用户名: 密码: 验证码:
小麦抗叶锈病基因Lr1的分子进化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦作为人类重要的粮食作物受到多种病害的侵袭,叶锈病是其生产上的主要病害之一,传播范围广,发生区域大。它的流行将导致小麦严重的减产和品质下降。利用植物本身的抗病基因控制叶锈病的流行,是一种最经济、有效和最安全的措施,然而自然环境与人工栽培的双重选择压力加速了植物抗病基因与病原体无毒基因间的共进化过程,常常导致原有抗病基因的快速进化或丢失,因此,探索植物抗病基因进化的分子机制显得尤为重要。
     本研究利用与小麦抗叶锈病基因Lrl共分离的分子标记WR003筛选了来自世界各地的128份山羊草品系和283份六倍体小麦品种(包括262份六倍体小麦微核心种质),并通过PCR克隆测序获得了42个Lrl等位基因和6个Lrl同源基因的全长序列,随后利用DNAMAN和Clustal W进行Lrl等位基因和同源基因间核酸水平和蛋白水平的序列比对,并利用程序MEGA4.0.1采用neighbor-joining(NJ)方法构建系统发生树,对小麦抗叶锈病基因Lrl进行分子进化生物学方面的研究,结果表明:
     1.六倍体小麦抗叶锈病基因Lrl起源于二倍体粗山羊草,并且在其进化为六倍体小麦之前就已分化出抗病和感病两种基因型,所以六倍体小麦的Lrl至少有两个起源。
     2.Lrl感病基因型和抗病基因型的分离主要体现在一个570 bp的变异区内(在第2479-3048碱基之间,对应于第827-1017氨基酸),在该变异区内除两处点突变外具有相同抗性的山羊草品系和六倍体小麦品种的核酸序列完全相同,说明在山羊草进化为六倍体小麦的过程中该区域几乎没有发生过遗传重组和基因转换。
     3.在此变异区两侧的相对保守区共有21个点突变,其中有9个同义碱基突变,12个非同义碱基突变,这些点突变并非发生在抗感基因型之间,而是发生在具有相同抗性基因型的山羊草与山羊草或山羊草与六倍体小麦之间。
     4.发生在感病粗山羊草与六倍体小麦之间的点突变只有一个(在2460bp处,为同义碱基突变);发生在抗病粗山羊草与六倍体小麦之间的点突变为9个(2个同义碱基突变,7个非同义碱基突变),其中1个点突变发生在570bp的变异区内,8个点突变发生在该变异区两侧的相对保守区。
     5.Lrl等位基因序列中的LRR编码区内串联排列着14个同义碱基突变和51个非同义碱基突变,Ka(非同义碱基突变率)╱Ks(同义碱基突变率)>1,说明该区域经受着岐化选择的作用,这也与前人报道的该区域为配基结合部位、控制着抗病基因的特异性相吻合。
Wheat,as one of the important crops,suffers from the infection of various diseases, wheat leaf rust is one of the major diseases in wheat production.It spreads wildly and can lead to severe yield loss and poor seed quality.The use of resistance genes is the most effective,economical and ecological method to control epidemics of leaf rust disease. However,natural environment and artificial domestication accelerated the co-evolution of host-pathogen interaction,which moreover resulted in the rapid evolution and disappearance of resistance genes.Therefore,it is necessary to study the evolutionary mechanism of plant resistance genes.
     In our research,we screened 128 Aegilops.Tauschii(goat grass) accessions and 283 hexaploid wheat varieties(including 262 wheat core germplasms) with marker WR003 co-segregated with Lr1,and obtained the full-length sequences of 42 Lr1 alleles and 6 Lr1 homologous genes.Afterwards,we aligned DNA and protein sequences of Lr1 allelic or homologous genes by DNAMAN and Clustal W,and analyzed the molecular evolution mechanism for the wheat leaf rust resistance genes according to the phylogenetic tree established by neighbor-joining(NJ) method by MEGA 4.0.1.The results showed that:
     1.Wheat leaf rust resistance gene Lr1 was originated from Ae.Tauschii,and differentiated into resistant and susceptible genotypes prior to its evolution into hexaploid wheat. Therefore,wheat leaf rust resistance gene Lr1 has two ancestral genes at least.
