用户名: 密码: 验证码:
西藏半野生小麦Q1028种子强休眠特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏半野生小麦(Triticum aestivum ssp.tibetanum Shao)是中国西藏特有的一种小麦资源。它与我国栽培小麦地方品种相比较的特异性——脆穗和包壳特性已有许多研究,而它的另一重要特性——种子强休眠特性则报道很少。经过室内测试证明,所有西藏半野生小麦成熟期的种子发芽率为0%或接近于0%。本研究以Q1028为对象,对西藏半野生小麦种子强休眠特性进行分析。通过对Q1028蜡熟期的整穗发芽、颖壳提取液的种子发芽、常规种子发芽、破皮的种子发芽、种子切胚发芽及不同后熟时期的发芽测试,结果表明:Q1028的种子休眠性极强。蜡熟期的种子发芽率为0%,其休眠特性主要由于胚自身的休眠引起。
     西藏半野生小麦Q1028与弱休眠小麦郑麦9023杂交组合的P_1、P_2、F_1、F_2、BC_1、BC_2六个世代进行了种子休眠遗传分析,结果表明:Q1028的种子休眠性极强,蜡熟期平均种子发芽率为0.75%,后熟8周的种子平均发芽率也仅有2.25%。遗传分析显示,西藏半野生小麦的强休眠特性主要受两对部分显性的互补主效基因控制,其中,至少有一对基因与红皮有关。根据后熟8周新增发芽率的测试与分析推测,除蜡熟期的两对基因控制种子的休眠强度外,可能还有另外的基因控制种子休眠维持的时间。
     通过对易发芽和不易发芽极端群体的分子标记分析,将这两个休眠基因定位到3AL和1B上。位于3AL上的基因,可能已有研究者报道,暂命名为SD-1;位于1B上休眠基因则未见前人报道,暂时命名为SD-2。利用SSR标记将SD-1定位于Xgwm5、Xwmc651、Xwmc664、Xgwm155和SD-1的同一侧,他们的排列顺序是Xgwm5、Xwmc651、Xwmc664、Xgwm155和SD-1,该基因与这些引物的连锁距离分别是4.2CM、6.9CM、20.9CM、10.9CM。同时,分离群体上验证结果表明Xgwm498与休眠基因连锁,并将该休眠位点初步定位于1B上。用该标记对F_2代167个单株进行PCR扩增,根据扩增结果,采用Mapmaker3.0软件计算遗传距离,结果表明,该休眠位点与Xgwm498连锁距离为30.6CM。
     根据F_2代蜡熟和后熟发芽发芽情况,选择出了30株种子强休眠单株,这些单株性状已经较Q1028有明显的改良,尤其是单株序号为123、135、257、278和279的单株,它们同时具有了种子强休眠、颖壳较软、和不易断穗等特性。这为以后选育具有种子强休眠特性的品种提供了宝贵的遗传材料。
T.aestivum ssp.tibetanum is a kind of special semi-wild hexaploid wheat resources,only distributing in Tibet of China.It has special characters,such as hulled glume and brittle spikelet.However,seed dormancy,another important character,was little reported.We have had observed and tested more than 10 accessions of them for dormancy,and found that every of them was 0 or near 0 percentages both with threshed seeds' and intact spikes' germinations.T.aestivum ssp.tibetanum cv.Q1028 was identified for seed dormant property by testing its' seed germination percentages of intact spikes,seeds with bract powder,normal seeds,seeds of pierced coat, sectioned embryos,and germination percentages of intact spikes and seeds at various stage after harvest.The result showed that the seed dormancy of Q1028 was very high. Its germination percentage of seed was 0%after harvest.The dormancy of Q1028 came from embryo dormancy itself mainly.
     The cross of Q1028 with ZhengMai9023,which was non-dormant,was analyzed on P_1,P_2,F_1,F_2,BC_1 and BC_2 plants.The result showed that the seed dormancy of Q1028 was very high.Its germination percentage of seed was 0.75%at wax maturity.At eight weeks after maturity,its germination percentage of seed was only 2.25%.Its seed dormancy was controlled as partial dominant trait by two complementary genes.At least one gene between them was related with red capsule of seed.Besides,it was possible that other genes controlled maintaining time of seed dormancy.
