用户名: 密码: 验证码:
基于锁相环结构的频率综合器芯片电路设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线通信技术采用电磁波替代了传统的电缆,并不断追求着更高的便携性。由于尺寸的优势,集成电路成为实现该技术最合适的载体。本论文围绕集成射频收发机的关键模块频率综合器展开研究,主要针对锁相环型频率综合器,从相关理论入手,系统的阐述了环路参数计算,模块电路设计,版图规划以及流片测试的全过程,并在压控振荡器尾电流源的选择、低电源电压振荡器的实现和高频电流模式逻辑(CML, Current-Mode Logic)分频器的设计上提出了相应的解决思路。论文完成以下研究内容:
     全面的分析了锁相环的工作原理,频率特性和噪声特性,讨论了环路中主要非线性效应的来源和作用机理,并给出相应的解决方法。
     总结了几种改善相噪性能的技术。比较了有无尾电流源对于压控振荡器的影响,据此提出一种用于正交压控振荡器(QVCO, Quadrature Voltage-controlled Oscillator)的改进型开关偏置电流源结构。该结构可以在工作中形成“伪高阻”状态,避免线性区交叉耦合管对于谐振腔的损耗,同时保留传统开关偏置技术的优点,抑制闪烁噪声的产生。该QVCO通过0.18μmCMOS工艺实现,在1V电源电压下振荡在4.56GHz,实现了186.5dBc/Hz的FOM(Figure of Merit),调谐范围为17.3%。
     讨论了低电源电压压控振荡器(VCO, Voltage-controlled Oscillator)设计的必要性和面临的问题,提出了一种基于电感偏置网络的电路结构。该结构中交叉耦合管栅端的信号幅度可以达到谐振腔输出幅度的3倍以上,详细的理论推导证明这会减小交叉耦合管的沟道噪声贡献,从而改善VCO的相位噪声性能。同时,电感偏置网络还会在振荡频率和谐振腔品质因子(Q值)上带来一定的提升。结合自适应体端偏置技术的应用,该VCO在0.3V电源电压下可以稳定工作在4.9GHz, FOM达到192.5dBc/Hz。0.13μm CMOS工艺下的测试结果验证了这种电感偏置网络技术的有效性。
     介绍了环路分频器、双模预分频器和除2分频器的的分类与工作原理,针对除2分频器在工作频率和分频范围设计上的难点,分析了用于CML结构的感性峰化技术并在0.18μm CMOS工艺上进行了实现。测试结果显示该CML分频器消耗了3.6mW的功耗并实现了2-9GHz的工作范围。同时给出的还有两种结构预分频器的流片测试结果。
     按照脉冲超宽带(IR_UWB, Impulse Radio Ultra-Wideband)系统指标,对锁相环的参数进行了详细计算。设计了反馈结构的电荷泵电路,相比于传统结构提升了66%的动态范围。介绍了PS计数器和Sigma Delta调制器(SDM,Sigma-Delta Modulator)的实现方法。在0.18μm和0.13μm CMOS工艺上实现了两款应用于IR_UWB6-9GHz频段的小数锁相环,测试结果显示其相位噪声分别为-68.6dBc/Hz@10KHz.-111.3dBc/Hz@1MHz和-80dBc/z@10KHz.-111.8dBc/Hz@1MHz,满足系统要求。
The medium of wireless communication chose electromagnetic waves instead of traditional cable, and had been pursuing more portability. Due to the advantage of dimension, the integrated circuits become the most suitable carrier. This thesis discusses around the PLL-based frequency synthesizer, which is the key component in integrated RF transceiver. Starting from the theory, this thesis comprehensively introduces the whole process including calculation of the loop parameter, design of module circuits, planning of layout, the tapepout and chip testing. Solutions in choice of the VCO's tail current sources, realization of the low supply voltage VCO and design of the CML divider have been proposed. This thesis has the following achievements:
     The working principle, the frequency characteristics and the noise characteristics of PLL are presented. This thesis discusses the source and mechanism of the main nonlinear effects in the loop, followed by the corresponding solutions.