     2.The allelic sequences alignment of Lr1 from resistant and susceptible lines revealed a divergent DNA sequence block of 570 bp,where Lr1 nucleotide sequences were mostly similar between hexaploid wheat and Ae.Tauschii with the same resistance except for two point mutations.So it is concluded that no genetic recombination and gene conversion happened during the evolution from Ae.Tauschii.into hexaploid wheat.
     3.The rest of the sequences were mostly similar,where only 21 point mutations existed(9 synonymous mutations,and 12 nonsynonymous mutations).Interestingly,these 21 point mutations occur between lines with identical resistance rather than different resistance.
     4.There was only one point mutation between resistant hexaploid wheat and Ae.Tauschii (at 2400bp down stream of the start codon ATG,a synonymous mutation);9 point mutations took place between susceptible hexaploid wheat and Ae.Tauschii(2 synonymous mutations and 7 nonsynonymous mutations),1 in the 570bp block and 8 in the rest of the sequence.
     5.Fourteen synonymous mutations and 51 nonsynonymous mutations lined in tandem on the LRR coding region of the allele sequences,Ka(rate of nonsynonymous mutation)/Ks (rate of synonymous mutation)>1.These results indicated that LRR domain suffered from the pressure of strong selection,consistent with the former reports that LRR domains were involved in the interaction with effector proteins and were the major determinant of resistance specificity.
引文
[1]Moffat AS.Finding new ways to fight plant diseases[J].Science,2001,292(5525):2270-2273
    [2]Strange RN,Scott PR.Plant disease:a threat to global food security[J].Annu Rev Phytopathol,2005,43:83-116
    [3]McDonald BA,Linde C.Pathogen population genetics,evolutionary potential,and durable resistance[J].Annu Rev Phytopathol,2002,40(1):349-379
    [4]Chalal G,Gosal S.Principles and procedures of plant breeding-biotechnological and conventional approaches[M].Pangboume:Alpha science international,2002,360-390
    [5]Pink DAC.Strategies using genes for non-durable resistance[J].Euphytica,2002,124(2):227-236
    [6]Mundt CC.Use of multiline cultivars and mixtures for disease management[J].Annu Rev Phytopathol,2002,40:381-410
    [7]McIntosh RA,Brown GN.Anticipatory breeding for resistance to rest disease in wheat[J].Annu Rev Phytopathol,1997,35:311-326
    [8]Hammond-Kosack K,Parker J.Deciphering plant-pathogen communication:fresh perspectives for molecular resistance breeding[J].Curr Opin Biotechnol,2003,14(2):177-193
    [9]Hammond-Kosack K,Jones JDG.Plant disease resistance genes[J].Annu.Rev.Plant Physiol.Plant Mol Biol,1997,48:575-607
    [10]Dangl JL,Jones JD.Plant pathogens and integrated defense responses to infection[J].Nature,2001,411:826-833
    [11]Lehmann P.structure and evolution of plant disease resistance gene[J].J Appl Genet,2002,43(4):403-414
    [12]Fritz-Laylin LK,Krishnamurthy N,Tor M,Sjolander KV,Jones JD.Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis[J].Plant Physiol,2005,138(2):611-623
    [13]Belkhadir Y,Subramaniam R,Dangl JL.Plant disease resistance protein signaling:NBS-LRR proteins and their partners[J].Curr Opin Plant Biol,2004,7(4):391-399
    [14]Feys B J,Parker JE.Interplay of signaling pathways in plant disease resistance[J].Trends Genet,2000,16(10):449-455
    [15]Martin GB,Bogdanove AJ,Sessa G.Understanding the functions of plant disease resistance proteins[J]. Annu Rev Plant Biol, 2003, 54: 23-61
    [16] Tang XF, rederick RD, Zhou J, Halterman DA, Jia Y, Martin GB. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase[J]. Science, 1996, 274(5295): 2060-2063
    [17] Johal GS, Briggs SP. Reductase activity encoded by the Hm1 disease resistance gene in maize[J]. Science, 1992,258(5084): 985-987
    [18] Xiao S, Ellwood S, Calls O, Patrick E, Li T, Coleman M, Turner J G. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8[J]. Science, 2001,291(5501): 118-120
    [19] Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaa rde P, G roenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P. The barley MIo gene: a novel control element of plant pathogen resistance[J]. Cell, 1997, 88(5): 695-705
    [20] Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4): 803-814
