用户名: 密码: 验证码:
水稻锌指蛋白基因RZF5和RZF71的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是重要的粮食作物,也是单子叶植物研究的模式植物。随着水稻基因组计划的完成,解析基因功能,进而根据其功能在作物遗传改良中加以利用日益成为后基因组学的重要研究内容。高盐、干旱和低温等环境胁迫是影响植物生长和作物高产的重要限制因素。本研究选择与逆境胁迫相关的TFIIIA型锌指蛋白基因进行研究,以期获得在作物抗逆性改良方面具有应用潜力的候选基因。本研究取得了以下研究进展:
     利用生物信息学手段和RT-PCR方法从水稻幼苗组织中分离了两个新的TFIIIA型锌指蛋白基因RZF5和RZF71,其编码产物都含有两个典型的C2H2型锌指结构。RZF5编码171个氨基酸残基,分子量为17.95 kDa;RZF71编码产物为250个氨基酸残基,分子量为25 kDa。组织表达分析表明,RZF5和RZF71在水稻根、茎、叶和幼穗组织中均有不同程度的表达,RZF5在各组织中的表达丰度相差不大,而RZF71在根中表达丰度相对较高。诱导表达分析表明,在150 mmol·L~(-1) NaCl和20%PEG6000胁迫的水稻幼苗中,RZF5和RZF71的表达都显著增强,低温(4℃)和0.1 mmol·L~(-1) ABA处理对两个基因的表达量影响不大。
     基因的电子定位结果显示RZF5位于水稻第1染色体长臂,RZF71位于第12染色体长臂。对RZF5和RZF71基因起始密码子上游1,500bp的基因组序列进行分析表明,它们的启动子区舍有多个逆境胁迫相关元件,其中RZF5的启动子区含有1个脱落酸应答元件ABRE(ABA response element)、2个干旱应答元件CRT/DREs(C-repeat/dehydration-response element)、5个MYB识别位点MRSs(sequence homologous to MYB recognition site)和1个W-box;在RZF71的启动子区含有1个干旱应答元件DRE、3个MYB识别位点序列MRSs、1个CBF表达诱导子ICE(inducer of CBF expression)识别元件和1个W-box。
     将RZF5基因启动子区与GUS报告基因融合后转化水稻愈伤组织,GUS报告基因的表达受到150 mmol·L~(-1)NaCl和20%PEG6000的诱导,受低温(4℃)诱导不明显。将RZF5和RZF71基因编码区与GFP融合后构建融合表达载体,通过农杆菌介导法分别转化洋葱表皮细胞和水稻愈伤组织细胞,结果表明,融合蛋白仅在细胞核中表达。
     构建了RZF5基因过量表达的表达载体,通过叶盘法将RZF5转化烟草,获得18株过量表达RZF5的转基因烟草植株,其中16株(T_0代)明显矮化,为对照株高(105cm)的40.9%-57.1%。对T_1代转基因烟草幼苗进行抗逆性分析表明:100 mmol·L~(-1)和200 mmol·L~(-1)NaCl处理15d后,植株的根长为未处理植株的36.1%和17.4%,与非转基因植株(15.3%、1.4%)相比差异极显著;在300 mmol·L~(-1)和500 mmol·L~(-1)甘露醇处理下,转基因植株的根长为未处理植株的98.0%和67.6%,与非转基因植株(62.2%、24.3%)相比差异极显著;在4℃条件下,转基因植株与非转基因植株的生长都受到明显抑制,其与正常温度下生长的植株相比相对鲜重分别为22.2%和22.4%无明显差异。
     通过农杆菌介导法将RZF5和RZF71两个基因分别转化水稻,获得过量表达、抑制表达和发夹结构引起RNA干涉的转基因植株,25株过量表达RZF5的转基因水稻中,16株植林(T_0代)的平均株高为54.5cm,为非转基因植株株高的49.5%-61.6%。过量表达RZF71的转基因植株(T_0代)农艺性状没有明显变化。对转基因水稻的耐逆性分析表明,3个过量表达RZF5转基因水稻(T_1代)株系在冷胁迫36h后,电解质渗透率分别为8.54%、11.20%和1.70%与对照(84.18%)相比差异达到极显著水平;在含150mmol·L~(-1)NaCl的培养基上三个株系出苗率分别为79.5%、82.5%和92.5%,与对照(62.5%)相比差异极显著;4-5叶期的T_1代转基因幼苗用150 mmol·L~(-1)的NaCl处理7d后,其相对株高、相对干重和相对鲜重都明显高于对照。
     花药培养作为一种组织培养技术,不仅已成为研究生理、生化和遗传常用的重要方法,而且对于生理学及分子生物学中基因调控、表达机理的阐明有重要意义;花药培养建立的双单倍体群体,是AFLP、RAPD、SSR等分子标记选择育种和基因图谱构建的理想材料。提高花药培养效率,一直是科技工作者进行研究的主题。本研究以黑壳子粳/苏御糯、铁杆青/苏御糯和薄稻/苏御糯3个籼粳杂交F_1及其亲本和粳稻品种武运粳8号为试验材料,在M_8基本培养基中,加入不同浓度的植物激素类物质和有机营养物,建立籼粳杂交F_1高效花药培养技术体系。结果表明:M_8+2mg·L~(-1)2,4-D+1mg·L~(-1) NAA+0.2 mg·L~(-1) KT为最佳诱导培养基,籼粳杂交F_1花药愈伤组织诱导率达4.1%-4.5%;在该培养基中添加水解酪蛋白或酵母提取物,能明显提高诱导率,增幅达20.5%-27.3%;M_8+2.5mg·L~(-1) 6-BA+0.5 mg·L~(-1)KT为最佳分化培养基,籼粳杂交F_1愈伤组织的绿苗分化率达14.3%-25.0%。
Rice is one of the most important food crops as well as a model plant formonocotyledon research. With the development of rice genome project, it becomesincreasingly a hotspot to analyze the genes function and to apply them in geneticengineering research. Environmental stresses such as cold, high salinity and drought aremajor obstacles affecting plant growth and crop productivity. Our research focused onidentifying the TFIIIA type zinc finger protein genes involved in abiotic stress, andexpecting to provide new targets for producing tolerance-enhanced transgenics. Noveltiesachieved in this study are as follows:
     Two novel TFIIIA-type zinc finger protein genes RZF5 and RZF71 was identifiedfrom rice (Oryza sativa L. subs. japonica) by bioinformatics method and RT-PCR approach.Sequence analysis showed that RZF5 and RZF71 both contained two typical C2H2 zincfinger domains. RZF5 encodes a 17.95 kDa polypeptide with 171 amino acids and RZF71encodes a 25 kDa polypeptide with 250 amino acids. RT-PCR analysis showed that RZF5and RZF71 were constitutively expressed in various rice tissues including root, stem, leaveand spike, and strongly induced by 150 mmol·L~(-1)NaCl and 20%PEG6000. But both geneswere not induced by low temperature (4℃) and 0.1 mmol·L~(-1) ABA treatments.