     Several techniques to improve the phase noise performance are summarized. This thesis compares the effects of the presence or absence of the tail current source in VCOs. Based on the comparison, an improved switched biasing topology has been proposed in QVCO design. This topology forms a "pseudo-Z" state during the operation, decreasing the loss of tank caused by the cross-coupled Mosfets in linear region. Meanwhile, the advantages of the conventional switched biasing technique have been retained to suppress the flicker noise. The QVCO has been frabricated in0.18μm CMOS technology, working at4.56GHz under1V supply voltage. A FOM of186.5dBc/Hz and a tuning range of17.3%are achieved.
     This thesis discusses the necessity and the problem in low supply voltage VCO design. An inductive biasing network is proposed. The amplitude at the gate node of cross coupled Mosfets could be3times larger than that at the output node in the VCO. A detailed theoretical analysis proves that the multiple relationship will reduce the channel noise contribution from the Mosfets, so as to improve the phase noise performance of the VCO. Additionally, this network will bring some other improvements in the oscillation frequency and Q factor of the tank. Cooperating with the adaptive body biasing technique, the proposed VCO oscillates at4.56GHz under 0.3V supply voltage and achieves a FOM of192.5dBc/Hz. Measurement results in0.13μm CMOS technology verify the validity of the inductive biasing technique.
     This thesis introduces the classification and operating principle of the loop divider, prescaler and/2divider. In terms of the difficulty in the design of working frequency and range, the CML topology with inductive peaking technique has been analyzed and realized in0.18μm CMOS technology. Measurement results show that this CML divider consumes3.6mW power consumption and achieves a range of2-9GHz. The test results of two prescalers are also given.
     According to the requirements of IR_UWB system, the PLL parameters are calculated in detail. A charge pump with feedback topology is proposed, enhancing66%of the dynamic range compared to that of the traditional structure. Implementations of PS counter and Sigma Delta Modulator are also introduced. This thesis realizes two faction-N PLLs for6-9GHz IR_UWB system in0.18μm and0.13μm CMOS process. Measurement results show that the phase noise of the two PLLs are-68.6dBc/Hz@10KHz、-111.3dBc/Hz@1MHz and-80dBc/Hz@10KHz.-111.8dBc/Hz@1MHz, respectively, meeting the system requirements.
引文
[1]U. L. Rohde, Digital PLL frequency synthesizers:Theory and design:Englewood Cliffs, NJ, Prentice-Hall, Inc,1983
    [2]J. Craninckx and M. Steyaert, Wireless CMOS frequency synthesizer design: Springer,1998.
    [3]A. Yamagishi, M. Ishikawa, and T. Tsukahara, "A 2-V,2-GHz low-power direct digital frequency synthesizer chip-set for wireless communication," IEEE Journal of Solid-State Circuits, vol.33, pp.210-217,1998.
    [4]L. K. Tan, E. W. Roth, G. E. Yee, and H. Samueli, "An 800-MHz quadrature digital synthesizer with ECL-compatible output drivers in 0.8μm CMOS," IEEE Journal of Solid-State Circuits, vol.30, pp.1463-1473,1995.
    [5]A. Rofougaran, G. Chang, J. J. Rael, et al., "A Single-chip 900-MHz spread-spectrum wireless transceiver in 1-μm CMOS. I. architecture and transmitter design," IEEE Journal of Solid-State Circuits, vol.33, pp.515-534,1998.
    [6]M. Tiebout, C. Sandner, H.-D. Wohlmuth, N. Da Dalt, and E. Thaller, "A fully integrated 13 GHz AE fractional-N PLL in 0.13 μm CMOS," in IEEE ISSCC Digest of Technical Papers, San Francisco,2004, pp.386-534.
    [7]T. A. Riley, M. A. Copeland, and T. A. Kwasniewski, "Delta-sigma modulation in fractional-N frequency synthesis," IEEE Journal of Solid-State Circuits, vol.28, pp. 553-559,1993.
    [8]N. Pohl, T. Jaeschke, and K. Aufinger, "An ultra-wideband 80 GHz FMCW radar system using a SiGe bipolar transceiver chip stabilized by a fractional-N PLL synthesizer," IEEE Transactions on Microwave Theory and Technique, vol.60, pp. 757-765,2012.