     Molecular markers analysis in the extremeness population,Using SSR markers, the two loci were located on 3AL and 1B,respectively.The one located on 3AL was named as SD-1,which possibly has been located by other researchers;the other one located on 1B was named as SD-2,which hasn't been reported before.Further molecular mapping showed that SD-1 was linked with SSR marker in the order of Xgwm5-Xwmc651-Xwmc664-Xgwm155-SD-1 with genetic distances of 4.2 cM、6.9 cM、20.9 cM、10.9 cM,respectively.At the same time,another one pair of primer located on chromosome arm 1BL,Xgwm498,were found being linked to strong seed dormancy.The 167 F_2 individuals were then amplified with marker Xgwm498.The statistic genetic distance between Xgwm498 and dormancy locus was calculated to be 30.6 cM using the software Mapmaker3.0.
     According to F_2 generation germination data,the agronomical characters of 30 dormancy plants has been significantly improved than of Q1028,especially for No.135,No.123,No.135,No.257,No.278 and No.279.They have these characters such as flexible hull,dense spike and not brittle spikelet,beside strong seed dormancy. They are the precious genetic material for breeding.
引文
1.黄享履,马得全,周荣华.西藏半野生小麦的种类、分布及初步研究.西藏作物品种资源考察文集(西藏作物品种考察队).北京:中国农业科技出版社,1987,33-39
    2.黄享履,翁跃进,张贤珍等.西藏半野生小麦亚种的性状聚类和演化趋势研究.西藏农业科技,1998,20(3):42-53
    3.董玉琛,郑殿升主编.中国小麦遗传资源.北京:中国农业出版社,2000,55-56
    4.邵启全,李长森,巴桑次仁.西藏半野生小麦.西藏作物(中国科学院青藏高原综合考察队).北京:科学出版社,1984,108-113
    5.邵启全,李长森,巴桑次仁.西藏半野生小麦.遗传学报,1980,7(2):149-156
    6.陈建民,任正隆,J.P.Gustafson等.西藏小麦及半野生小麦异染色质分化的C-带研究.作物学报,1996,22(5):525-529
    7.吕萍,张自立.云南小麦和西藏半野生小麦的核型及带型.遗传,1983,5(4):20-22
    8.崔运兴,马缘生.中国特有小麦资源主要遗传性状鉴定极其黑麦可杂交性的.中国农业科学院硕士论文,1987
    9.魏育明,郑有良,周永红等.中国特有小麦Gli-1、Gli-2和Glu-1位点的遗传多样性.植物学报,2001,43(8):834-839
    10.黄享履,翁跃进,张贤珍等.西藏半野生小麦遗传多样性研究进展以及原位保存植物.遗传资源科学,2002,3(2):28-33
    11.倪中福,孙其信,刘志勇等.小麦杂种优势群体研究Ⅱ、普通小麦、西藏半野生小麦和斯卑尔脱小麦RAPD分子标记遗传差异研究.农业生物科学技术学报,1997,5(2):103-111
    12.王志清.西藏半野生小麦低分子量谷蛋白基因编码区分子克隆及序列分析.四川农业大学硕士论文,2004
    13.陈庆富,周永红,彭正松等.中国特有小麦杂种黄化基因ch1和T型胞质育性恢复基因的分布研究.广西植物,1998,18(14):325-330
    14.Tsunewaki,Yamada and Mori.Genetical study on Tibetnum semi-wild wheat,Triticum aestivum ssp.tibetnum Jpn.Genet.,1990,65:353-365
    15.马缘生,崔运兴.中国特有小麦资源主要遗传性状评价与利用.核农学报,1988,2(3):129-138
    16.Cao W.G.,Scoles G.J.,Hucl P.The genetic of rachis fragility and glume tenacity in semi-wild wheat. Euphytica,1997,94:119-124
    17.陆平.西藏半野生小麦染色体组型分析和断穗基因定位.西藏农业科技,2002,22(2):23-27
    18.肖世和,闫长生,张海萍,孙果忠.小麦穗发芽研究.中国农业出版社,2004
    19.Gale M.D.,Lenton J.R.Preharvest sprouting in wheat a complex genetic and physiological problem affecting breadmaking quality in UK wheat.Aspects of Applied Biology.1987,15:115-124
    20.Mares D.J.,Preharvest sprouting tolerance in white-grained wheat.In:D.J.Mares(Ed),4th Int Syrup on preharvest sprouting in cereals,pp 64-74.Westview press,Boulder,CO.1987
    21.Mares D.J.,preharvest sprouting in wheat.Influence of cultivar,rainfall and temperature during grain riping.Aust J Agric Res.1993,44:1259-1272
    22.Derera N.F.,Bhatt G.M.,McMaster G.j.On the problem of pre-harveat sprouting of wheat.Euphytica.1997,26:299-308
    23.蒋国梁,陈兆夏,刘世家,肖世和.白皮小麦收获前穗发芽及品种抗性机制探讨.作物学报,1998,24(6):793-798