     Data analysis of rice genome shows that RZF5 is located on the long arm ofchromosome 1 and RZF71 is located on long arm of chromosome 12. About 1500bpsequences of the upstreams form the translation start codons of RZF5 gene and RZF71 genewere analyzed by MapInspector program, respectively. The results show that there are nineputative cis-acting elements related to abiotic stress in RZF5 promoter regions, includingone ABRE (abscisic acid response element), two CRT/DREs(C-repeat/dehydration-response elements), five MRSs (sequence homologous to MYBrecognition sites) and one W-box were found within RZF5 promoter, and there were sixelements in RZF71 including one CRT/DRE, three MRSs, one ICE (inducer of CBFexpression) element and one W-box.
     About 1500 bp sequence in the promoter region of the RZF5 gene was fused to GUSreporter gene in pCAMBIA1301 vector and then was transformed into rice callus by Agrobacterium-mediated transformation. Histochemical analysis revealed, that the GUSactivity was induced both in the 150 mmol·L~(-1) NaCl and 20%PEG6000 treatments, but notin the cold (4℃) treatment. To investigate the subcellular localizations of RZF5 and RZF71protein, RZF5 and RZF71 gene were fused in the green fluorescence protein (GFP) reportergene, respectively. These fusion genes were introduced to onion epidermal cells and neecallus cells respectively. The results showed that the fusion proteins were localized in thenucleus, respectively, while the control was distributed throughout the cells.
     To find out the functions of these two zinc finger proteins, we generated RZF5-sensetransgenic tobacco plants by Agrobacterium-rnediated transformation. Among eighteenplants of the T_0 generation, the growth of sixteen plants was obviously suppressedcompared to the non-transgenic ones. And the transgenic plants of the T_1 generation wereanalyzed for abiotic stresses. The measurements showed that the relative root length of thetransgenic seedlings were elongated 36.1%and 17.4%compared to the normal one under100 mmol·L~(-1) and 200 mmol·L~(-1) NaCl treatments, respectively, whereas the non-transgenicones could only elongated 15.3%and 1.4%, respectively. Under 300 mmol·L~(-1) and 500mmol·L~(-1) Mannitol stress, the relative root length of the transgenic seedlings elongated98.0%and 67.6%, respectively, whereas the non-transgenic ones could only elongated62.2%and 24.3%. There was no significant difference between the transgenic seedlings andthe non-transgenic ones under controlled cold stress. Thus, the overexpression of RZF5 inthe transgenic tobacoo plants confered tolerance to high salt and osmotic stress.
     Transgenic RZF5 (sense, antisense, hairpin) rice plants of were generated byAgrobacterium-mediated transformation. The growth of RZF5-sense transgenic plants wasretarded. Average plant height of sixteen T_0 generation of RZF5-sense transgenic plantswere 40.9%to 57.1%, to that of non-transgenic plants. But transgenlc RZF71 (sense,antisense, hairpin) plants exhibited neither growth inhibition nor visible phenotypicalterations. Transgenic lines were analyzed for cold and NaCl stress in the T_1 generation.Electrolyte leakage rate and plant morphology were compared between transgenic lines anduntransformed after clod stress 36 h. The results showed the growth of three independentRZF5-sense lines were no visible cold symptom and electrolyte leakage rate (8.54%、11.20%and 1.70%) lower than those of untransformed (84.18%). Data collected forpercentage of germination showed three independent transgenic RZF5-sense lines weremore tolerant than untransformed and germination rate of three transgenic lines were79.5%, 82.5%and 92.5%, whereas untransformed were only 62.5%under 150 mmol·L~(-1) NaCl stress. Thus overexpression of RZF5 conferred tolerance to cold and salt stress whiletransgenic RZF71 rice plants did not. These results suggest RZF5 may be quite useful inenhancing plant tolerance to abiotic stress.
     Anther culture has become a powerful method to research plant physiology,biochemistry and genetics. And it has been playing important roles to research genesregulation and expression mechanism by anther culture in physiology and molecularbiology. Doubled haploids population based on anther culture is perfect material formolecular marker assistant breeding and genetic mapping. It is a topic that how to improveanther culture efficiency for scientists. In this reseach, the anthers of F_1 progenies fromthree crosses between japonica and indica rice varieties and their parents, and one japonicavariety Wuyunjing 8 were used to induce the calli in the M_8 medium supplemented withdifferent concentrations and combinations of plant hormones and organic nutriments. Ahighly efficient system of anther culture was established for F_1 progenies between japonicaand indica rice varieties. The results showed that the highest rate of callus induction(4.1%-4.5在for japonica/indica F_1 hybrid ) were obtained in the M_8 medium supplementedwith 2,4-D (2 mg.L~(-1)), NAA (1mg.L~(-1)) and KT (0.2 mg.L~(-1)). The induction rate could befurther increased up to 20.5%-27.3%in this medium added with hydrolyzed casein andyeast extract; It could be obtained, the 14.3%-25.0%of plant regeneration rate(japonica/indica F_1) in the M_8 medium added with 6-BA (2.5 mg'L~(-1)) and KT (0.5mg.L~(-1)).