    [9]H.-Y. Jian, Z. Xu, Y.-C. Wu, and M.-C. Chang, "A Fractional-N PLL for Multiband (0.8-6 GHz) Communications Using Binary-Weighted D/A Differentiator and Offset-Frequency A-E Modulator," IEEE Journal of Solid-State Circuits, vol.45, pp.768-780,2010.
    [10]X. Liu, W. Lou, L. Liu, and N. Wu, "A multi-band fully differential fractional-N PLL for wideband reconfigurable wireless communication," in IEEE EDSSC,2013, pp.1-2.
    [11]M. M. Eker, V. Do, and S. Pang, Adaptive phase-locked loop (PLL) multi-band calibration:Google Patents,2013.
    [12]A. M. Fahim and M. I. Elmasry, " A fast lock digital phase-locked-loop architecture for wireless applications," IEEE Transactions on Circuits and Systems II, vol.50, pp.63-72,2003.
    [13]X. Gai, S. Chartier, A. Trasser, and H. Schumacher, "A 35 GHz dual-loop PLL with low phase noise and fast lock for millimeter wave applications," in 2011 IEEE Microwave Symposium Digest,2011, pp.1-4.
    [14]H. Po-Chun, C. Wei-Sung, and L. Tai-Cheng, "21.2 A 2.3GHz fractional-N dividerless phase-locked loop with 112dBc/Hz in-band phase noise," in IEEE ISSCC. Digest of Technical Papers,2014, pp.362-363.
    [15]S. E. Meninger and M. H. Perrott, "A 1-MHZ bandwidth 3.6-GHz 0.18-μm CMOS fractional-N synthesizer utilizing a hybrid PFD/DAC structure for reduced broadband phase noise," IEEE Journal of Solid-State Circuits, vol.41, pp.966-980, 2006.
    [16]K. J. Wang, A. Swaminathan, and I. Galton, "Spurious tone suppression techniques applied to a wide-bandwidth 2.4 GHz fractional-N PLL," IEEE Journal of Solid-State Circuits, vol.43, pp.2787-2797,2008.
    [17]R. B. Staszewski, K. Muhammad, D. Leipold, C.-M. Hung, Y.-C. Ho, J. L. Wallberg, et al, "All-digital TX frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS," IEEE Journal of Solid-State Circuits, vol.39, pp. 2278-2291,2004.
    [18]W. Deng, D. Yang, T. Ueno, T. Siriburanon, S. Kondo, K. Okada, et al, "15.1 A 0.0066 mm 2 780μW fully synthesizable PLL with a current-output DAC and an interpolative phase-coupled oscillator using edge-injection technique," in IEEE ISSCC Digest of Technical Papers,2014, pp.266-267.
    [19]J. Liu, T.-K. Jang, Y. Lee, J. Shin, S. Lee, et al., "15,2 A 0.012 mm 23.1 mW bang-bang digital fractional-N PLL with a power-supply-noise cancellation technique and a walking-one-phase-selection fractional frequency divider," in IEEE ISSCC Digest of Technical Papers,2014, pp.268-269.
    [20JY.-C. Huang, C.-F. Liang, H.-S. Huang, and P.-Y. Wang, "15.3 A 2.4 GHz ADPLL with digital-regulated supply-noise-insensitive and temperature-self-compensated ring DCO," in IEEE ISSCC Digest of Technical Papers,2014, pp.270-271.
    [21]A. Elkholy, A. Elshazly, S. Saxena, G. Shu, and P. K. Hanumolu, "15.4 A 20-to-1000MHz±14ps peak-to-peak jitter reconfigurable multi-output all-digital clock generator using open-loop fractional dividers in 65nm CMOS," in IEEE ISSCC Digest of Technical Papers,2014, pp.272-273.
    [22]D. B. Leeson, "A simple model of feedback oscillator noise spectrum," IEEE Proceedings, vol.54, pp.329-330,1966.
    [23]J. Rael and A. A. Abidi, "Physical processes of phase noise in differential LC oscillators," in IEEE CICC,2000, pp.569-572.