    [21] van der Biezen E A, Freddie C T, Kahn K, Parker J E, Jones J D. Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components[J]. Plant J, 2002, 29(4): 439-451
    [22] Medzhitov R, Preston-Hurlburt P, Janeway CAJ. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity[J]. Nature, 1997, 388(6640): 394-397
    [23] Yang RB, Mark MR, Gram A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL, Godowski PJ. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signaling[J]. Nature, 1998, 395(6699): 284-288
    [24] Ellis J, Jones D. Structure and function of proteins controlling strainspecific pathogen resistance in plants[J]. Curr Opin Plant Biol, 1998, 1(4): 288-293
    [25] Ellis JG, Lawrence GJ, Luck JE, Dodds PN. Identification of regions in alleles of the flax rust resistance gene L that determine differences in genefor-gene specificity [J]. Plant Cell, 1999, 11(3): 495-506
    [26] Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins[J]. Science, 1988, 240: 1759-1762
    [27] Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ. Characterization of eds1 a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several
    different RPP genes[J].Plant Cell,1996,8(11):2033-2046
    
    [28]Century KS,Shapiroad AD,Repetti PP,Dahlbeck D,Holub E,Staskawicz BJ.NDR1 a pathogen-induced component required for Arabidopsis disease resistance[J].Science,1997,278(5345):1963-1965
    [29]Traut TW.The function and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites[J].Eur J Biochem,1994,222(1):9-19
    [30]Meyers BC,Dickerman AW,Michelmore RW,Sivaramakrishnan S,Sobral BW,Young ND.Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily[J].Plant J,1999,20(3):317-332
    [31]Meyers BC,Kozik A,Griego A,Kuang H,Michelmore RW.Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis[J].Plant Cell,2003,15(4):809-834
    [32]Bent AF,Kunkel BN,Dahlbeck D,Brown KL,Schmldt RL,Giraudat J,Leung JL,Staskawicz BJ.RPS2 of Arabidopsis thaliana:A leucine-rich repeat class of plant disease resistance genes[J].Science,1994,265(5180):1856-1860
    [33]Bent AF.Plant disease resistance genes:function meets structure[J].Plant Cell,1996,8(10):1757-1771
    [34]Tameling WI,Elzinga SD,Darmin PS,Vossen JH,Takken FL,Haring MA,Cornelissen BJ.The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity[J].Plant Cell,2002,14(11):2929-2939
    [35]van der Biezen EA,Jones JDG.Plant disease-resistance proteins and the gene-for-gene concept[J].Trends Biochem Sci,1998,23(12):454-456
    [36]Song WY,Pi LY,Wang GL,Gardner J,Holsten T,Ronald PC.Evolution of the rice xa21 disease resistance gene family[J].Plant Cell,1997,9(8):1279-1287
    [37]Meyers BC,Chin DB,Shen KA,Sivaramakrishnan S,Lavelle DO,Zhang Z,Michelmore RW.The major resistance gene cluster in lettuce is highly duplicated and spans several megabases[J].Plant Cell,1998,10(11):1817-1832
    [38]Wang ZX,Yano M,Yamanouchi U,Iwamoto M,Monna,L,Hayasaka H,Katayose Y,Sasaki T.The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes[J].Plant J,1999,19(1):55-64
    [39]Noel L,Moores TL,van der Biezen EA,Pamiske M,Daniels MJ,Parker JE,Jones JDG. Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis[J].Plant Cell,1999,11(11):2099-2112
    [40]Mondragon-Palomino M,Meyers BC,Micheimore RW,Gaut BS.Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana[J].Genome Res,2002,12(9):1305-1315
    [41]Strain E,Muse SV.Positively selected sites in the Arabidopsis receptor-like kinase gene family[J].J Mol Evol,2005,61(3):325-332
    [42]Parniske M,Hammond-Kosack KE,Golstein C,Thomas CM,Jones DA,Harrison K,Wulff BBH,Jones JDG.Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato[J].Cell,1997,91(6):821-832
    [43]Jones DA,Jones JDG.The role of leucine-rich repeat proteins in plant defenses[J].Adv Bot Res,1997,24:90-167
    [44]Ellis J,Dodds P,Pryor T.The generation of plant disease resistance gene specificities[J].Trends Plant Sci,2000,5(9):373-379
    [45]Jia Y,McAdams SA,Bryan GT,Hershey HP,Valent B.Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J].EMBO J,2000,19(15):4004-4014
    [46]Dodds PN,Lawrence G J,Catanzariti AM,Teh T,Wang CI,Ayliffe MA,Kobe B,Ellis JG.Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes[J].Proc Natl Acad Sci USA,2006,103(23):8888-8893