引文
1. Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell, 2003, 15(1): 63-78
    2. Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression [J]. Plant Cell, 1997, 9(10): 1859-1868
    3. Aida M, Ishida T, Fkald H, et al. Genes involved in organ separation in Arabidopsis, an analysis of the cup-shaped cotyledon mutant [J]. Plant Cell, 1997, 9(6): 841-857
    4. Allen M D, Yamasaki K, Ohme-Takagi M, et al. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA [J]. EMBO J, 1998, 17(18): 5484-5496
    5. Ambrus H, Darko E, Szabo L, et al. In vitro microspore selection in maize anther culture with oxidative-stress Stimulators [J]. Protoplasma, 2006, 228:87-94
    6. Asaduzzaman M, Bad M A, Rahman M H, et al. In vitro plant regeneration through anther culture of five rice varieties[J]. J Biol Sci, 2003, 3(2): 167-171
    7. Bake J, Steele C, Dure L. Sequence and characterization of leu protein and their genes from cotton [J]. Plant Mol Biol, 1998, 11:227-291
    8. Bastola D R, Pethe V V, Winicov I. Alfinl, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene [J]. Plant Mol Biol, 1998, 38(6): 1123-1135
    9. Ballal A, Apte S K. Differential expression of the two kdp operons in the nitrogen-fixing Cyanobacterium Anabaena sp. Strain L-31[J]. Appl and Environ Microbiol, 2005, 71(9): 297-5303
    10. Biasia R, Falascab G, Speranzac A, et al. Biochemical and ultrastructural features related to male sterility in the dioecious species Actinidia deliciosa [J]. Plant physiol and Biochem, 2001, 39: 395-406
    11. Bilaud T, koering C E, Binet-Brasselet E, et al. The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human[J]. Nucleic Acids Acids Res, 1996, 24(7): 1294-1303
    12. Bowler C, Fluhr R. The role of calcium and activated oxygens as signals for controlling cross-tolerance[J]. Trends in Plant Sci, 2000, 5(6): 241-246
    13. Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance [J]. Ann Rev Plant Physiol and Plant Mol Biol, 1992, 43: 83-116
    14. Bray P, Lichter P, Thiesen H J, et al. Characterization and mapping of human genes encoding zinc finger proteins[J]. Proc Natl Acad Sci USA, 1991, 88(21): 9563-9567
    15. BuRner M, Singh K B. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein [J]. Proc Natl Acad Sci USA, 1997, 94(11): 5961-5966
    16. Chamnongpol S, Willekens H. Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related proteins under high light[J]. Plant J, 1997, 10: 491-503
    17. Chen C, Chen Z. Isolation and characterization of two pathogen-and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco[J]. Plant Mol Biol, 2000, 42(2): 387-396
    18. Chen C Y, Xiao H, Zhang W L, et al. Adapting rice anther culture to gene transformation and RNA interference[J]. Science in China Series C: Life Sciences, 2006, 49(5): 414-428
    19. Cheong Y H, Kim K N, Pandey G K, et al. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis[J]. Plant Cell, 2003, 15(8): 1833-1845
    20. Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes Dev, 2003, 17(8): 1043-1054
    21. Chinnusamy V, Zhu J H, Zhu J K. Gene regulation during cold acclimation in plants [J]. Physiol Plant, 2006, 126:52-61
    22. Choi H, Hong J, Ha J, et al. ABFs, a family of ABA-responsive element binding factors [J]. J Biol Chem, 2000, 275(3): 1723-1730
    23. Chu C C. The N6 medium and its applications to anther culture of cereal [C]. In Proc Symp Plant Tissue Culture, Beijing: Science Press, 1978: 43-50
    24. Chu C C, Hill g D. An improved anther culture method for obtaining higher frequency of pollen embryoids in Triticm aestivum L. [J]. Plant Sci, 1988, 55: 175-181
    25. Ciceri P, Gianazza E, Lazzari B, et al. Phosphorylution of Opaque2 changes diurnally and impacts its DNA binding activity [J]. Plant Cell, 1997, 9: 97-108
    26. Davletova S, Schlauch K, Coutu J, et al. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis [J]. Plant Physiol, 2005,139(2): 847-856
    27. DeWald D B, Torabinejad J, Jones C A, et al. Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis [J]. Plant Physiol. 2001, 126(2): 759-769
    28. Dinkins R D, Pflipsen C, Collins G B. Expression and deletion analysis of an Arabidopsis SUPERMAN-like zinc fmger gene [J]. Plant Sci, 2003, 165: 33-41
    29. Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression [J]. Plant J, 2003, 33(4): 751-763
    30. El Maarouf H, Zuily-Fodil Y, Gareil M, et al. Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance [J]. Plant Mol Biol, 1999, 39(6): 1257-1265
    31. Epple P, Mack A A, Morris V R, et al. Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins [J]. Proc Natl Acad Sci USA, 2003, 100(11): 6831-6836
    32. Ernst H A, Olsen A N, Larsen S, et al. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors [J]. EMBO Rep, 2004, 5(3): 297-303
    33. Fan W, Dong X. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis[J]. Plant Cell, 2002, 14(6): 1377-1389
    34. Frankel A D, Berg J M, Pabo C O. Metal-dependent folding of a single zinc finger from transcription factor ⅢA[J]. Proc Natl Acad Sci USA, 1987, 84(14): 4841-4845
    35. Fujimoto M, Fujita Y, Maruyama K, et al. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway[J]. Plant J, 2004, 39(6): 863-876
    36. Gamborg O L, Miller R A, Ojima K. Nutrient requirements of suspension cultures of soybean root cells [J]. Exp Cell Res, 1968,50(1): 151-158
    37. Ge C, Cui X, Wang Y, et al. BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development[J]. Cell Res, 2006, 16(5): 446-456
    38. Gilmour S J, Fowler S G, Thomashow M F. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities[J]. Plant Mol Biol, 2004, 54(5): 767-781
    39. Gilmour S J, Sebolt A M, Salazar M P, et al. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J]. Plant Physiol, 2000, 124(4): 1854-1865
    40. Gong D, Gong Z, Guo Y, et al. Biochemical and functional characterization of PKS 11, a novel Arabidopsis protein kinase [J]. J Biol Chem, 2002a, 277(31): 28340-28350
    41. Gong D, Guo Y, Jagendorf A T, et al. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance [J]. Plant Physiol, 2002b, 130(1): 256-264
