protein Survivin. Prostate, 2001, 48: 7-15
    6. Tajiri T, Tanaka S, Shonok, et al. Quick quatitative analysis of gene dosages associated with prognosis in neuroblastoma. Cancer Lett, 2001, 166: 89-94
    7. Korsmeyer SJ. Bcl-2 initiates a new category of oncogenes: regulator of cell death. Blood, 1992, 80: 879-886
    8. Melnick A, Licht JD. Deconstructing a disease: RAR a, its fusion partners, and their roles in the pathogenesis of acute promyeloid leukemia. Blood, 1999, 93: 3167-3215
    9. Riedl SJ, Renatus M, Schwarzenbacher R, et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell. 2001, 104(5): 791-840
    10. Li UF, Ambrosini G, Chu EY, et al. Control of apoptosis and mitotic spindle check point by Survivin. Nature. 1998, 396(6711): 580-584
    11. Skoufias DA, Mollinari C, Lacroix FB, et al. Human Survivin is a kinetochore-associated passenger protein. J Cell Biol. 2000, 151(7): 1575-1582
    12. Suzuki A, Hayashida M, Ito T, et al. Survivin initiates cell cycle entry by the competitive interaction with Cdk4/pl6INK4a and Cdk2/cyclin E complex activation. Oncogene. 2000, 19(29): 3225-3234
    13. Shin S, Sung BJ, Cho Ys, et al. An anti-apoptotic protein human Survivin is a direct inhibitor of caspase-3 and-7. Biochemistry. 2001, 40(4): 1117-1123
    14. Suzuki A, Ito T, Kawano H, et al. Survivin initiates procaspase-3/p21 complex for- marion as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene. 2004, 19(14): 1346-1353
    15. Papapetropoulos A, Fulton D, Mahboubi K, et al. Angiopoietin- 1 inhibits endothe-lial cell apoptosis via the Akt/survivin pathway. J Biol Chem. 2000, 275(13): 9142-9105
    16. O Connor Ds, Schechner JS, Adida C, et al. Control of apoptosis during angio-genesis by survivin expression in endothelial cells. Am J Pathol. 2000, 156 (2):393-398
    
    17. Mesri M, Morales-Ruiz M? Ackermann EJ, et al. Suppression of vascular endothelial growth factor-mediated endothelial cell protection by survivin targeting.Am J Pathol. 2001, 158(5): 1757-1765
    
    18. Kato J, Kuwabara Y, Mitani M, et al. Expression of survivin in esophageal cancer:correlation with the prognosis and response to chemotherapy. Int J Cancer. 2001,95(2): 92-95
    
    19. Ikeguchi M, Liu J, Kaibara N. Expression of survivin mRNA and protein in gastric cancer line (MNK-45) during cisplatin treatment. Apoptosis. 2002, 7(1): 23-29
    
    20. Ikeguchi M, Hirooka Y, Kaibara N. Quantitative analysis of apoptosis-related gene expression in hepatocellular carcinoma. Cancer. 2002, 95(9): 1938-1945
    
    21. Ikeguchi M, Ueta T, Yamane Y, et al. Inducible nitric oxide synthase and survivin messenger RNA expression in hepatocellular carcinoma. Clip Cancer Res. 2002,8(10): 3131-3136
    
    22. Sarela AI, Verbeke CS, Ramsdale J, et al. Expression of survivin, a novel inhibitor of apoptosis and cell cycle regulatory protein, in pancreatic adenocarcinoma. Br J Cancer. 2002, 86(6): 886-892
    
    23. Takamizawa S, Scott D, Wen J, et al. The survivin: fas ratio in pediatric renal tumors. J Pediatr Surg. 2001, 36(1): 37-42
    
    24. Swana HS, Grossman D, Anthony JN, et al. Tumor content of the antiapoptosis molecule survivin and recurrence of bladder cancer. N Engl J Med. 1999, 341(6),452-453
    
    25. Monzo M, Rosell R, Felip E, et al. A novel anti-apoptosis gene: Re-expression of survivin messenger RNA as a prognosis marker in non-small-cell lung cancers. J Clip Oncol. 1999, 17(7): 2100-2104
    