    [47]Zhou T,Wang Y,Chen JQ,Araki H,Jing Z,Jiang K,Shen J,Tian D.Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes[J].Mol Genet Genomics,2004,271(4):402-415
    [48]Clark SE,Williams RW,Meyerowitz EM.The CLAVATAI gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis[J].Cell,1997,89(4):575-585
    [49]Warren RF,Henk A,Mowery P,Holub E,Innes RW.A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes[J].Plant Cell,1998,10(9):1439-1452
    [50]Thomas L.Illuminating the molecular basis of gene-for-gene resistance of Arabidopsis thaliana RRS1-R and its interaction with Ralstonia solanacearurn popP2[J].Trends Plant Sci,2004,9(1):1-4
    [51]Flor HH.Current status of the gene-for-gene concept[J].Annu Rev Phytopathol,1971,9:275-296
    [52]Luderer R,Rivas S,Nurnberger T,Mattei B,van den Hooven HW,van der Hoorn RA,Romeis T,Wehrfi-itz JM,Blume B,Nennstiel D,Zuidema D,Vervoort J,de Lorenzo G,Jones JDG,de Wit PJGM,Joosten MHAJ.No evidence for binding between resistance gene product Cf-9 of tomato and avirulence gene product AVR9 of Cladosporium fulvum[J].Mol Plant Microbe Interact,2001,14(7):867-876
    [53]Ren T,Qu F,Morris TJ.HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus[J].Plant Cell,2000,12(10):1917-1925
    [54]Reuber TL,Ausubel FM.Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes[J].Plant Cell,1996,8(2):241-249
    [55]Deslandes L,Olivier J,Theulieres F,Hirsch J,Feng DX,Bittner-Eddy P,Beynon J,Marco Y.Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene,a member of a novel family of resistance genes[J].Proc Natl Acad Sci USA,2002,99(4):2404-2409
    [56]Deslandes L,Olivier J,Peeters N,Feng DX,Khounlotham M,Boucher C,Somssich I,Genin S,Marco Y.Physical interaction between RRSI-R,a protein conferring resistance to bacterial wilt,and PopP2,a type Ⅲ effector targeted to the plant nucleus[J].Proc Natl Acad Sci USA,2003,100(13):8024-8029
    [57]McDowell JM.and Woffenden BJ.Plant disease resistance genes,recent insights and potential applications[J].Trends Biotechnol,2003,21(4):178-183
    [58]Axtell MJ,Staskawicz BJ.Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of R/N4[J].Cell,2003,112(3):369-377
    [59]Mackey D,Holt BF,Wiig A,Dangl JL.RIN4 interacts with Pseudomonas syringae type Ⅲ effector molecules and is required for RPM1-mediated resistance in Arabidopsis[J].Cell,2002,108(6):743-754
    [60]Mackey D,Belkhadir Y,Alonso JM,Ecke r JR,Dang J.Arabidopsis RIN4 is a target of the type Ⅲvirulence effector AvrRpt2 and modulates RPS2-mediated resistance[J].Cell,2003,112(3):379-389
    [61]Kim HS,Desveaux D,Singer AU,Patel P,John S,Dangl JL.The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation[J]. Proc Natl Acad Sci USA, 2005, 102(18): 6496-6501
    [62] Salmeron JM, Barker SJ, Carland, FM, Mehta AY, Staskawicz BJ. Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition[J]. Plant Cell, 1994, 6(4): 511-520
    [63] Salmeron JM, Oldroyd GE, Rommens CM, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, Staskawicz BJ. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster[J]. Cell, 1996, 86(1): 123-133
    [64] Pedley KF, Martin GB. Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato[J]. Annu Rev Phytopathol, 2003, 41: 215-243
    [65] Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD. Map-based cloning of a protein kinase gene conferring disease resistance in tomato[J]. Science, 1993,262(5138): 1432-1436
    [66] Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato[J]. Science, 1996, 274(5295): 2063-2065
    [67] Mucyn TS, Clemente A, Andriotis VME, Balmuth AL, Oldroyd GED, Staskawicz BJ, Rathjen JP. The NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity[J]. Plant Cell, 2006, 18(10): 2792-2806
    
    [68] Jones JDG, Dangl JL. The plant immune system[J]. Nature, 2006,444: 323-329
    [69] Yang SH, Feng ZM, Zhang XY, Jiang K, Jin XQ, Hang YY, Chen JQ, Tian DC. Genome-wide investigation on the genetic variations of rice disease resistance genes [J]. Plant Mol Biol, 2006, 62(1-2): 181-193
    [70] Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD. Molecular genetics of plant disease resistance[J]. Science, 1995,268(5211): 661-667