    42. Goff S A, Cone K C, Chandler V L. Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins [J]. Genes Dev, 1992, 6(5): 864-875
    43. Goff S A, Cone K C, Fromm M E. Identification of functional domains in the maize transcriptional activator C1: comparison of wild-type and dominant inhibitor proteins [J]. Genes Dev, 1991, 5(2): 298-309
    44. Grabov A, Blatt M R. Parallel control of the inward-recitifier K~+ channel by cytosolic free Ca~(2+) and pH in vicia guard cells[J]. Planta, 1997, 201: 84-95
    45. Grefen C, Hatter K. Plant two-component systems: principles, functions, complexity and cross talk [J]. Planta, 2004, 219(5): 733-742
    46. Gregorio G B, Senadhira D. Genetic analysis of salinity tolerance in rice (Oryza sativa L.). Theor Appl Genet, 1993, 86: 333-338
    47. Gu Y Q, Yang C, Thara V K, et al. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase [J]. Plant Cell, 2000, 12(5): 771-786
    48. Guan L M, Zhao J, Scandalios J G Cis-elements and trans-factors that regulate expression of the maize Catl antioxidant gene in response to ABA and osmotic stress: H_2O_2 is the likely intermediary signaling molecule for the response [J]. Plant J, 2000, 22(2): 87-95
    49. Guan X, Stege J, Kim M, et al. Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcripition factors[J]. Proc Nail Acad Sci USA, 2002, 99(20): 13296-13301
    50. Guha S, Maheshwari S C. In vitro production of embryos from anthers of Datura [J]. Nature, 1964, 204: 497
    51. Guo Z J, Kan Y C, Chen X J, et al. Characterization a rice WRKY gene whose expression is induced upon pathogen attack and mechanical wounding [J]. Acta Bot Sin, 2004, 46: 955-964
    52. Haake V, Cook D, Riechmann J L, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiol, 2002, 130(2): 639-648
    53. Hao D, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant [J]. J Biol Chem, 1998, 273(273): 26857-26861
    54. Hara K, Yagi M, Kusano T, et al. Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding [J]. Mol Gen Genet, 2000, 263(1): 30-37
    55. Harmon A C, Gribskov M, Gubrium E, et al. The CDPK superfamily of protein kinase [J]. New Phytol, 2001, 151: 175-183
    56. Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity [J]. Ann Rev Plant Physiol Plant Mol Biol, 2000, 51: 463-499
    57. He X J, Mu R L, Cao W H, et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development [J]. Plant J, 2005, 44(6): 903-916
    58. Heim M A, Jakoby M, Wether M, et al. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity[J]. Mol Biol Evol, 2003, 20(5): 735-747
    59. Hiratsu K, Mitsuda N, Matsui K, et al. Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexpeptide is both necessary and sufficient for repression of transcripition inArabidopsis[J]. Biochem Biophy Res Commun, 2004, 321(1): 172-178
    60. Hong S W, Jon J H, Kwak J M, et al. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana [J]. Plant Physiol, 1997, 113: 1203-1212
    61. Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs [J]. Nature, 2001, 409(6819): 525-529
    62. Hoth S, Dreyer I, Dietrich P, et al. Molecular basis of plant-specific acid activation of K~+ uptake channels[J]. Proc Nat Acad Sci USA, 1997, 94(9): 4806-4810
    63. Hsieh T H, Lee J T, Charng Y Y, et al. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit sress[J]. Plant Physiol, 2002, 130(2): 618-626
    64. Huang H, Tudor M, Su T, et al. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation [J]. Plant Cell, 1996, 8(1): 81-94
    65. Huang J, Wang J F, Wang Q H, et al. Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold but not by salinity and abscisic acid [J]. DNA Seq, 2005, 16(2): 130-136
    66. Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for deltal-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. [J]. Plant Mol Biol, 1997, 33(5): 857-865
    67. Ishikawa T, Yoshimura K, Sakai K, et al. Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from Spinach[J]. Plant Cell Physiol, 1998, 39(1): 23-34
    68. Ishitani M, Xiong L, Stevenson B, et al. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways [J]. Plant Cell, 1997, 9(11): 1935-49
    69. Ito M. Factors controlling cyclin B expression [J]. Plant Mol Biol, 2000, 43(5-6): 677-690
    70. Iuchi S. Three Classes of C2H2 zinc finger proteins [J]. Cell Mol Life Sci, 2001, 58(4): 625-635
    71. Izawa T R, Foster R, Nakajima M, et al. The Rice bZIP Transcriptional activator RITA-1 is highly expressed during seed development[J]. Plant Cell, 1994, 6(9): 1277-1287
    72. Jacob T, Ritchie S, Assmann S M, et al. Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity[J]. Proc Natl Acad Sci USA, 1999, 96(21): 12192-12197
    73. Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance [J]. Science, 1998, 280(5360): 104-106
    74. Jakoby M, Weisshaar B, Droge-Laser W, et al. bZIP transcription factors in Arabidopsis [J]. Trends in Plant Sci, 2002, 7(3): 106-111
    75. Jiang G H, Xu C G, Li X H, et al. Characterization of the genetic basis for yield and its component traits office revealed by doubled haploid population [J]. Acta Genetica Sinica, 2004, 31(1): 63-72
    76. Jin H, Cominelli E, Bailey P, et al. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis[J]. EMBO J, 2000, 19(22): 6150-6161
    77. Jonak C, Ligterink W, Hirt H. MAP kinases in plant signal transduction [J]. Cell Mol Life Sci, 1999, 55(2): 204-213
    78. Kalde M, Barth M, Somssich IE, et al. Members of the Arabidopsis WRKY group Ⅲ transcription factors are part of different plant defense signaling pathways [J]. Mol Plant Microbe Interact, 2003, 16(4): 295-305
    79. Kang J Y, Choi H I, Im M Y, et al. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling [J]. Plant Cell, 2002, 14(2): 343-357
    80. Kapoor S, Kobayashi A, Takatsuji H. Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in Petunia [J]. Plant Cell, 2002, 14(10): 2353-2367
    81. Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor [J]. Nat Biotechnol, 1999, 17(3): 287-291
    82. Kim C Y, Zhang S. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco [J]. Plant J, 2004a, 38(1): 142-151