    26. Ikehara M, Oshita F, Kameda Y, et al. Expression of survivin correlated with vessel invasion is a marker of poor prognosis in small adenocarcinoma of the lung. Oncol Rep. 2002, 9(4): 835-838
    27. Saitoh Y, Yaginuma Y, Ishikawa M. Analysis of Bcl-2, Bax and survivin genes in uterine cancer, Int J Oncol. 1999, 5(1): 137-141
    28. Fmst M, Jarboe EA, Orlicy D, et al. Immunohistochemical localization of survivin in benign cervical mucosa, cervical dysplasia, and invasive squamous cell carcinoma. Am J Clin Pathol. 2002, 117(5), 738-744
    29. Hattori M, Sakamoto H, Satoh K, et al. DNA demethylase is expressed in ovarian cancers and the expression correlates with demethylation of CpG sites in the promoter region of c-erbB-2 and survivin genes. Cancer Lett. 2001, 169(2): 155-164
    30. Yoshida H, Ishiko O, Sumi T, et al. Survivin, bcl-2 and matrix metallopmteinase-2 enhance progression of clear cell-and serous-type ovarian carcinomas. Int J Oncol. 2001, 19(3): 537-542
    31. Grossman D, McNiff JM, Li F, et al. Expression and targeting of the apoptosis inhibitor, Survivin, in human melanoma. J Invest Dermatol. 1999 Dec; 113(6): 1076-81
    32. Gradilone A, Gazzaniga P, Ribuffo D, et al. Survivin, bcl-2, PEDF, and bcl-ⅹ gene expression in sentinel lymph nodes from melanoma patients. J Clin Oncol. 2003 Jan 15; 21(2): 306-12
    33. Sandier A, Scott D, Aztthata T, et al. The survivin: Fas ratio is predictive of re-current disease in neuroblastoma. J Pediatr Surg. 2002, 37(3): 507-511
    34. Adini A, Kornaga T, Firoozbakht F, et al. Placental growth factor is a survival factor for tumor endothelial cells and macrophages. Cancer Res. 2002, 62(10): 2749-2752
    35. Mesri M, Wall NR, UJ, et al. Cancer gene therapy using a survivin mutart adenovirus. J Clin Invest. 2001, 108(7): 981-990
    1. Tombran-Tink J, Johnson LV. Neuronal differentiation of retinoblastoma cells induced by medium conditioned by human RPE cells. Invest Ophthalmol Vis Sci, 1989, 30(8): 1700-1707
    2. Karakousis PC, John SK, Behling KC, et al. Localization of Pigment epithelium derived factor (PEDF) in developing and adult human ocular tissues. Mot Vis, 2001, 7: 154-163
    3. Ogata N, Wada M, Otsuji T, et al. Expression of pigment epitheli-um-derived factor in normal adult rat eye and experimental choroidatneovascularization. Invest Ophthalmol Vis Sci, 2002, 43(7): 1168-1175
    4. Steele FR, Chader GJ, Johnson LV, et al. Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc Natl Acad Sci USA, 1993, 90(4): 1525-1530
    5. Tombran-Tink J, Mazuruk K, Rodriguez IR, et al. Organization, evolutionary conservation, expression and unusual Alu density of the human gene for pigment epithelium-derived factor, a unique neurotrophic serpin. Mol Vis, 1996, 2: 11-14
    6. Becerra SP, Sagasti A, Spinella P, et al. Pigment epithelium-derived factor behaves like a noninhibitory serpin. Neurotrophic activity does not require the serpin reactive loop. Biol Chem, 1995, 270(3): 25992-259999
    7. Houenou LJ, D Costa AP, Li L, et al. Pigment epithelium derived factor promotes the survival and differentiation of developing spinal motor neurons. J Comp Neurol, 1999, 412(3): 506-514
    8. De Coster MA, Schabelman E, Tombran-Tink J, et al. Neuroprotection by pigment epithelial-derived factor against glutamate toxicity in developing primary hippocampal neurons. J Neurosc Res, 1999, 56(6): 604-610