    [71] Song WY, Wang GL, Chen LI, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P. A receptor kinase like protein encoded by the rice disease resistance gene Xa21[J]. Science, 1995, 270(5243): 1804-1806
    [72] Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JD. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins[J]. Cell, 1996, 84(3): 451-459
    [73] Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ, Ellis JG. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine rich repeat coding region[J]. Plant Cell, 1997, 9(4): 641-651
    [74] Friedman AR, Baker BJ, The evolution of resistance genes in multi-protein plant resistance systems[J]. Curr Opin Genet Dev, 2007,17(6): 493-499
    [75] Wicker T, Yahiaoui N, Keller B. Illegitimate recombination is a major evolutionary mechanism for initiating size variation in plant resistance genes[J]. Plant J, 2007, 51(4): 631-641
    [76] Baumgarten A, Cannon S, Spangler R, May G. Genome-level evolution of resistance genes in Arabidopsis thaliana[J]. Genetics, 2003, 165(1): 309-319
    [77] Hulbert SH, Bennetzen JL. Recombination at the Rp1 locus of maize[J]. Mol Gen Genet, 1991, 226(3): 377-382
    [78] McDowell JM, Dhandaydham M, Long TA, Aarts MGM, Goff S,Holub EB, Dangl JL. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 Locus of Arabidopsis [J]. Plant Cell, 1998,10(11): 1861-1874
    [79] Chin DB, Arroyo-Garcia R, Ochoa OE, Kesseli RV, Lavelle DO, Michelmore RW. Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa) [J]. Genetics, 2001, 157(2): 831-849
    [80] Sun Q, Collins NC, Ayliffe M, Smith SM, Drake J, Pryor T, Hulbert SH. Recombination between paralogues at the rp1 rust resistance locus in maize[J]. Genetics, 2001, 158(1): 423-438
    [81] Mondragon-Palomino M, Gaut BS. Gene conversion and the evolution of three leucine-rich repeat gene families in Arabidopsis thaliana[J]. Mol Biol Evol, 2005,22(12): 2444-2456
    [82] Yahiaoui N, Brunner S, Keller B. Rapid generation of new powdery mildew resistance genes after wheat domestication[J]. Plant J, 2006,47(1): 85-98
    [83] Petes TD, and Hill CW. Recombination between repeated genes in microorganisms[J]. Annu Rev Genet, 1988,22: 147-168
    [84] Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce[J]. Plant Cell, 2004, 16(11): 2870-2894
    
    [85] Kuang H, Wei F, Marano MR, Wirtz U, Wang X, Liu J, Shum WP, Zaborsky J, Tallon LJ, Rensink W et al. The Rl resistance gene cluster contains three groups of independently evolving, type I R1 homologues and shows substantial structural variation among haplotypes of Solanum demissum[J]. Plant J, 2005,44(1): 37-51
    [86] Parniske M, Jones JD. Recombination between diverged clusters of the tomato Cf-9 plant disease resistance gene family[J]. Proc Natl Acad Sci USA, 1999, 96(10): 5850-5855
    [87] Smith SM, Hulbert SH. Recombination events generating a novel Rp1 race specificity [J]. Mol Plant Microbe Interact, 2005, 18(3): 220-228
    [88] Seah S, Telleen AC, Williamson VM. Introgressed and endogenous M-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues[J]. Theor Appl Genet, 2007,114(7): 1289-1302
    [89] Gao LZ, Innan H. Very low gene duplication rate in the yeast genome[J]. Science, 2004, 306(5700): 1367-1370
    [90] Slightom JL, Blechl AE, Smithies O. Human fetal G γ- and A γ-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes[J]. Cell, 1980, 21(3): 627-638
    [91] Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC. Rapid duplication and loss of genes coding for the alpha chains of hemoglobin[J]. Proc Natl Acad Sci USA, 1980, 77(4): 2158-2162
    [92] Flavell RA, Allen H, Burkly LC, Sherman DH, Waneck GL, Widera G. Molecular biology of the H-2 histocompatibility complex[J]. Science, 1986,233(4762): 437-443
    [93] Gyllensten U, Sundvall M, Ezcurra I, Erlich HA. Genetic diversity at class II DRB loci of the primate MHC[J]. J Immunol, 1991, 146(12): 4368-4376
    [94] Parham P, Ohta T. Population biology of antigen presentation by MHC class I molecules[J]. Science, 1996,272(5258): 67-74
    [95] Ohta T. Role of gene conversion in generating polymorphisms at major histocompatibility complex loci[J]. Hereditas, 1997, 127(1-2): 97-103
