用户名: 密码: 验证码:
不同玉米骨干自交系氮素利用的差异蛋白质组学初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米(Zea mays L)是世界上最重要的食粮之一,平均单产居首位。就目前全球情况而言,增加氮肥的施用量是提高玉米产量的一条重要措施。然而氮肥施用只能在一定程度上增加其产量,施用过量不但给生产者带来更多的经济负担,而且带来严重的环境问题。我国西南地区玉米主要种植于较贫瘠的土壤中。因此研究玉米的骨干自交系,尤其是对氮素反应敏感度不同的自交系,氮素利用差异的机理,有利于搞清楚玉米耐低氮品种在低氮胁迫下启动应急的机制,从而为选育高肥料利用效率品种奠定基础。
     本研究选取在育种中广泛应用玉米骨干自交系耐瘠薄的黄早四和不耐瘠薄的Mo17为材料。研究二者在无土栽培条件下以硝酸钙为唯一氮源且施氮浓度梯度为0mmol/L、2mmol/L、4mmol/L、8mmol/L下株型、干物质积累差异,并以双向电泳技术分别研究在上述栽培条件下黄早四、Mo17叶片蛋白质组表达的差异,得到以下结论:
     1.黄早四在前期的营养生长中株高叶面积不如Mo17,干物质积累量也比Mo17少,但是在后期成熟时的干物质积累总量和Mo17相当,生殖生长的干物质积累比Mo17多,并且每个生长时期黄早四在不同施氮水平间的差异表现均没有Mo17明显,黄早四在4mmol/L时能够获得与8mmol/L相近的生物学产量,据此推断黄早四比Mo17更具有耐瘠薄的特点。
     2.黄早四、Mo17在苗期和拔节期的各个施氮水平叶片表达的蛋白质组进行双向电泳分析,检测到各个时期Mo17表达的蛋白点均少于黄早四。这可能与黄早四比Mo17更耐瘠薄有关。分别分析相同自交系同一时期不同施氮水平的双向电泳图谱,对其中28个差异表达的蛋白点进行肽质量指纹图谱分析,结果表明28个蛋白中包括了大量的未知蛋白,其中27个蛋白点与玉米以外的其他植物种属同源。
     3.黄早四和Mo17拔节期均检验到1,5-二磷酸核酮糖羧化酶/加氧酶大亚基且这一蛋白的表达量在黄早四和Mo17中均随着施氮浓度的增加呈上升的趋势。在相同施氮水平下黄早四1,5-二磷酸核酮糖羧化酶/加氧酶大亚基表达量高于Mo17,这可能是黄早四比Mo17更耐低氮胁迫的原因之一。
     4.在黄早四苗期和Mo17的拔节期均检测到了半胱氨酸蛋白酶抑制蛋白,证明半胱氨酸蛋白酶抑制蛋白作为一种逆境诱导蛋白,对玉米氮素胁迫起作用。在黄早四苗期中半胱氨酸蛋白酶抑制蛋白随着施氮浓度的增加表达量呈献上升的趋势,而Mo17拔节期的情况正好相反。这可能是黄早四对施氮水平较Mo17不敏感的原因。
     5.在Mo17拔节期检测到抗病基因编码的一类NBS-LRR蛋白,这种蛋白首次在玉米的氮素胁迫中被检测到。推测该蛋白对玉米对氮素的反应起作用。但这一蛋白质在氮代谢过程中的具体功能以及如何参与整个过程,还需要进一步研究。
Maize (Zea mays L) is one of the most important foods and the average yield is highest in the world. All over the world, increase the nitrogen fertilizer application rate is an important measure to increase maize production right now. However, application of nitrogen fertilizer only increase yield to a certain extent, excessive use not only bring more economic burden to producers and caused serious environmental problems. Study the Elite Maize Inbred Lines with different sensitivity of nitrogen response especially and the different mechanism of nitrogen use are conducive to clear the emergency activate mechanism in low nitrogen stress of bear low nitrogen corn variety, lay the foundation for breeding the variety with high use efficiency of fertilizer.