    9. Ogata N, Wang L, Jo N, et al. Pigment epithelium derived factor as an europrotective agent against ischemic retinal injury. Cur Eye Res, 2001, 22(4): 245-252
    10. Crawford SE, Stellmach V, Ranalli M, et al. Pigment epithelium-derived factor (PFDF) in neuroblastoma: a multifunctional mediator of Schwann cell antitumor activity. J Cell Sci, 2001, 114(24): 4421-4428
    11. Yabe T, Wikon D, Schwartz JP. NFkappaβ activation is required for the neuroprotective effects of pigment epithelium-derived factor (PFDF) on cerebellar granule neurons. J Biol Chem, 2001, 276(46): 43313-43319
    12. AraKi T, TaniwaKi T, Becerra SP, et al. Pigment epithelium-derived factor (PFDF) differentially protects immature but not mature cerebellar granule cells against apoptotic cell death. J Neurosci Res, 1998, 53(1): 7-15
    13. Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science, 1999, 285(5425): 245-248
    14. Stellmach V, Crawford SE, Zhou W, et al. Prevention of ischemia-induced retinopathv by the natural ocular antiangiogenic agent pigment epithelium-derived factor. Proc Natl Acad Sci, 2001, 98(5): 2593-2597
    15. Doll JA, Stellmach VM, Boucl NP, et al. Pigment epithelium-derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med, 2003, 9(6): 774-780
    16. Arlbramson LP, Stellmach V, Doll Jrl, et al. Wilms tumor growth is suppressed by antiangiogenic pigment epithelium-derived factor in a xenograft model. J Pediatr Surg, 2003, 38(3): 336-342
    17. RasmussenH, Chu KW, Campochiaro P, et al. Clinical protocol. An open-label, phase I, single administration, doseescalation study of ADGVPEDF. 11D (ADPEDF) in neovascular age related macular degeneration (AMD). Hum Gene Ther, 2001, 12(16): 2029-2032
    18. Volpert OV, Zaichuk T, Zhou W, et al Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med, 2002, 8(4): 349-357
    19. Folkman J. Anti-angiogenesis: new concept for therapy of solid tumorms. Ann Sung, 1972, 175: 409-416
    20. Abe R, Shimizu T, Yamagishi S, et al. Overexpression of pigment epithelium-derived factor decreases angiogenesis and inhibits the growth of human malignant melanoma cells in vivo. Am J Pathol. 2004 Apr, 164(4): 1225-32
    21. GuanM, Yam HF, Su B, et al. Loss ofpigrnent epithelium derived factor expression in glioma progression. J Clin Pathol, 2003, 56(4): 277-282
    22. Palmieri D, Watson JM, Rinehart CA. Age related expression of PFDF/EPC-1 in human endometrial stromal fibroblasts: implications for interactive senescence. Exp Cell Res, 1999, 247(1): 142-147
    23. Garcia M, Femandez-Garcia NI, Rivas V, et al. Inhibition of xenografted human melanoma growth and prevention of metastasis development by dual antiangiogenic/antitumor activities of pigment epithelium-derived factor. Cancer Res. 2004 Aug 15, 64(16): 5632-42
    1. Katiyar SK, Emets CA. Green tea polyphenolic ant Exidants and skin photoprotection (Review). 1nt J Oncol. 2001, 18(6): 1307-1313
    2. lsemura M, Saeki K, Kimura T. et al. Tea catechins and related polyphenols as anticancer agents. Biofactors, 2000: 13(1-4): 81-85
    3.赵燕,曹进,祝和成.茶多酚诱导人胃癌细胞凋亡。湖南医科大学学报,1997,22(5):384-386
    4.赵燕,曹进,刘箭卫等。茶多酚在体外诱导HL-60细胞的凋亡。中国病理生理杂志,1999,15(3):264-267
    5. Fujiki H, Suganuma M, Okabe S, et al. Cancer prevention with green tea and moni-toring by a new biomarker, hnRNP B1. Mutat Res, 2001, 480-481: 299-304
    6. Gupta S, Hastak K, Ahmad N. et al. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci USA, 2001, 98(18): 10350-10355