    83. Kim J C, Lee S H, Cheong YH, et al. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants [J]. Plant J, 2001, 25(3): 247-259
    84. Kim S, Kang J K, Cho D I, et al. ABF2, an ABRE-binding bZip factor, is an essential componentt of glucose signaling and its overexpression affects multiple stress tolerance [J]. Plant J, 2004b, 40(1): 75-87
    85. Kim S H, Hong J K, Lee S C, et al. CAZFP1, Cys2/his2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum[J]. Plant Mol Biol, 2004c, 55(6): 883-904
    86. Kizis D, Pages M. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway [J]. Plant J, 2002, 30(6): 679-689
    87. Kliebenstein D J, Monde R A, Last R L. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization [J]. Plant Physiol, 1998, 118(2): 637-650
    88. Klimczak L J, Collinge M, Farini D, et al. Reconstitution of Arabidopsis casein kinase Ⅱ from recombinant subunits and phosphorylation of transcription factor GBF1 [J]. Plant Cell, 1995, 7(1): 105-115
    89. Klug A, Schwabe J W. Protein motifs 5 Zinc fingers [J]. FASEB J, 1995, 9(8): 597-604
    90. Knight H. Calcium signaling during abiotic stress in plants[J]. Int Rev Cytol, 2000, 195: 269-324
    91. Knight H, Zarka D G, Okamoto H, et al. Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element[J]. Plant Physiol, 2004, 135(3): 1710-1717
    92. Kobayashi A, Sakmoto A, Kubo K, et al. Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in Petunia [J]. Plant J, 1998, 13(4): 571-576
    93. Kong J, Cao W H, Zhang J S, et al. Transgenic Analysis of a salt-inhibited OsZFP1 gene from rice [J]. Acta Botanica Sinica, 2004, 46 (5): 573-577
    94. Kopka J, Pical C, Gray J E, et al. Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato [J]. Plant Physiol, 1998, 116(1): 239-250
    95. Krihna S S, Majumdar I, Grishin N V. Structural classification of zinc fingers: survey and summary [J]. Nucleic Acids Res, 2003, 31(2): 532-550
    96. Kubo K, Sakamoto A, Kobayashi A, et al. Cys2/His2 zinc-finger protein family of Petunia: evolution and general mechanism of target-sequence recognition [J]. Nucleic Acids Res, 1998, 26(2): 608-615
    97. Laity J H, Dyson H J, Wright P E. DNA-induced alpha-helix capping in conserved linker sequences is a determinant of TFⅢA-type zinc-finger proteins in plants [J]. Rev China Agricul Sci and Technol, 2000, 2(6): 9-14
    98. Lebel E, Heifetz P, Thorne L, et al. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis [J]. Plant J, 1998, 16(2): 223-233
    99. Lee M M, Schiefelbein J. Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis[J]. Development, 2001,128(9): 1539-1546
    100. Li Y, Chen S Y. Differential accumulation of the sadenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses [J]. Theor Appl Genet, 2000, 100:782-788
    101. Li Z Y, Chen S Y. Isolation, characterization and chromosomal location of a novel zinc-finger protein gene that is downregulated by salt stress[J]. Theor Appl Genet, 2001, 102: 363-368
    102. Lippuner V, Cyert M S, Gasser C S. Two classes of pant cDNA clones differentially complement yeast ealcineurin mutants and increase salt tolerance of wild-type yeast [J]. J Bio Chem, 1996, 271(22): 12859-12866
    103. Liu L, White M J, MacRae T H. Transcription factors and their genes in higher plants functional domains, evolution and regulation [J]. Eue J Biochem, 1999, 262(2): 247-257
    104. Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis [J]. Plant Cell, 1998, 10(8): 1391-1406
    105. Luan S. Signalling drought in guard cells [J]. Plant Cell Environ, 2002, 25(2): 229-237
    106. Lutcke H A, Chowk C M, Mickel F S, et al. Selection of AUG initiation codons differs in plants and animals [J]. EMBO J, 1987, 6(1): 43-48
    107. Maggio A, Miyazaki S, Veronese P, et al. Does proline accumulation play an active role in stress-induced growth reduction? [J]. Plant J, 2002, 31(6): 699-712
    108. Mahajan S, Tuteja N. Cold, salinity and drough stresses: an overview [J]. Arch Bioehem Biophys, 2005, 444(2): 139-158
    109. Mare C, Mazzucotelli E, Crosatti C, et al. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley [J]. Plant Mol Biol, 2004, 55(33): 399-416
    110. Maruyama K, Sakuma Y, Kasuga M, et al. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems [J]. Plant J, 2004, 38(6): 982-993
    111. McCubbin W D, Kay C D. Hydrodynamic and optical of the wheat Em protein [J]. Can J Biochem, 1985, 63: 805-811
    112. Mckersie B D, Chen Y, de Beus M, et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa. L.) [J]. Plant Physiol, 1993, 103 (4): 1155-1163
    113. Medina J, Bargues M, Terol J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration [J]. Plant Physiol, 1999, 119(2): 463-469
    114. Miller J, McLachlan A D, Klug A. Repetitive zinc-binding domains in the protein transcription factor ⅢA from Xenopus oocytes [J]. EMBO J, 1985, 4(6): 1609-1614
    115. Mine T, Hiyoshi T, Kasaoka K, et al. CIP353 encodes an AP2/ERF-domain protein in potato (Solanum tuberosum L.) and responds slowly to cold stress[J]. Plant Cell Physiol, 2003, 44(1): 10-15
    116. Mukhopadhyay A, Vij S, Tyagi A K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco [J]. Proc Natl Acad Sci USA, 2004, 101(16): 6309-6314
    117. Munnik T, Ligterink W, Meskiene I I, et al. Distinct osmosensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress [J]. Plant J, 1999, 20(4): 381-388
    118. Munnik T, Meijer H J, Ter Riet B, et al. A hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate [J]. Plant J, 2000, 22(2): 147-154
    119. Murashige T, Skoog F A. Revised medium for rapid growth and bioassays with tobacco tissue cultures [J]. Physiol Plant, 1962,15:473-497
    120. Nagamine T, Nakagahra M. Genetic variation of chilling injury at seedling atage in rice, Oryza sativa L. [J]. Japan J Breed, 1990, 40: 449-455
    121. Nagaoka S, Takano T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis[J]. J Exp Bot, 2003, 54(391): 2231-2237
    122. Nakashima K, Yamaguchi-Shinozaki K. Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants[J]. Physiologia Plantarum, 2006, 126(1): 62-71