     Huangzaosi and Mo17 the Elite Maize Inbred Lines was studied in this paper, they were widely used in breeding, Huangzaosi was seen as bear low nitrogen variety and Mo17 was not bear low nitrogen. Study the difference of the plant type and dry matter accumulation between these two varieties under taking the Ca(NO_3)_2 for the nitrogen source and setting a gradient of 0mmol /L、2mmol / L、4mmol / L、8mmol / L soil-free cultivation condition. After that using 2D electrophoresis technology analyze the differences of the leaf proteome expression. The follows are the results:
     1. In the earlier vegetative growth period Huangzaosi's leaf area is smaller, length is shorter and the material accumulation quantity is also less than Mo17. But in later period of mature time Huangzaosi's dry material accumulation quantity are almost the same to Mo17. This means Huangzaosi accumulation more dry material than Mo17 in mature time. And Huangzaosi's differences exhibitions are less than Mo17 between gradients. Huangzaosi have almost the same biological productions between gradients 4mmol/L and 8mmol / L. So mine infers according to the above is Huangzoasi is not as sensitive as Mo17 to the nitrogen.
     2. Analysis Huangzaosi and Mo17 leaf expressing proteome in each nitrogrn levels during seeding stage and shooting stage with 2D-electrophoretic. The result shows that Huangzaosi expressing more protein spots than Mo17, maybe this is the reason why Mo17 is as sensitive as Huangzaosi to the nitrogen. Analysis the same inbreeding line 2D picture, using peptide mass fingerprinting analysis 28 spots the result shows that most of the protein spots are unknown protein and come from other kind of plants.
     3. Ribulose-1,5-bisphosphate carboxylase/ oxygenase large subunit has been found in both Huangzaosi and Mo17 in the seeding stage. And the ribulose-1,5-bisphosphate carboxylase / oxygenase large subunit expression level increased with the nitrogen gradient in both Huangzaosi and Mo17. In the same nitrogen gradient ribulose-l,5-bisphosphate carboxylase / oxygenase large subunit expression level in Huangzaosi is higher than Mol7. This maybe the reason Huangzoasi is not as sensitive as Mo17 between the nitrogen levels.
     4. Cysteine protease inhibitor is found in both seeding stage of Huangzoasi and jointing stage of Mo17. This proved the cysteine protease inhibitor is as a kind of adversity stress protein also has effect in maize stress resistance. In the seeding stage of Huangzoasi the cysteine protease inhibitor expression level is increased with the nitrogen gradient, but in the jointing stage of Mo17 the cysteine protease inhibitor expression level is decreased with the nitrogen gradient. This maybe another reason for Huangzoasi is not as sensitive as Mo17 between the nitrogen levels.
     5. A class of NBS-LRR protein which is known coding by disease-resistant gene is found in Mo17 jointing stage, this is the first time this protein found in adversity stress maize. Extrapolation this protein has an effect to corn's resistance. But how this protein participates in the entire process of nitrogen metabolism, and the protein's function are not known. So further study about this protein are need.
引文
[1]刘治先.世界玉米经济的现状和发展趋势.杂粮作物,1998(2):7-11
    [2]秦先魁,刘启觉.浅论玉米的综合利用与开发.粮食与饲料工业,2000(10):46-47
    [3]樊智翔,郭玉宏,安伟等.玉米综合利用的现状及发展前景.山西震孝大李学报,2003(02):182-184
    [4]陈守伦,杜森,高祥照等.我国玉米施肥存在问题及建议.中国农技推广,2001(02):34-35
    [5]安红卫,吕军杰.玉米黄改系主要农艺性状配合力的研究,杂粮作物 2000,1:1-4
    [6]Sawyer,J.E.,M.A.Schmitt,R.G.Hoeft.Inorganic nitrogen distribution and soil chemical transformations associated with injected liquid beef manure.Agron,1990(82):963-969
    [7]张绍林,朱兆良,徐银华.稻田氮肥施用技术的改进.土壤,1992(01):19-22
    [8]邓美华,尹斌,石孝均.不同施氮量和施氮方式对稻田氨挥发损失的影响.土壤,2006(3):263-269