    [24]A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," IEEE Journal of Solid-State Circuits, vol.33, pp.179-194,1998.
    [25]E. Hegazi, H. Sjoland, and A. A. Abidi, "A filtering technique to lower LC oscillator phase noise," IEEE Journal of Solid-State Circuits, vol.36, pp.1921-1930, 2001.
    [26]A. Ismail and A. A. Abidi, "CMOS differential LC oscillator with suppressed up-converted flicker noise," IEEE ISSCC Tech. Dig, pp.98-99,2003.
    [27]K. Kwok and H. C. Luong, "A 0.35-V 1.46-mW low-phase-noise oscillator with transformer feedback in standard 0.18-μm CMOS process," in IEEE CICC,2003, pp. 551-554.
    [28]K. C. Kwok and H. C. Luong, "Ultra-low-voltage high-performance CMOS VCOs using transformer feedback," IEEE Journal of Solid-State Circuits, vol.40, pp. 652-660,2005.
    [29]A. W. Ng and H. C. Luong, "A 1-V 17-GHz 5-mW CMOS quadrature VCO based on transformer coupling," IEEE Journal of Solid-State Circuits, vol.42, pp. 1933-1941,2007.
    [30]P. Andreani, X. Wang, L. Vandi, and A. Fard, "A study of phase noise in Colpitts and LC-tank CMOS oscillators," IEEE Journal of Solid-State Circuits, vol.40, pp. 1107-1118,2005.
    [31]A. Mazzanti and P. Andreani, "Class-C harmonic CMOS VCOs, with a general result on phase noise," IEEE Journal of Solid-State Circuits, vol.43, pp.2716-2729, 2008.
    [32]A. Mazzanti and P. Andreani, "A 1.4 mW 4.90-to-5.65 GHz class-C CMOS VCO with an average FoM of 194.5 dBc/Hz," in 2008 IEEE ISSCC, Digest of Technical Papers,2008, pp.474-475.
    [33]L. Fanori and P. Andreani, " A 2.5-to-3.3 GHz CMOS Class-D VCO," in IEEE (ISSCC,2013, pp.346-347.
    [34]M. Babaie and R. B. Staszewski, "Third-harmonic injection technique applied to a 5.87-to-7.56 GHz 65nm CMOS Class-F oscillator with 192dBc/Hz FOM," in IEEE ISSCC,2013, pp.348-349.
    [35]I. Bloom and Y. Nemirovsky, "1/f noise reduction of metal-oxide semiconductor transistors by cycling from inversion to accumulation," Applied physics letters, vol.58, pp.1664-1666,1991.
    [36]G Huang and B.-S. Kim, "Low phase noise self-switched biasing CMOS LC quadrature VCO," IEEE Transactions on Microwave Theory and Techniques, vol.57, pp.344-351,2009.
    [37]C. C. Boon, M. A. Do, K. S. Yeo, J. Ma, and X. L. Zhang, "RF CMOS low-phase-noise LC oscillator through memory reduction tail transistor," IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, vol.51, pp.85-90,2004.
    [38]C.-Y. Jeong and C. Yoo, "5-GHz low-phase noise CMOS quadrature VCO," IEEE Microwave and Wireless Components Letters, vol.16, pp.609-611,2006.
    [39]P. Tortori, D. Guermandi, E. Franchi, and A. Gnudi, "Quadrature VCO based on direct second harmonic locking," in IEEE ISCAS,2004, pp.169-172.
    [40]A. Buonomo, M. P. Kennedy, and A. Lo Schiavo, "On the synchronization condition for superharmonic coupled QVCOs," Circuits and Systems Ⅰ:Regular Papers, IEEE Transactions on, vol.58, pp.1637-1646,2011.
    [41]S.-Y. Lee, L.-H. Wang, and Y.-H. Lin, "A CMOS quadrature VCO with subharmonic and injection-locked techniques," IEEE Transactions on Circuits and Systems Ⅱ:Express Brief, vol.57, pp.843-847,2010.