    123. Narusaka Y, Nakashima K, Shinwari Z K, et al. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses [J]. Plant J, 2003, 34(2): 137-148
    124. Niggeweg R, Thurow C, Kegler C, et al. Tobacco transcription factor TGA2 is main component of as-l-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters[J]. J Biol Chem, 2000, 275(26): 19897-19905
    125. Nitsch C, Norreel B. Factors favoring the formation of androgenetic embryos in anther culture[J]. Basic Life Sci, 1973, 2:129-144
    126. Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control [J]. Ann Rev Plant Physiol Plant Mol Biol, 1998, 49: 249-279
    127. Novillo F, Alonso J M, Ecker J R, et al. CBF2/DREB 1C is a negative regulator of CBF1/DREB1B and CBF3/DREB 1A expression and plays a central role in stress tolerance in Arabidopsis [J]. Proc Natl Acad Sci USA, 2004, 101(11): 3985-3990
    128. Ogata K, Hojo H, Aimoto S, et al. Solution structure of a DNA-binding unit of Myb: a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core [J]. Proc Natl Acad Sci USA, 1992, 89(14): 6428-6432
    129. Ogata K, Morikawa S, Nakamura H, et al. Solution structure of a specific DNA complex of the Myb DNA binding domain with cooperative recognition helices [J]. Cell, 1994, 79(4): 639-648
    130. Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995 7(2): 173-182
    131. Olsen A N, Ernst H A, Leggio L L, et al. NAC transcription factors: Structurally distinct, functionally diverse[J]. Trends Plant Sci, 2005, 10(2): 79-87
    132. Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003, 10(6): 239-247
    133. Parenicova L, de Folter S, Kieffer M, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world [J]. Plant Cell, 2003, 15(7): 1538-1551
    134. Park J M, Park C J, Lee S B, et al. Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco[J]. Plant Cell. 2001, 13(5): 1035-1046
    135. Park S H, Zarrinpar A, Lim W A. Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms[J]. Science, 2003, 299 (5609): 1061-1064
    136. Paz-Ares J, GhosaI D, Wienand U, et al. The regulatory el locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators[J]. EMBO J, 1987, 6(12): 3553-3558
    137. Pei Z M, murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxise [J]. Plant Cell, 2000, 6: 65-74
    138. Pellegrini L, Tan S, Richmond T J. Structure of serum response factor core bound to DNA [J]. Nature, 1995, 376(6540): 490-498
    139. Perl A, Perl-Treves R, Galili S. Ehanced oxidative stress defense in transgenic potato expression tomato Cu/Zn superoxide dismutase [J]. Theor Appl Genet, 1993, 85: 568-576
    140. Picher L H, Bennan E, Hurley A, et al. Overexproduction of Petunia chloroplastie copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco [J]. Plant physiol, 1991, 97(1): 452-455
    141. Pnueli L, Hallak-Herr E, Rozenberg M, et al. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam [J]. Plant J, 2002, 31 (3): 319-330
    142. Pontier D, Miao Z H, Lam E. Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responses [J]. Plant J, 2001, 27(6): 529-538
    143. Prasad T K, Anderson M D, Martin B A, et al. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide [J]. Plant Cell, 1994, 6(1): 65-74
    144. Prasher D C, Eckenrode V K, Ward W W, et al. Primary structure of the Aequorea victoria green-fluorescent protein [J]. Gene, 1992, 111 (2): 229-233
    145. Ramirez C, Testillano P S, Pintos B, et al. Changes in pectins and MAPKs related to cell development during early microspore embryogenesis in Quercus suber L. [J]. Eur J Cell Biol, 2004, 83(5): 213-225
    146. Rathinasabapathi B, Burner K, Russell B L, et al. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning [J]. Proc Natl Acad Sci USA, 1997, 94(7): 3454-3458
    147. Reece K S, McElroy D, Wu R. Genomic nucleotide sequence of four rice (Oryza sativa) actin genes [J]. Plant mol. Biol, 1990, 14(4): 621-624
    148. Riechmann J L. Transcriptional regulation:a genomic overview [M]. The Arabidopsis Book. 2002, American Society of Plant Biologists. http://www.aspb.org/publications/arabidopsis/
    149. Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000a, 290(5499): 2105-2110
    150. Riechmann J L, Ratcliffe O J. A genomic perspective on plant transcription factors[J]. Curt Opin Plant Biol, 2000b, 3(5): 423-434
    151. Rizhsky L, Davletova S, Liang H, et al. The zinc finger protein Zatl2 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arbidopsis [J]. J Biol Chem, 2004, 279(12): 11736-11743
    152. Rouster J, Leah R, Mundy J, et al. Identification of a methyl jasmonate- responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain [J]. Plant J, 1997, 11 (3): 513-523
    153. Rus A, Yokoi S, Sharkhuu A, et al. AtKT1 is a salt tolerance determinanr that controls Na(+) entroy into plant roots[J]. Proc Natl Acad Sci USA, 2001, 98(24): 14150-14155
    154. Sadiqov S T, Akbulut M, Ehmedov V. Role of Ca~(2+) in drought stress signaling in wheat seedlings [J]. Biochmistry (Mosc), 2002, 67(4): 491-497
    155. Sakamoto A, Minami M, Huh G H, et al. The putative zinc-finger protein WZF1 interacts with a cis-acting element of wheat histone genes [J]. Eur J Biochem, 1993, 217(3): 1049-1056
    156. Sakamoto A, Omirulleh S, Nakayama T, et al. A zinc-finger-type transcription factor WZF-1 that binds to a novel cis-acting element of histone gene promoters represses its own promoter [J]. Plant Cell Physiol, 1996, 37(4): 557-562
    157. Sakamoto H, Araki T, Meshi T, et al. Expression of subset of the Arabidopsis Cys2/His2-type zinc-finger piotein gene family under water stress[J]. Gene, 2000, 248(1-2): 23-32
    158. Sakamoto H, Maruyama K, Sakuma Y, et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions [J]. Plant Physiol, 2004, 136(1): 2734-2746
    159. Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression [J]. Biochem Biophys Res Commun, 2002, 290(3): 998-1009
    160. Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7,000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray [J]. Plant J, 2002, 31(3): 279-292