    [9]郑祖平.玉米SSR分子标记连锁图谱构建及两种供氮水平下主要农艺性状QTL定位分析.四川农业大学,2004
    [10]王忠主编.植物生理学.中国农业出版社,2000
    [11]Forde BG,Clarkson DT.Nitrate and ammonium nutrition of plants.Physiological and molecular perspectives.Advances in Botanical Research,1999(30) 1-90
    [12]Frank T,B inham.So lut ion culture studies of nit rite toxicity to p lants[M].Soil Science Society P roceedings,1954:305-308
    [13]McClure P R Spanswick R M Spanswick R.MEvidence for cotransport of nitrate and protons in maize roots,1 Effects of nitrate on the membrane potential.Plant Physiology,1990(93):281-289
    [14]Aslam M Huffaker R C Huffaker R C.Comparative kinetics and recisprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley(Hordeum vulgare L) seedlings.Plant Physiology,1992(99):1124-1133
    [15]Aslam M Huffaker R C Huffaker R C.Comparative induction of nitrate and nitrite uptake and reduction systems by ambient nitrate and nitrite in intact roots of barley(Hordeum vulgare L.)seedlings.Plant Physiology,1993(102):811-819
    [16]Crawford N M,Glass A D M.Molecular and physiological aspects of nitrate uptake in plants.Trends Plant Sci,1998,(3):389-395
    [17]FORDE B G.Nitrate transporters in plants:structure,function and regulation.Biochim Biophys Acta,2000(1465):219-235
    [18]Solomonson LP,Barber MJ.Assimilatory nitrate reductase:functional properties and regulation.Annual Review of Plant Physiology and Plant Molecular Biology,1990(41):225-253
    [19]LILLO C.Light regulation of nitrate reductases in green leaves of higher plants[J].Physiol.Plant,1994,90:616-620
    [20]Kaiser,W.M.and Spill,D..Rapid modulation of spinach leaf nitrate reductase activity by photosynthesis.Ⅱ.In vitro modulation by ATP and AMP.Plant Physiol.1991(96):368-375
    [21]Kaiser,W.M.and Huber,S.C.Posttranslational regulation of nitrate reductase in higher plants.Plant Physiol.1994(106):817-821
    [22]MacKintosh,C.and Meek,S.E.Regulation of plant NR activity by reversible phosphorylation,14-3-3 proteins and proteolysis.Cell Mol Life Sci 2001(58):205-214
    [23]Siegel,L.M.and Wilkerson,J.O.Molecular and Genetic Aspects of Nitrate Assimilation.Oxford Science Publications,1989:263-283,
    [24]严小龙,张福锁.植物营养遗传学.中国农业出版社(北京),1997
    [25]W.G.Pollmer.Genetic Control of Nitrogen Uptake and Translocation in Maize.Crop Sci,1979:82-86
    [26]Moll RH,Kamprath EJ,Jackson W A.Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization.Agronomy J,1982(74):562-564
    [27]Wan H.L.,Tsai K.R.,Chemical modeling of biological nitrogen fixation XIV EHMO study of probable modes of 3(2) coordination of some nitrogenas substrates(cyclopropene etc.) and reductive hydrogenation intermediates of N2,J.Xiamen Univ.(Natural Science),1981,20(1),62-73[
    28]Mackay AD and Barber SA.Effects of nitrogen on root growth o f two corn genotypes in the field.Agron.J.1986(77):699-703
    [29]Wiesler F,Horst W J.Root growth and nitrate utilization of maize cultivars underfield conditions.Plant Soil,1994(163):267-277
    [30]Perez Leroux,S.P.Long.Growth Analysis of Contrasting Cultivars of Zea mays L.at Different Rates of Nitrogen Supply.Katholieke Universiteit
    [31]Wilkins M R,Sanchez J C,Gooley A A,et.Progress with proteome projects:why all proteins expressed by a genome shouid be identified and how to do it.Biotech&Genetic Engineering Rev,1995(13):19-50
    [32]D C Liebler.蛋白质组学导论:生物学的新工具(M).北京:科学出版社,2005
    [33]Kahn P.From genome to proteome:looking ai a cell's proteins.Science,1995,270:369-370
    [34]Wilkins M R,Sanchez J C,Gooley A A,et.Progress with proteome projects:why all proteins expressed by a genome shouid be identified and how to do it.Biotech&Genetic Engineering Rev,1995(13):19-50