    [42]I.-S. Shen and C. F. Jou, "A-Band Capacitor-Coupled QVCO Using Sinusoidal Current Bias Technique," IEEE Transactions on Microwave Theory and Techniques, vol.60, pp.318-328,2012.
    [43]X. Yi, C. C. Boon, H. Liu, J. F. Lin, J. C. Ong, and W. M. Lim, "A 57.9-to-68.3 GHz 24.6 mW frequency synthesizer with in-phase injection-coupled QVCO in 65nm CMOS," in IEEE ISSCC,2013, pp.354-355.
    [44]M. Adnan and E. Afshari, "14.8 A 247-to-263.5 GHz VCO with 2.6 mW peak output power and 1.14% DC-to-RF efficiency in 65nm Bulk CMOS," in IEEE ISSCC, 2014, pp.262-263.
    [45]Y. M. Tousi, O. Momeni, and E. Afshari, " A 283-to-296GHz VCO with 0.76 mW peak output power in 65nm CMOS," in IEEE ISSCC Digest of Technical Papers, 2012, pp.258-260.
    [46]R. Han and E. Afshari, "A 260GHz broadband source with 1.1 mW continuous-wave radiated power and EIRP of 15.7 dBm in 65nm CMOS," in IEEE ISSCC Digest of Technical Papers,2013, pp.138-139.
    [47]F. M. Gardner, Phaselock techniques:John Wiley & Sons,2005.
    [48]J. R. Long and M. A. Copeland, "The modeling, characterization, and design of monolithic inductors for silicon RF IC's," IEEE Journal of Solid-State Circuits, vol. 32, pp.357-369,1997.
    [49]J. Alvarez, H. Sanchez, G. Gerosa, and R. Countryman, "A wide-bandwidth low-voltage PLL for PowerPC microprocessors," IEEE Journal of Solid-State Circuits, vol.30, pp.383-391,1995.
    [50]S. Haykin and B. Van Veen, Signals and systems:John Wiley & Sons,2007.
    [51]W. Rhee, Multi-bit delta-sigma modulation technique for fractional-N frequency synthesizers, University of Illinois,2001.
    [52]E. Soleiman and M. Kamarei, "New low current mismatch and wide output dynamic range charge pump," in Iranian Conference on Electrical Engineering (ICEE),2011,2011, pp.1-5.
    [53]M.-S. Hwang, J. Kim, and D.-K. Jeong, "Reduction of pump current mismatch in charge-pump PLL," Electronics letters, vol.45, pp.135-136,2009.
    [54]T.-H. Lin, C.-L. Ti, and Y.-H. Liu, "Dynamic Current-Matching Charge Pump and Gated-Offset Linearization Technique for Delta-Sigma Fractional-PLLs," IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers, vol.56, pp.877-885,2009.
    [55]H.-M. Chien, T.-H. Lin, B. Ibrahim, L. Zhang, M. Rofougaran, A. Rofougaran, et al, " A 4GHz fractional-N synthesizer for IEEE 802.11 a," in VLSI Circuits, Digest of Technical Papers,2004, pp.46-49.
    [56]Z. Tang, X. Wan, M. Wang, and J. Liu, "A 50-to-930MHz quadrature-output fractional-N frequency synthesizer with 770-to-1860MHz single-inductor LC-VCO and without noise folding effect for multistandard DTV tuners," in IEEE ISSCC,2013, pp.358-359.
    [57]J. J. Rael, Phase noise in LC oscillators:ProQuest,2007.
    [58]J. Jung, P. Upadyaya, P. Liu, and D. Heo, "Compact sub-1mW low phase noise CMOS LC-VCO based on power reduction technique," in IEEE Microwave Symposium Digest (MTT),2011, pp.1-4.
    [59]S.-L. Jang and C.-F. Lee, "A Low Voltage and Power VCO Implemented With Dynamic Threshold Voltage MOSFETS," IEEE Microwave and Wireless Components Letters, vol.17, pp.376-378,2007.
    [60]S. L. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, "A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling," IEEE Journal of Solid-State Circuits, vol.38, pp.1148-1154,2003.