    [96] Messier W, Stewart CB. Episodic adaptive evolution of primate Iysozymes[J]. Nature, 1997, 385(6612): 151-154
    [97] Wang GL, Ruan DL, Song WY, Steve S, Chen LL, Pi LY, Zhang SP, Zhang Z, Fauquet C, Brandon SG, Maureen CW, Pamela CR. Xa21D encodes a receptor like molecule with a leucine rich repeat domain that determines race specific recognition and is subject to adaptive evolution[J]. Plant Cell, 1998,10: 765-779
    [98] Woodhouse MR, Freeling M, Lisch D. Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors[J]. PLoS Biol, 2006, 4(10): e339
    [99] Liu J, He Y, Amasino R, Chen X. siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis[J]. Genes Dev, 2004, 18(23): 2873-2878
    [100] Cullis CA, Swami S, Song Y. RAPD polymorphisms detected among the flax genotrophs[J]. Plant Mol Biol, 1999,41(6): 795-800
    [101] Grandbastien MA, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa AP, Le QH, Melayah D, Petit M, Poncet C, Tam SM, Van Sluys MA, Mhiri C. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae[J]. Cytogenet Genome Res, 2005, 110(1-4): 229-241
    [102] Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR, Young ND. Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies [J]. J Mol Evol, 2002, 54(4): 548-562
    [103] Pan Q, Wendel J, Fluhr R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes[J]. J Mol Evol, 2000, 50(3): 203-213
    [104] Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) [J]. Science, 2002,296(5565): 92-100
    [105] Bai JF, Pennill LA, Ning JC, Lee SW, Ramalingam J, Webb CA, Zhao BY, Sun Q, Nelson JC, Leach JE, Hulbert SH. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals[J]. Genome Res, 2002, 12(12): 1871-1884
    [106] Richly E, Kurth J, Leister D. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution[J]. Mol Biol Evol, 2002, 19(1): 76-84
    [107] Otto S, Young P. The evolution of gene duplicates[J]. Adv Genet, 2002,46: 451-483
    [108] Michelmore RW, Meyers BC. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process[J]. Genome Res, 1998, 8(11): 1113-1130
    [109] Lynch E, Force A. The probability of duplicate gene preservation by subrunctionalization[J]. Genetics, 2000, 154(1): 459-473
    
    [110] Hickey DA, Bally-Cuif L, Abukashawa S, Payant V, Benkel BF. Concerted evolution of duplicated protein-coding genes in Drosophila[J]. Proc Natl Aca Sci USA, 1991, 88(5): 1611-1615
    [111] Walsh JB. Sequence-dependent gene conversion: Can duplicated genes diverge fast enough to escape conversion?[J]. Genetics, 1987, 117(3): 543-557
    [112] Hulbert SH, Webb CA, Smith SM, Sun Q. Resistance gene complexes: Evolution and utilization[J]. Annu Rev Phytopathol, 2001,39: 285-312
    [113] Arumuganathan K, Earle ED. Nuclear DNA content of some important plant species[J]. Plant Molecular Biology Reports, 1991, 9: 208-218
    [114] Dvorak J, McGuire PE, Cassidy B. Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences[J]. Genome, 1988, 30: 680-689
    [115] Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier MF, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B. Molecular Basis of Evolutionary Events That Shaped the Hardness Locus in Diploid and Polyploid Wheat Species (Triticum and Aegilops) [J]. Plant Cell, 2005, 17(4): 1033-1045
    [116] Dvorak J, Zhang HB. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes[J]. Proc Natl Acad Sci USA, 1990, 87(24): 9640-9644
    [117] Huang S, Sirikhachornkit A, Su XJ, Faris J, Gill B, Haselkorn R, Gornicki P. Genes encoding plastid acetyl-CoA carboxylase and 3- phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat[J]. Proc Natl Acad Sci USA, 2002, 99(12): 8133-8138
    [118] Wicker T, Yahiaoui N, Guyot R, Liu Z, Dubcovsky J & Keller B. Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat[J]. Plant Cell, 2003, 15(5): 1186-1197
    [119] Feldman M, Lupton FGH, Miller TE. Wheats, in Evolution of Crop Plants(Ed. by Smartt J and Simmonds NW) [M]. Longman Scientific and Technical Press, London, 1995, ppl84-192
    [120] Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS. Map-based cloning of leaf rust resistance gene Lr2l from the large and polyploid genome of bread wheat[J]. Genetics, 2003, 164(2): 655-664.