    24.Gatford K.T.,Hearnden P.,Ogbonnaya F.,Eastwood R.F.,Halloran G.M.,Novel resistance to pre-harvest sprouting in Australian wheat from the wild relative Triticum tauschii.Euphytica.2002,126:67-76
    25.赵笃乐.冬小麦子粒发育过程中休眠性的变化.种子,1999,3:18-20
    26.Khan F.N.,Strand E.A..Investigation into the genetics of kernel color and dormancy in wheat (Triticum aestivum L.).Meld Nor.Landbrukshogsk.1989,56:1-12.
    27.Collins F.W.Oat phenolics,structure,occurrence and function.In Webster F M(Ed) Oats Chemistry and Technology.America Association of Cereal chemists,St Paul,M innesota,USA.1986,227-295
    28.Derera N.F.Preharvest field sprouting in cereals.CRC Press,Inc.1989
    29.Bewley J.D.Black M..Seed physiology of development and germination.New York:Plenum press.1994,199-389
    30.Flintham J.E.,Gale M.D.Dormancy gene maps in homologous cereal genomes,In:Kaz Noda &D.J.Mares(Eds),Seventh international symposium on pre-harvest sprouting in cereal.Center for Acad Soc.Japan.Osaka,Japan.1996,143-149
    31.DePauw R.M.,McCaig T.N.,Townley-Smith T.F.Regulation of a sprouting resistant white-seeded spring wheat germplasm line.Crop Science.1985,25:577-578
    32.Villiers G.The applicability of consensus PCR primers across species and genera:the use of wheat Em sequence to develop markers for orthologues in rye. Theor.Appl.Genet. 2000, 100:328-336
    33. Karssen C.M., Brinkhorst-Van der Swan D.L.C, Breekland A.E., Koornef M. Induction of dormancy during seed development by endogenous abascisic acid : studies on abascisic acid deficient genotypes of Arabidopsis thaliana(L.). Planta. 1983,157:158-165
    34. Steinbach H.S., Benech-Arnold R.L., Kristof G., Sanchez R.A. Hormonal regulation of dormancy in developing Sorghum seeds. Plant Physiology. 1997,113:149-154
    35. Karssen C.M. Hormonal regulation of seed development, dormancy and germination studied by genetic control. In: Kigel J., Galili G.(eds.). Seed Development and Germination. New York: Marcel Dekker Press. 1995,333-346
    36. Steinbach H.S., Benech-Arnold R.L., Kristof G., Sanchez R.A. Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiology. 1997,113:149-154
    37. Van Beckum J.M.M., Libbenga K.R., Wang M. Abscisic acid and gibberellic acid-regulated responses of embryos and aleurone layers isolated from dormant and nondormant barley grains. Physiologia Plantarum. 1993, 89: 483-489
    38. Bewley J.D. Seed germination and dormancy. The Plant Cell.1997, 9: 1055-1066
    39. Walker-Simmons M. Enhancement of ABA responsiveness in wheat embryos by high temperature. Plant Cell Environment. 1988, 11: 769-775
    40. Morris C.F., Anderberg R.J., Goldmark P.J. Molecular cloning and expression of ABA in embryos of dormant wheat seeds. Plant Physiology. 1991,91: 814-821
    41. Torada A., Amano Y. Effect of seed coat color on seed dormancy in different environments. Euphytica. 2002, 126: 99-105
    42. Wang R.L., Heimovaara-Dijkstra R., Van Duijn B. Modulation of germination of embryos isolated from dormant and non-dormant grains by manipulation of endogenous abscisic acid. Planta. 1995, 195:586-592
    43. Jacobsen J.V., Pearce D.W., Poole A.T. Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiologia Plantarum. 1993, 89:483-489
    44. Naylor J.M., Simpson G.M. Dormancy studies in seed of Avena fatua.2.A gibberellin-sensitive inhibitory mechanism in the embryo. Canadian Journal of Botany. 1961,39: 281-295