    [35]Chakravarti DN,Chakravati B,Moutsatos I.Informatic tools for proteome profility.Computational Proteomics,2002,Suppl(32):4-15
    [36]李伯良.功能蛋白质组学(J).生命科学,1998,18(6):1-4
    [37]张效云,董明纲,闫智宏.功能蛋白质组学研究.医学综述,2002,(8):689-690
    [38]陈主初.肿瘤蛋白质组学的研究进展.癌症,2004,23(2):113-11
    [39]陈主初,梁宋平.肿瘤蛋白质组学(M).长沙:湖南科技出版社.2002:1-7
    [40]池志强,陈晓岚.划时代的新药武器——蛋白质组学及其对新药研发的意义.中国处方 药,2003,4(4):46-48
    [41]柴小清,靳飞,张艳萍,卫功宏等.缺铁逆境胁迫下水稻叶蛋白质组的双向电泳分析.首都师范大学学报,2004,25(3):46-51
    [42]O'Farrell PH.High resolution two-domensional electrophoresis of proteins.J Biol Chem,1975,250:4007-4021
    [43]Klose J.Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues.A novel approach to testing for induced point mutations in mammals.Humangenetik,1975,26:231-243
    [44]D C Liebler.蛋白质组学导论:生物学的新工具(M).北京:科学出版社,2005
    [45]王京兰,张养军,蔡耘等.生物质谱结合IMAC亲和提取和磷酸酶水解分析蛋白质磷酸化修饰(J).生物化学与物理学学报,2003,35(5):459-466
    [46]Klose J,Kobalz U.Two-dimensional electrophoresis of proteins:an undated protocol and implications for a functional analysis of the genome.Electrophoresis,1995(16):1034-1059
    [47]Anderson N G.Anderson N L.Clin.Chem.,1982(28):739-1029
    [48]Anderson N G.Anderson N L.(Eds.) Clin.Chem.,1982(28):737-1029
    [49]Gasparic V,Bjellqvist B,Rosengren A.1975 Swedish Patent No.7514049-1
    [50]Bjellqvist B,Ek.K,Righetti P G,Gianazza E,GOrg A,Postel W,Westermeier R.J.Biochem.Biophys.Methods,1982(6):317-339
    [51]Laemmli UK.Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature,1970(22):680-685
    [52]郭尧君.蛋白质电泳实验技术(M).北京:科学出版社,2005
    [53]Fan BL,Wang ZY,Chen H,et al.Comparative studies on proteins of cytoplasmic male-sterile wheat and its maintainer by 2D-PAGE in Triticum aestivum.Shi Yah Sheng Wu Xue Bao.2004,37(1):45-49
    [54]Wen L,Liu G,Zhang ZJ,et al.Preliminary proteomics analysis of the total proteins of HL Type cytoplasmic male sterility rice anther.Yi Chuan.2006,28(3):311-316
    [55]Xie Z,Wang J,Cao M,et al.Pedigree analysis of an elite rice hybrid using proteomic approach.Proteomics.2006,6(2):474-486
    [56]Islam N,Upadhyaya NM,Campbell PM,et al.Decreased accumulation of glutelin types in rice grains constitutively expressing a sunflower seed albumin gene.Phytochemistry.2005,66(21):2534-2539
    [57]Komatsu S,Abbasi F,Kobori E,et al.Proteomic analysis of rice embryo:an approach for investigating Galpha protein-regulated proteins.Proteomics.2005,5(15):3932-3941
    [58]Zhao C,Wang J,Cao M,et al.Proteomic changes in rice leaves during development of field-grown rice plants.Proteomics.2005,5(4):961-972
    [59]Bennett JO,Yu O,Heatherly LG,et al.Accumulation of genistein and daidzein,soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation. J Agric Food Chem. 2004,52(25): 7574-7579
    [60]Natarajan SS, Xu C, Bae H, et al. Characterization of Storage Proteins in Wild (Glycine soja) and Cultivated (Glycine max) Soybean Seeds Using Proteomic Analysis. J Agric Food Chem. 2006,54(8): 3114-3120
    [61]Krishnan HB, Bennett JO, Kim WS, et al. Nitrogen lowers the sulfur amino acid content of soybean (Glycine max [L.] Merr.) by regulating the accumulation of Bowman-Birk protease inhibitor. J Agric Food Chem.2005, 53(16): 6347-6354
    [62]Bahrman N, Le Gouis J, Negroni L, et al. Differential protein expression assessed by two-dimensional gel electrophoresis for two wheat varieties grown at four nitrogen levels. Proteomics. 2004,4(3): 709-719
    [63]Azevedo RA, Lea PJ, Damerval C, et al. Regulation of lysine metabolism and endosperm protein synthesis by the opaque-5 and opaque-7 maize mutations. J Agric Food Chem. 2004, 52(15): 4865-4871
    [64]Di Luccia A, Lamacchia C, Fares C, et al. A proteomic approach to study protein variation in GM durum wheat in relation to technological properties of semolina. Ann Chim. 2005,95(6): 405-414