    [121]Feuillet C,Travella S,Stein N,Nublat A,Keller B.Map-based isolation of the leaf rest disease resistance gene Lr10 from the hexaploid wheat(Triticum aestivum L) genome[J].Proc Natl Acad Sci USA,2003,100(25):15253-15258
    [122]贾继增.小麦的抗叶锈基因及抗原[J].国外农学-麦类作物,1990,(2):32-34
    [123]Denissen CJM.Influence of race and post infection temperature on two components of partial resistance to wheat leaf in seedings of wheat[J].Euphytica,1991,58(1):13-20
    [124]Kolmer JA.Genetics of resistance to wheat leaf rust[J].Annu Rev Phytopathol,1996,34:435-455
    [125]王剑雄.抗病虫性的鉴定和利用.见:小麦育种研究进展(1991-1995)(庄巧生,杜振华主编)[M].北京:中国农业出版社,1996:234-240
    [126]李振歧,曾士迈.《中国小麦锈病》[M].北京:中国农业出版社,2004,1-3
    [127]许志刚主编.《普通植物病理学》[M].中国农业出版社,1997
    [128]Ausemus ER,Harrington JB,Reitz LP,Worzella WW.A summary of genetic studies in hexaploid and tetraploid wheats[J].J Am Soc Agron,1946,38:1083-1099
    [129]McIntosh RA,Wellings CR,Park RF.Wheat Rusts:An Atlas of Resistance Genes(ed.A.Cloud-Guest & K.Jeans )[M].Dordrecht:Kluwer,1995,pp1-200
    [130]Long DL,Kolmer JA.A North American system of nomenclature for Puccinia recondite f.sp.tritici[J].1989,79:525-529
    [131]Roefs AP,Singh RP.Rust diseases of wheat:concepts and methods of disease management[C].Mexico,DF:CIMMYT,1992,81pp.
    [132]Gill KS,Lubbers EL,Gill BS,Raupp WJ,Cox TS.A genetic-linkage map of Triticum tauschii (DD) and its relationship to the D-genome of bread wheat(AABBDD)[J].Genome,1991,34:362-374
    [133]Qiu JW,Schurch AC,Yahiaoui N,Dong LL,Fan HJ,Zhang ZJ,Keller B,Ling HQ.Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat[J].Theor Appl Genet,2007,115(2):159-168
    [134]Cloutier S,McCallum BD,Loutre C,Banks TW,Wicker T,Feuillet C,Keller B,Jordan MC.Leaf rust resistance gene Lr1,isolated from bread wheat(Triticum aestivum L.) is a member of the large psr567 gene family[J].Plant Mol Biol,2007,65(1-2):93-106
    [135]Feuillet C,Messmer M,Schachermayr G,Keller B.Genetic and physical characterization of the Lr1 leaf rust resistance locus in wheat (Triticum aestivum L.) [J]. Mol Gen Genet, 1995, 248(5): 553-562
    [136] Ling HQ, Zhu YX, Keller B. High-resolution mapping of the leaf rust disease resistance gene Lr1 in wheat and characterization of BAC clones from the Lr1 locus[J]. Theor Appl Genet, 2003, 106(5): 875-882
    [137] Ling HQ, Qiu JW, Singh RP, Keller B. Identification and genetic characterization of an Aegilops tauschii ortholog of the wheat leaf rust disease resistance gene Lr1[J]. Theor Appl Genet, 2004, 109(6): 1133-1138
    [138] Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J].Nucleic Acids Res, 1997,25(24): 4876-4882

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700