    161. Selth L A, Dogra S C, Rasheed M S, et al. A NAC domain protein interacts with tomato leaf eurtl virus replication accessory protein and enhances viral replication [J]. Plant Cell, 2005, 17(1): 311-325
    162. Sanchez J P, Chua N H. Arabidopsis PLC1 is required for secondary responses to abscisic acid signals [J]. Plant Cell, 2001, 13(5): 1143-1154
    163. Sanders D, Brownlee C, Harper J F. Communicating with calcium [J]. Plant Cell, 1999, 11(4): 691-706
    164. Satoh R, Fujita Y, Nakashima K, et al: A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the proDH gene in Arabidopsis [J]. Plant Cell Physiol, 2004, 45(3): 309-317
    165. Seki H, Ichinose Y, Ito M, et al. Combined effects of multiple cis-acting elements in elicitor-mediated activation of PSCHS-1 gene [J]. Plant Cell Physiol, 1997, 38: 96-100
    166. Seung Y L, Hyun S K, Tae O K. Variation in anther culture response and fertility of backcrossed hybrids between indica and japonica rice (Oryza sativa) [J]. Plant Cell, Tissue and Organ Culture 2004, 79:25-30
    167. Shah J. The salicylic acid loop in plant defense [J]. Curr Opin Plant Biol, 2003, 6(4): 365-371
    168. Shen Y G, Du B X, Zhang W K, et al. AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco [J]. Theor Appl Genet, 2002, 105(6-7): 815-821
    169. Shen Y G, Zhang W K, He S J, et al. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress [J]. Theor Appl Genet, 2003a, 106(5): 923-930
    170. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression signal transduetion in water-stress response [J]. Plant Physiol, 1997, 115(2): 327-334
    171. Shinozaki K, Yamaguchi-Shinozaki K. Molecular response to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways [J]. Curr Opin Plant Biol, 2000, 3(3): 217-223
    172. Shinozaki K, Yamaguchi-Shinozakiy K, Sekiz M. Regulatory network of gene expression in the drought and cold stress responses [J]. Curr Opin Plant Biol, 2003, 6(5): 410-417
    173. Siberil Y, Doireau P, Gantet P. Plant bZIP G-box binding factors: modular structure and activation mechanisms [J]. Eur J Biochem, 2001, 268(22): 5655-5666
    174. Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress responses [J]. Curr Opin Biol, 2002, 5(5): 430-436
    175. Souer E, van Houwelingen A, Kloos D, et al. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries [J]. Cell, 1996, 85(2): 159-170
    176. Strizhov N, Abraham E, Okresz L, et al. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis [J]. Plant J, 1997, 12(3): 557-69
    177. Subramaniam R, Desveaux D, Spickler C, et al. Direct visualization of protein interactions in plant cells [J]. Nature Biotechnol, 2001, 19(8): 769-772
    178. Sugano S, Kaminaka H, Rybka Z, et al. Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in Petunia [J]. Plant J, 2003, 36(6): 830-841
    179. Sun C, Palmqvist S, Olsson H, et al. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the isol promoter [J]. Plant Cell, 2003, 15(9): 2076-2092
    180. Sutherland L, Caimey J, Elmore MJ, et al. Osmotic regulation of transcription: induction of the proU betaine transport gene is dependent on accumulation of intracellular potassium [J]. Appl and Environ Microbiol, 1986, 168(2): 805-814
    181. Suzuki M, Kao C Y, McCarty D R. The conserved B3 domain of VIVIPAROUS 1 has a cooperative DNA binding activity [J]. Plant Cell, 1997, 9(5): 799-807
    182. Suzuki N, Koizumi N, Sano H. Screening of cadmium-responsive genes in Arabidopsis thaliana [J]. Plant Cell Environ, 2001, 24:1177-1188
    183. Takahashi H, Chen Z, Du H, et al. Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels [J]. Plant J, 1997, 11(5): 993-1005
    184. Takatsuji H. Zinc-finger transcription factors in plants [J]. Cell Mol Life Sci, 1998, 54(6): 582-596
    185. Takatsuji H, Mori M, Benfey P N, et al. Characterization of a zinc finger DNA-binding protein expressed specifically in Petunia petals and seedlings [J]. EMBO J, 1992, 11(1): 241-249
    186. Takatsuji H, Nakamura N, Katsumoto Y. A new family of zinc finger proteins in Petunia: structure, DNA sequence recognition, and floral organ-specific expression [J]. Plant Cell, 1994, 6(7): 947-958
    187. Tang X D, Marten I, Dietrich P, et al. Histidine(118) in the S2-S3 linker specifically controls activation of the KAT1 channel expressed in Xenopus oocytes [J]. Biophysics J, 2000, 78(3): 1255-1296
    188. Thomashow M F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms [J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571-599
    189. Tian R, Jiang G H, Shen L H, et al. Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population [J]. Mol Breeding, 2005, 15: 117-124
    190. Tran LS, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-Inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. Plant Cell, 2004, 16(9): 2481-2498
    191. Torp A M, Hansen A L. Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture [J]. Euphytica, 2001, 119(3): 377-387
    192. Tsugane K, Kobayashi K, Niwa Y, et al. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification [J]. Plant Cell, 1999, 11(7): 1195-1206
    193. Ulker B, Somssich I E. WRKY transcription factors: from DNA binding towards biological function [J]. Curr Opin Plant Biol, 2004, 7(5): 491-498
    194. Ullah H, Chen JG, Young JC, et al. Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis [J]. Science, 2001, 292(5524): 2066-2069
    195. Ulmasov T, Hagen G, Guilfoyle T J. ARF1, a transcription factor that binds to auxin response elements [J]. Science, 1997, 276(5320): 1865-1868
    196. Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions [J]. Proc Natl Acad Sci USA, 2000, 97(21): 11632-11637
    197. Urao T, Yakubov B, Satoh R, et al. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor [J]. Plant Cell, 1999, 11(9): 1743-1754
    198. Urao T, Yamaguchi-Shinozaki K, Urao S, et al. An Arabidopsis myb homolog is induced by dehydration stress and its gene product bids to the conserved MYB recognition sequence [J]. Plant Cell, 1993, 5(11): 1529-1539