    [65]Salt LJ, Robertson JA, Jenkins JA, et al. The identification of foamforming soluble proteins from wheat (Triticum aestivum) dough. Proteomics.2005, 5(6): 1612-1623
    [66]Mamone G, Addeo F, Chianese L, et al. Characterization of wheat gliadin proteins by combined two-dimensional gel electrophoresis and tandem mass Spectrometry. Proteomics. 2005, 5(11): 2859-2865
    [67]Schultz J, Gottlieb DM, Petersen M, et al. Explorative data analysis of two-dimensional electrophoresis gels. Electrophoresis. 2004,25(3): 502-11
    [68]Ikeda TM, Araki E, Fujita Y, et al. Characterization of low-molecularweight glutenin subunit genes and their protein products in common wheats. Theor Appl Genet. 2006, 112(2): 327-334
    [69]Yahata E, Maruyama-Funatsuki W, Nishio Z, et al. Wheat cultivarspecific proteins in grain revealed by 2-DE and their application to cultivar identification of flour. Proteomics. 2005, 5(15): 3942-3953
    [70]di Cagno R, de Angelis M, Alfonsi G, et al. Pasta made from durum wheat semolina fermented with selected lactobacilli as a tool for a potential decrease of the gluten intolerance. J Agric Food Chem. 2005, 53(11): 4393-4402
    [71]Majoul T, Bancel E, Triboi E, et al. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat-responsive proteins from non-prolamins fraction. Proteomics. 2004,4(2): 505-513
    [72]Lin SK, Chang MC, Tsai YG, et al. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics. 2005, 5(8): 2140-2156
    [73]Cui S,Huang F,Wang J,et al.A proteomic analysis of cold stress responses in rice seedlings.Proteomics.2005,5(12):3162-3172
    [74]Yan SP,Zhang QY,Tang ZC,et al.Comparative proteomic analysis provides new insights into chilling stress responses in rice.Mol Cell Proteomics.2006,5(3):484-496
    [75]Imin N,Kerim T,Weinman JJ,et al.Low temperature treatment at the young microspore stage induces protein changes in rice anthers.Mol Cell Proteomics.2006,5(2):274-92
    [76]Parker R,Flowers TJ,Moore AL,et al.An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina.J Exp Bot.2006;57(5):1109-1118
    [77]Kim DW,Rakwal R,Agrawal GK,et al.A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf.Electrophoresis.2005,26(23):4521-4539
    [78]Yan S,Tang Z,Su W,et al.Proteomic analysis of salt stress-responsive proteins in rice root.Proteomics.2005,5(1):235-244
    [79]Huo CM,Zhao BC,Ge RC,et al.Proteomic analysis of the salt tolerancemutant of wheat under salt stress.Yi Chuan Xue Bao.2004,31(12):1408-1414
    [80]Labra M,Gianazza E,Waitt R,et al.Zea mays L.protein changes in response to potassium dichromate treatments.Chemosphere.2006,62(8):1234-1244
    [81]Requejo R,Tena M.Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity.Phytochemistry.2005,66(13):1519-1528
    [82]Casati P,Zhang X,Burlingame AL,et al.Analysis of leaf proteome after UV-B irradiation in maize lines differing in sensitivity.Mol Cell Proteomics.2005,4(11):1673-1685
    [83]Wan J,Torres M,Ganapathy A,et al.Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum.Mol Plant MicrobeInteract.2005,18(5):458-467
    [84]Hoa le TP,Nomura M,Kajiwara H,et al.Proteomic analysis on symbiotic differentiation of mitochondria in soybean nodules.Plant Cell Physiol.2004,45(3):300-308
    [85]Sarma AD,Emerich DW.Global protein expression pattern of Bradyrhizobium japonicum bacteroids:a prelude to functional proteomics.Proteomics.2005,5(16):4170-4184
    [86]Campo S,Carrascal M,Coca M,et al.The defense response of germinating maize embryos against fungal infection:a proteomics approach.Proteomics.2004,4(2):383-396
    [87]Wang Y,Yang L,Xu H,et al.Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum.Proteomics.2005,5(17):4496-4503
    [88]Zhou W,Kolb FL,Riechers DE.Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat(Triticum aestivum).Genome.2005,48(5):770-780