    [61]H. Wang, L. Sun, and L. Huang, "A 4.6 GHz cascade switched biasing LC-QVCO using source-body resistor," Analog Integrated Circuits and Signal Processing, vol.77, pp.539-547,2013.
    [62]P. Andreani, A. Bonfanti, L. Romano, and C. Samori, "Analysis and design of a 1.8-GHz CMOS LC quadrature VCO," IEEE Journal of Solid-State Circuits,, vol.37, pp.1737-1747,2002.
    [63]H. Sjoland, "Improved switched tuning of differential CMOS VCOs," IEEE Transactions Circuits and Systems Ⅱ:Analog and Digital Signal Processing, vol.49, pp.352-355,2002.
    [64]M. J. Hemmati and S. Naseh, "CMOS second-harmonic quadrature voltage controlled oscillator using substrate for coupling," Analog Integrated Circuits and Signal Processing, vol.68, pp.299-305,2011.
    [65]E. Ebrahimi and S. Naseh, "A new robust capacitively coupled second harmonic quadrature LC oscillator," Analog Integrated Circuits and Signal Processing, vol.66, pp.269-275,2011.
    [66]I.-S. Shen, T.-C. Huang, and C. F. Jou, "A low phase noise quadrature VCO using symmetrical tail current-shaping technique," IEEE Microwave and Wireless Components Letters, vol.20, pp.399-401,2010.
    [67]T.-H. Huang and Y.-R. Tseng, "A 1 V 2.2 mW 7 GHz CMOS quadrature VCO using current-reuse and cross-coupled transformer-feedback technology," IEEE Microwave and Wireless Components Letters, vol.18, pp.698-700,2008.
    [68]J. B. Kuo and S.-C. Lin, Low-voltage SOI CMOS VLSI devices and circuits:John Wiley & Sons,2004.
    [69]H.-H. Hsieh and L.-H. Lu, "A high-performance CMOS voltage-controlled oscillator for ultra-low-voltage operations," IEEE Transactions Microwave Theory and Techniques.vol 55, pp.467-473,2007.
    [70]P. Andreani and A. Fard, "More on the phase noise performance of CMOS differential-pair LC-tank oscillators," IEEE Journal of Solid-State Circuits, vol.41, pp. 2703-2712,2006.
    [71]D. Park and S. Cho, "Design techniques for a low-voltage VCO with wide tuning range and low sensitivity to environmental variations," IEEE Transactions Microwave Theory and Techniques, vol.57, pp.161-774,2009.
    [72]B. Razavi and R. Behzad, RF microelectronics:Prentice Hall New Jersey,1998.
    [73]B. Razavi, Design of analog CMOS integrated circuits:Tata McGraw-Hill Education,2002.
    [74]H.-H. Chang and J.-C. Wu, "A 723-MHz 17.2-mW CMOS programmable counter," IEEE Journal of Solid-State Circuits, vol.33, pp.1572-1575,1998.
    [75]C. S. Vaucher, I. Ferencic, M. Locher, S. Sedvallson, U. Voegeli, and Z. Wang, "A family of low-power truly modular programmable dividers in standard 0.35-/spl mu/m CMOS technology," IEEE Journal of So lid-State Circuits,vol.35, pp.1039-1045, 2000.
    [76]B. Razavi, "A study of injection locking and pulling in oscillators," IEEE Journal of Solid-State Circuits, vol.39, pp.1415-1424,2004.
    [77]T.-N. Luo, Y.-J. Chen, and D. Heo, "A V-band wide locking range CMOS frequency divider," in IEEE Microwave Symposium Digest,2008, pp.563-566.
    [78]K.-H. Tsai, L.-C. Cho, J.-H. Wu, and S.-I. Liu, "3.5 mW W-band frequency divider with wide locking range in 90nm CMOS technology," in IEEE ISSCC Digest of Technical Papers, pp.466-628.
    [79]H. Wu and A. Hajimiri, "A 19 GHz 0.5 mW 0.35/spl mu/m CMOS frequency divider with shunt-peaking locking-range enhancement," in IEEE ISSCC.2001, pp. 412-413.