    45. Foley M.E. Carbohydrate metabolism as a physiological regulator of seed doemancy. In: Lang G.(Ed.). Plant Dormancy: physiological, biochemistry and molecular biology. UK Wallingford: CABI Press.1996,245-254
    46.Adkins S.W.,Bellairs S.M.,Loch D.S.Seed dormancy mechanism in warm season grass species.Euphytica.2002,126:13-20
    47.Cohn M.A.Chemical mechanism of breaking seed dormancy.In:Lang G.(Ed)Plant Dormancy:physiology,Biochemistry and Molecular Biology.UK Wallingford:CABI Press.1996,257-263.
    48.Hilhorst H.W.M.,Cohn M.A.Are celluar membranes involved in the control of seed dormancy?[A]In:Viemont J.D.& Crabbe J.(Ed.).Dormancy in plants-from whole plant behavior to cellular control UK.Wallingford:CABI Press.2000,275-285.
    49.Bradford K.J.Water relations in seed germination.In:Kigel J.,Galili G.(Ed.).Seed development and germination.New York:Marcel Dekker Press.1995,351-387.
    50.Alonso-Blanco C.,Bensink L.,Hanhart C.J.,Blankestijn-de Vries H.,Koornneef M.Analysis of natural allelic varation at seed dormancy loci of Arabidopsis thaliana.Genetics.2003,164:711-729
    51.Warmer R.L.,Kudrna D.A.,Kudra D.A.,Spaeth S.C.,Jones S.S.Dormancy in white-grain mutants of Chinese Spring wheat(Triticum aestivum L.).Seed Science Research.2000,10:51-60
    52.McCarty D.R.,Hattori T.,Carson C.B.,Vasil V.,Lazar M.,Vasil I.K.The vivparous-1developmental gene of Maize encodes a novel transcriptional activator.Cell.1991,66:895-905
    53.Bailey P.C.,McKibbin R.S.,Lenton J.R.,Holdsworth M.J.,Flintham J.E,Gale M.D.Genetic map locations for orthologous Vp1 genes in wheat and rice.Theor App.Genet.1999,98:281-284
    54.Mares D.J.Dormancy in white wheat:mechanism and location of genes.In:K.Noda & D.J.Mares(Eds.).Preharvest sprouting in cereals.1992,179-184.
    55.Mares D.J.The seed coat and dormancy in wheat grains.In:D.Weipert(Ed.),8~(th) Int Symp on preharvest sprouting in cereals.1998,77-81.Association of Cereal Research,Detmold,Germany.1999.
    56.Mares D.J.and Mrva K.Mapping quantitative trait loci associated with variation in grain dormancy in Australian wheat.Aust.J.Agric.Res.2001,52:1257-1265
    57.Mares D.J.,Mrva K.,Mui-Keng Tan,Peter Sharp.Dormancy in white-grained wheat:Progress towards identification of genes and molecular markers.Euphytica.2002,126:47-53
    58.Kato K.,Nakamura W.,Tabiki T.,Miura H.,Sawada S.Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes.Theor Appl Genet. 2001,102: 980-985
    59. Noda K., Matsuura T., Maekawa M., Taketa S. Chromosomes responsible for sensitivity of embryo to abscisic acide and dormancy in wheat. Euphytica. 2002,123:203-209
    60. Osa M., Kato K., Mori M., Shindo C., Torada A. Mapping QTLs for seed dormancy and the Vpl homologue on 3A in wheat. Theor Appl Genet. 2003,106:1491-1496
    61. Mori M., Uchino N., Chono M., Kato K., Miura H. Mapping QTLs for grain dormancy on wheat chromosome 3A and the 4 chromosome, and their combined effect. Theor.Appl.Genet. 2005, 110: 1315-1323
    62. Mares D.J., Mrva K., Cheong J., Williams K. A QTL located on chromosome 4A associated with dormancy in white-grained and red-grained wheats of diverse origin. Theor.Appl.Genet. 2005, 111: 1357-1364.