    199. van Der Krol A R, van Poecke R M, Vorst O F, et al. Developmental and Wound-, Cold-, Desiccation-, Ultraviolet-B-stress-induced modulations in the expression of the Petunia zinc finger transcription factor gene ZPT2-2[J]. Plant Physiol, 1999, 121(4): 1153-1162
    200. Vogel J T, Zarka D G, van Buskirk H A, et al. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis [J]. Plant J, 2005, 41(2): 195-211
    201. Vroeman C W, Mordhorst A P, Albrecht C, et al. The cup-shaped cotyledons gene is required for boundary and shoot meristem formation in Arabidopsis [J]. Plant Cell, 2003(15): 1563-1577
    202. Wang J, Zhang H, Allen R D. Overexpression of Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increase protection against oxidative stress [J]. Plant Cell Physiol, 1999, 40(7): 725-732
    203. Wang X Q, Ullah H, Jones A M, et al. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells [J]. Science, 2001, 292(5524): 2070-2072
    204. Wang Y J, Zhang Z G, He X J, et al. A rice transcription factor OsbHLH I is involved in cold stress response [J]. Theor Appl Genet, 2003, 107(8): 1402-1409
    205. Willekens H., Langebartels C., Tire C. el al. Differencial expression of catalase genes in Micotiana plumbaginifolia[J]. Proc Natl Acad Sic, USA, 1994, 91: 10450-10454
    206. Willekens H, Chamnongpol S, Davey M, et al. Catalase is a sink for H_2O_2 and is indispensable for stress defense in C3 plants [J]. EMBO J, 1997, 16(16): 4806-4816
    207. Winicov I. Alfinl transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa [J]. Planta, 2000, 210(3): 416-422
    208. Wolfe S A, Nekludova L, Pabo C O. DNA recognition by Cys2His2 zinc finger proteins [J]. Annu Rev Biophys Biomol Struct, 2000, 29:183-212
    209. Wu K L, Guo Z J, Wang H H, et al. The WRKY family of transcription factors in rice and Arabidopsis and theis origins[J]. DNA Res, 2005, 12(1): 9-26
    210. Xie Z, Zhang Z L, Zou X L, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells [J]. Plant Physiol, 2005, 137(1): 176-189
    211. Xin Z, Browse J. eskimol mutants of Arabidopsis are constitutively freezing-tolerant [J]. Proc Natl Acad Sci USA, 1998, 95(13): 7799-7804
    212. Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress [J-]. Plant Cell, 2002, S165-S183
    213. Xiong L, Zhu J K. Abiotic stress signal transduction in plants: molecular and genetic perspectives [J]. Physiol Plant, 2001, 112(2): 152-166
    214. Xiong L, Zhu J K. Molecular and genetic aspects of plant responses to osmotic stress [J]. Plant Cell Environ, 2002, 25(2): 131-139
    215. Xu Y, Ma Q H. Medicago truncatula Mt-ZFP1 encoding a root enhanced zinc finger protein is regulated by cytokinin, abscisic acid and jasmonate, but not cold[J]. DNA Seq, 2004, 15(2): 104-109
    216. Xu Y H, Wang J W, Wang S, et al. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene(+)-delta-cadinene synthase-A [J]. Plant Physiol, 2004, 135(1): 507-515
    217. Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsivenes to drought, low temperature or high-salt stress [J]. Plant Cell, 1994, 6: 251-264
    218. Yanagisawa S. The Dof family of plant transcription factors [J]. Trends plant sci, 2002, 7(12): 555-560
    219. Yoshida S, Fomo D A, Cock J H, et al. Laboratory manual for physiological studies office [M] (3rd edition). Los Banos: International Rice Research Institute. Philippines, 1976
    220. Zhang T, Liu Y, Yang T, et al. Diverse signals converge at MAPK cascades in plant [J]. Plant Physiol Biochem, 2006, 44(5-6): 274-283
    221. Zhang Y, Wang L. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants [J]. BMC Evol Biol, 2005, 5(1): 1-12
    222. Zhao Z G, Chen G, Zhang C. Interaction between reactive oxygen species and nitric oxide in drought induced abscisic acid synthesis in root tips of wheat seedlings [J]. Plant Physiol, 2001, 28: 1055-1061
    223. Zhu J K. genetic analysis of plant salt tolerance using Arabdiposis [J]. Plant Physiol, 2000, 124(3): 941-948
    224. Zhu J K. Plant salt tolerance [J]. Trends Plant Sci, 2001, 6(2): 66-71
    225. Zhu J K. Salt and drought stress singal transduxtion in plants [J]. Annu Rev Plant Biol, 2002, 53: 247-273
    226. Zou X, Seemann J R, Neuman D, et al. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway [J]. J Biol Chem, 2004, 279(53): 55770-55779
    227.布坎南BB,格鲁依森姆W,琼斯美RL等主编.植物生物化学和分子生物学[M].瞿礼嘉,顾红雅,白书农等译.北京:科学出版社,2004
    228.丁世萍,严菊强,季道藩.糖类在植物组织培养中的效应[J].植物学通报,1998,15(6):42-46
    229.杜娟.超氧化物歧化酶基因(Mnsod)和抗逆转录因子相关基因在玉米中的表达研究[D].南京:四川农业大学,2004
    230.郭岩,张莉,肖岗等.甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究[J].中 国科学(C辑),1997,27:151-155
    231.黄斌.大麦花药培养中低温预处理对花粉愈伤组织形成的影响[J].植物学报,1985,27(3):439-443
    232.黄骥,王建飞,张红生.植物C2H2型锌指转录蛋白的结构与调控作用[J].遗传,2004,26(3):414-418
    233.季彪俊,陈启锋,黄群侧,等.水稻花药培养技术的总结与探讨[J].福建农业学报,2001,30(1):22-28
    234.贾庚祥,朱至清,李银心.甜菜碱与植物耐盐基因工程[J].植物学通报,2002,19(3):272-279.
    235.李合生主编.植物生理生化实验原理和技术(第一版)[M].北京:高等教育出版社,2001
    236.李文泽,胡含.在花药花粉培养中预处理的作用机理[J].遗传,1995,17(增):13-18
    237.刘凤华,郭岩.转甜菜碱醛脱氢酶基因植物的耐盐性研究[J].遗传学报,1997,24:4-58
    238.刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000a,45:1465-1474
    239.刘强,赵南明,Yamaguch-Shinozaki K,等.DREB转录因子在提高植物抗逆性中作用[J].科学通报,2000b,45(1):11-16
    240.刘巧泉,陈秀花,王兴稳,等.一种快速检测转基因水稻中潮霉素抗性的简易方法[J].农业生物技术学报,2001,9:264-268
    241.刘庆昌,吴国良.植物组织细胞培养[MI.北京:中国农业大学出版社,2003:21-62
    242.梅传生,张金渝,吴光南.籼稻花培绿苗率的提高[J].江苏农业学报,1988,4(2):45-48
    243.潘丽娟.水稻甜菜碱合成两个关键酶基因的克隆与表达分析[D].南京:南京农业大学,2006
    244.仇玉萍,荆邵娟,付坚,等.13个水稻WRKY的克隆及其表达谱分析[J].科学通报,2004,49(18):1860-1869
    245.沈同,王镜岩主编.生物化学[M].北京:高等教育出版社,1990
    246.沈义国,杜保兴,张劲松,等.山菠菜胆碱单氧化物酶基因(CMO)的克隆与分析[J].生物工程学报,2001,1:1-6
    247.王镜岩,朱圣庚,徐长法主编.生物化学(第3版)[M].北京:高等教育出版社,2002
    248.王庆斌,王方正,薛庆中,等.APX基因转化水稻及其功能的研究[J].中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编,杭州,2003:3-18
    249.王玉军,郝宇钧,戴继勖,等.OsbHLHl基因在拟南芥中表达及耐低温能力的研究[J].高技术通讯,2004,4:35-39
    250.徐武,李鸣,张敬,等.低温预处理过程中大麦花药内源激素的变化[J].遗传学报,1997,24(2):165-169
    251.张木清,陈如凯.作物抗旱分子生理与遗产改良[M].北京:科学出版社,2005:271-365
    252.张林,傅雪琳,陈雄辉,等.水稻花药培养特性的品种间变异观察[J].福建农业学报,2003, 18(2):69-73
    253.张献龙,唐克轩.植物生物技术[M].北京:科学出版社,2004:21-33
    254.朱永生,陈葆棠,张端品.提高水稻籼粳杂交后代花药培养力的研究[J].华中农业大学学报,2001,20(4):314-317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700