    7. Ahrnad N, Gupta S, Mukhtar H. Green tea polyphenol epi-gallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells. Arch Biochem Biophys, 2000, 376(2): 338-346
    8. Ahmad N. Cheng P, Mukhtar H. Cell cycle dysregulataion by green tea polyphenol epigallocatechin-3-gallate. Biochem Biophys Res Commun, 2000, 275(2): 328-334
    9. Hibasami H, Jin ZX, Hasegawa M, et al. Oolong tea polyphenol extract induces apoptosis in human stomach cancer cells. Anticancer Res, 2000, 20 (6B): 4403-4406
    10. Smith DM, Dou QP. Green tea polyphenol epigallocatechin inhibits DNA replication and consequently induces leukemia cell apoptosis, 1nt J Mol Med, 2001, 7(6): 645-652
    11. Caderni G, De Filippo C, Luceri C, et al. Effects of black tea, green tea and wine extracts on intestinal carcinogenesis induced by azoxymethane in F344 rats. Carcinogenesis, 2000, 21(11): 1965-1969
    12. Ren F, Zhang S, Mitchell SH, et al. Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells. Oncogene, 2000, 19(15): 1924-1932
    13. Li HC, Yashiki S, Sonoda J, et al. Green tea polyphenols induce apoptosis in vitro in peripheral blood T lymphocytes of adult T-cell leukemia patients. Jpn J Cancer Res, 2000, 91(1): 34-40
    14. Yang GY, Liao J, Li C, et al. Effect of black and green tea polyphenols on c-jun phosphorylation and H_2O_2 production in transformed and non-transformed human bronchial cell lines: possible mechanisms of cell growth inhibition and apoptosis induction. Carcinogenesis, 2000, 21(11): 2035-2039
    15.谢冰芬,刘宗潮,郝东磊等。茶多酚细胞毒作用和抗癌作用的研究。癌症,1998,17(6):418-420
    16. Suganuma M, Okabe S, Kai Yet al. Synergistic effects of (-)-epigallocatechin gallate with (-)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancer cell line PC-9. Cancer Res, 1999, 59(1): 44-47
    17.谢冰芬,刘宗潮,王理开等。毛叶茶和龙井茶提取物的抗癌作用以及对DNA拓扑异构酶Ⅱ的抑制作用。癌症,1992,6:424-428
    18. Betrand R, Solary E, Jenkins Jet al. Apoptosis and its modulation in human promyelocytic HL-60 cells treated with DNA topoisomerase Ⅰ and Ⅱ inhibitors. Exp Cell Res. 1993, 207: 388-397
    19. Cling YH, Priebe W, Perez-soler R. Apoptosis induced by anthracycline antibiotics in p388 parent and multidrug-resistant cells. Cancer Res. 1993, 8: 1845-1852
    20. TAN XH, ZHANG YL, JIANG BO et al. Study on influence of cell cycle and apoptosis of a colon carcinoma cell, LoVo, by (-)-epigallocatetin. Chinese Pharma-cological Bulletin. 1999, 15(1): 56-59
    21. Katdare M, Ctspome MP and Telang MT. Inhibition of aberrant proliferation and induction of apoptosis in pre-neoplastic human mammary epithelial cells by natural phytochemicals. Oncnl Rep, 1998, 5: 311-315
    22. Gupta S, Ahamad N, Nieminen A-L et al. Grow inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallo catechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Toxicology and Applied Pharmacology. 2000, 164: 82-90
    23. Yang GY, Liao J, Kim K et al. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis. 1998, 19(4): 611-616
    24. Pan MH, L fang YC, Lin-Shiau SY, et al. Induction of apoptosis by the oolong teapolyphenol theasinensin A through cytochrome c release and activation of caspase-9 and caspase-3 in human U937 cells. J A grit Food Chem, 2000: 48(12): 6337-6346
    25. Islam S, Islam N, Ketmode T, et al. Involvement of caspase-3 in epigallocatechin-3-gallate-mediated apoptosis of human chondrosarcoma cells. Biochem Biophys Res Commun, 2000, 270(3): 793-797.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700