    63. Kottearachchi N.S., Uchino N., Kato K., Miura H. Increased grain dormancy in white-grained wheat by introgression of preharvest sprouting tolerance QTLs. Euphytica. 2006,45:421-428
    64. Han F., Ullrich S.E., Clancy J.A., Jitkov V., Kilian A. Verification of barley seed dormancy loci via linked molecular markers. Theor Appl Genet. 1996, 92: 87-91
    65. Gao W., Clancy J.A., Han F., Prada D. Molecular dissection of a dormancy QTL region near the chromosome 7(5H)L telomere in barley. Theor Appl Genet. 2003,107: 552-559.
    66. Lin S.Y., Sasaki T., Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice , Oryza sativa L. Using backcross inbred lines. Theor Appl Genet. 1998, 96: 997-1003
    67. Li C.D., Ni P.X., Francki M., Hunter A., Zhang Y., Li H. Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genomics. 2004,4: 84-93
    68. Prada D., Ullrich S.E., Molina-Cano J.L., Clancy J.A., Romagosa I. Genetic control of dormancy in a Triumph/Morex cross in barley. Theor Appl Genet. 2004, 109: 62-70
    69. Guo L.B., Zhu L.H., Xu Y.B., Zeng D.L., Wu P., Qian Q. QTL analysis of seed dormancy in rice(Oryza Sativa L). Euphytica. 2004,140: 155-162
    70. Wan J.M., Cao Y.J., Wang C.M., Ikehashi H. Qqantitative trait loci associated with seed dormancy in rice. Crop Science. 2005,45: 712-716
    71. Gale M.D.& Devos K.M. Plant comparative genetics after ten years. Science, 1998,4817: 1-7
    72. Rota M.L. and Sorrells M.E. Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct.Interg.Genomics. 2004, 4: 34-46
    
    73. Lan X.J., Wei Y.M., Liu D.C., et al. Inheritance of seed dormancy in Tibetan semi-wheat accession Q1028. Theor Appl Genet, 2005,46(2): 133-138
    74. Roder M.S., V.Korzun K., Plaschke J. A microsatellite map of wheat. Genetics. 1998,149: 2007-2003
    75. Somers, D.J., I.Peter&E.Keith. A high-density microsatellite consensus map for map for bread wheat(Triticum aestivum L). Theor Appl Genet. 2004,109: 1105-1114
    76. Eiko Himi, Akira Yanagisawa, et al. Effect of grain colour gene(R) on grain dormancy and sensitivity of the embryo to abscisic acid(ABA) in wheat. Journal of Experimental Botany, 2002, 53(374): 1569-1574
    77. Roy J.K. Prasad M., Varshney R.K. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theoretical and Applied Genetics, 1999,99(1-2): 336-340.
    78. Roy J.K., Prasad M., Varshney R.K., et al. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theoretical and Applied Genetics, 1999,99(1-2): 336-340.
    79. Miura H., Sato N., Kato K., et al. Detection of chromosomes carrying genes for seed dormancy of wheat using the backcross reciprocal monosomic method. Plant Breed, 2002,121: 394-399
    80. Groos C, Gay G., Perretant M.R., Gercais L., Bernard M., Dedryver F., Charmet G.. Study os the relationship between pre-harvest sprouting and grain color by quantiative trait loci analysis in a white×red grain bread-wheat cross. Theor Appl Genet, 2002,104:39-47
    81. Shingo Nakamura and Tomoko Toyama. Isolation of a VPlhomologue from wheat and analysis of its expression in embryos of dormant and non-dormant cultivars. Journal of Experimental Botany, 2001, 52: 875-876
    82. Gale M.D., Flintham J.E., Devos K.M. Cereal comparative genetics and preharvest sprouting. Euphytica, 2002,126:21-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700