    [89]郝在彬,苍晶,徐仲.植物生理学实验.哈尔滨工业大学出版社,2004:9-11
    [90]陈为钧,赵贵文,顾月华.RubisCo的研究进展.生物化学与生物物理进展,1999,26(5):433-436
    [91]Spreitzer RJ,Salvucci ME.Rubisco:structure,regulatory interactions,and possibilities for a better enzyme[J].Annu Rev Plant Biol,2002,53:449-475
    [92]董晓丽,周集体,等.RubisCO的分子生物学研究[J].高技术通讯,2001,12:95-97
    [93]韩鹰,陈刚,等.Rubisco活化酶的研究进展[J].植物学通报,2000,17(4):306-311
    [94]陈根云,肖元珍,等.高等植物Rubisco的组装及其中间产物的鉴定[J].植物生理学报,2000,26(1):16-22
    [95]Hajduch M,Rakwal R,et al.High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice(Oryza sativa L.) leaves:drastic reductions/fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins[J].Electroph,2001,22(13):2824-2831
    [96]白汝瑾.盐胁迫下不同盐敏感型番茄蛋白质组分析.上海交通大学
    [97]夏兰芹,Soll Jurgen,等.Rubisco小亚基前体蛋白preSSU的互作蛋白分析[J].作物学报,2006,32(5):762-765
    [98]Law RD,Crafts-Brandner SJ,et al.Heat stress induces the synthesis of a new form of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in cotton leaves[J].Planta,2001,214(1):117-125
    [99]Parry MA,Andralojc PJ,et al.Rubisco activity:effects of drought stress[J].Ann Bot(Lond),2002,89(Spec):833-839
    [100]霍晨敏,赵宝存,等.小麦耐盐突变体盐胁迫下的蛋白质组分析[J].遗传学报,2004,31(12):1408-1414
    [101]Jennifer TJ,John EM.A salt-and dehydration-inducible pea gene,Cyo15a,encodes a cell-wall protein with sequence similarity to cysteine protease.Plant Molecular Biology,1995,28:1055-1065
    [102]Tadamasa U,Shigemi S,Yuko O,et al.Circadiam and senescence-enhanced expression of a tobacco ctsteine proteese gene.Plant Molecular Biology,2000,44:649-657
    [103]Renu KC,Srivalli B,Ahlawat TS.Drought induced many forms of cysteine proteases nit pbserved during natural senescence.Biochemical and Biophysical Research Communications,1999,255(2):324-327
    [104]张燕洁.与棉纤维发育相关的四个基因的克隆、表达特性与定位.南京农业大学
    [105]Hines ME,Osuala C I,Nielsen S S.Isolation and parial characterization of a soybean cysteine proteinase inhibitor of coleopteran digestive proteolytic activity.Journal of Agricultural and Food Chemistry,1991,9:1515-1520
    [106]Michaud D,Nguyen-Quoc B,Bemier-Vadnais N,et al.Cysteine proteinase forms in sprouting potato tuber[J].Plant Physiology,1994,:497-503
    [107]Misaka T,Kuroda M,Iwabuchi 凡et al.Soyacystatin,a novel cysteine proteinase inhibitor in soybean,is distinct in protein structure and gene organization from other cystatins of animal and plant origin[J].European Journal of Biochemistry,1996,240:609-61
    [108]Pemas M,Sanchez-Monge R,Gomez L,et al.Antifungal activity of a plant cystatin[J].MolecularPlant-Microbe Interactions,1999,12:624-627
    [109]Waldron C,Wegrich L M,Merlo P A O,et al.Characterizaion of a genenomic sequence coding for potato multicystatin.An eight-domain cysteine proteinase inhibitor[J].Plant Molecular Biology,1993,23:801-812
    [110]Meyers C,Morgante M,Michelmore W.TIR-X and TIR 3/NBS proteins:Two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes.Plant Journal,2002,32:77-92
    [111]Goff S A,Ricke D,Lan T H,et al.A draft sequence of the rice genome(Oryza sativa L.ssp.Japonica).Science,2002,296(5 565):92-100
    [112]18 Bitmer-Eddy PD,Crate IR。Holub EB.RPP13 is a simple locus in Arabidopsis thaliana for alleles that specifydowny mildew resistance to diferent avirulence determi,nants in Peronospora parasitica.Plant Journal,2000,21(2):177-188
    [113]Tor M,Brown D,Cooper A,Woods-Tor A,Sjolander K。Jones JDG Holub EB.Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9.Plant Physiology,2004,135:1100-1112
    [114]Borhan MH,Holub EB,Beynon JL,et al.The Arabidopsis TIR-NBS-LRR gene RAC 1 confers resistance to Albugo candida(White Rust) and is dependent on EDS1 but not PAD4.MPML 2004,17(7):711-719
    [115]林巧玲.甘薯NBS-LRR类抗病基因同源序列的克隆与分析.华南热带农业大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700