    [80]C.-Y. Yang, G.-K. Dehng, J.-M. Hsu, and S.-I. Liu, "New dynamic flip-flops for high-speed dual-modulus prescaler," IEEE Journal of Solid-State Circuits, vol.33, pp. 1568-1571,1998.
    [81]J. N. S Jr and W. Van Noije, "E-TSPC:Extended True Single-Phase-Clock CMOS circuit technique," in VLSI:Integrated Systems on Silicon, ed:Springer,1997, pp. 165-176.
    [82]H. Wang, L. Sun, L. Huang, and L. Cai, "Design of UWB circuits with inductive peaking technique," in IEEE ICMMT,2012,2012, pp.1-4.
    [83]J. Craninckx and M. S. Steyaert, "A 1.75-GHz/3-V dual-modulus divide-by-128/129 prescaler in 0.7-μm CMOS," IEEE Journal of Solid-State Circuits, vol.31, pp.890-897,1996.
    [84]N. Krishnapura and P. R. Kinget, "A 5.3-GHz programmable divider for HiPerLAN in 0.25-/spl mu/m CMOS," IEEE Journal of Solid-State Circuits, vol.35, pp.1019-1024,2000.
    [85]X. Yu, M. Do, J. Ma, K. Yeo, R. Wu, and G. Yan, "Low power high-speed CMOS dual-modulus prescaler design with imbalanced phase-switching technique," IEEE Proceedings-Circuits, Devices and Systems, vol.152, pp.127-132,2005.
    [86]B. Razavi, K. F. Lee, and R. H. Yan, "Design of high-speed, low-power frequency dividers and phase-locked loops in deep submicron CMOS," IEEE Journal of Solid-State Circuits, vol.30, pp.101-109,1995.
    [87]K. Shu, E. Sanchez-Sinencio, J. Silva-Martinez, and S. H. Embabi, "A 2.4-GHz monolithic fractional-N frequency synthesizer with robust phase-switching prescaler and loop capacitance multiplier," IEEE Journal of Solid-State Circuits.vol.38, pp. 866-874,2003.
    [88]K.-H. Tsai, J.-H. Wu, and S.-I. Liu, "Frequency dividers with enhanced locking range," in IEEE Radio Frequency Integrated Circuits Symposium,2008,pp.661-664.
    [89]J.-K. Kim, J. Kim, S.-Y. Lee, S. Kim, and D.-K. Jeong, "A 26.5-37.5 GHz frequency divider and a 73-GHz-BW CML buffer in 0.13μm CMOS," in IEEE Asian Solid-State Circuits Conference,2007, pp.148-151.
    [90]J.-C. Chien and L.-H. Lu, "Ultra-low-voltage CMOS static frequency divider," in Asian Solid-State Circuits Conference,2005,2005, pp.209-212.
    [91]K. Shu and E. Sanchez-Sinencio, CMOS PLL Synthesizers:Analysis and Design: Analysis and Design vol.783; Springer,2006.
    [92]J.-S. Lee, M.-S. Keel, S.-I. Lim, and S. Kim, "Charge pump with perfect current matching characteristics in phase-locked loops," Electronics Letters, vol.36, pp. 1907-1908,2000.
    [93]T. L. Brooks, D. H. Robertson, D. F. Kelly, A. Del Muro, and S. W. Harston, "A cascaded sigma-delta pipeline A/D converter with 1.25 MHz signal bandwidth and 89 dB SNR," IEEE Journal of Solid-State Circuits, vol.32, pp.1896-1906,1997.
    [94]S. Pamarti, L. Jansson, and I. Galton, "A wideband 2.4-GHz delta-sigma fractional-NPLL with 1-Mb/s in-loop modulation," IEEE Journal of Solid-State Circuits, vol.39, pp.49-62,2004.
    [95]A. Rusu and H. Tenhunen, "A third-order sigma-delta modulator for dual-mode receivers," in 2003 IEEE 46th Midwest Symposium on Circuits and Systems,2003, pp. 68-71.
    [96]G. C. Leung and H. C. Luong, "A 1-V 5.2-GHz CMOS synthesizer for WLAN applications," IEEE Journal of Solid-State Circuits, vol.39, pp.1873-1882,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700