用户名: 密码: 验证码:
HCV NS3质粒转染的肝细胞中差异表达酪氨酸磷酸化蛋白的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过差异磷酸化蛋白质组学研究,筛选和鉴定出HCV/NS3质粒转染肝细胞后差异表达的酪氨酸磷酸化蛋白。
     方法:首先建立细胞系,将HCV/NS3质粒(pRcHCNS3-5')和空白质粒(pRcCMV)分别转染入人源性肝细胞系QSG7701,通过G418筛选,构建稳定表达HCV/NS3蛋白的细胞系(QSG/NS3)和阴性对照组(QSG/CMV)。通过RT-PCR检测转染细胞HCV/NS3表达情况。然后进行蛋白质组学分析,分别抽提两组细胞的总蛋白,每组蛋白平行进行2次双向凝胶电泳,其中一块作为制备胶,另一块作为分析胶,分析胶中将蛋白质转移至PVDF膜后,与抗酪氨酸磷酸化抗体孵育,进行Western Blot分析,获得差异表达酪氨酸磷酸化蛋白质的反应图谱。将制备胶的电泳图谱和Western Blot的反应图谱进行比对分析,在制备胶上找到相应的差异酪氨酸磷酸化蛋白质点,经脱色、还原、酶解,通过基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)分析,获得肽质量指纹图(PMF),在Http://www.matrixscience.com/上搜索,匹配蛋白质,应用在线软件Netphos预测蛋白质酪氨酸磷酸化位点。
     结果:在QSG/NS3和QSG/CMV两组细胞系中,识别了13个差异表达的酪氨酸磷酸化蛋白质,其中鉴定了8个差异表达蛋白。4个蛋白质的酪氨酸磷酸化水平在QSG/NS3细胞系中表达上调,另4个蛋白质的酪氨酸磷酸化水平表达下调。软件预测每个蛋白质均存在酪氨酸磷酸化位点。
     结论:(1)鉴定出8个可能与HCV NS3致病相关的酪氨酸磷酸化蛋白质,为揭示HCV NS3致癌机制提供新的科学理论线索。
     (2)鉴定出的差异蛋白功能涉及细胞代谢、凋亡增殖及信号转导等方面。
     (3)应用在线软件分析预测蛋白质的酪氨酸磷酸化位点,鉴定出的8个蛋白均有至少一个酪氨酸磷酸化位点。
Objective:To select and identify the differential expression of tyrosine-phosphorylated proteins in hepatocytes which transfected with HCV/NS3 plasmid.
     Methods:Firstly, the HCV/NS3 plasmid (pRcHCNS3-5') was transfected into human hepatocyte cell line QSG7701 and selected by G418, the blank plasmid (pRcCMV) was used as a negative control. The resulting cell lines were called QSG/NS3 and QSG/CMV respectively. Secondly, total proteins of each groups were extracted and separated by 2-D gels electrophoresis in paralled for on analytical as well as preparative. The proteins on analytical gel were transferred onto PVDF membrane, and incubated with anti-phosphotyrosine antibody. Then, maps of differential expression of tyrosine-phosphorylated proteins were acquired. Compared the electrophoresis map with Western Blot map, the corresponding points were found in preparative gels, and the differential expression tyrosine-phosphorylated proteins were identified by MALDI-TOF-MS analysis. The tyrosin-phosphorylation sites of identified proteins were predicted by NetPhos software.
     Results:There were 13 differential expressions tyrosin-phosphorylated proteins were screened in the QSG/NS3 and the QSG/CMV cells. We identified 8 of the proteins and found that four of which were up-regulated in the QSG/NS3 cells, while the other four were down-regulated. Each of the eight proteins has tyrosin phosphorylation sites.
     Conclusion:(1) Eight tyrosin-phosphorylated proteins were identified, which may be involved HCV/NS3 pathogenesis, and providing new clues to HCV/NS3 carcinogenic mechanism.
     (2) The function of identified proteins is involved in cell metabolism, apoptosis, proliferation and signal transduction.
     (3) Online software analysis forecasts that each protein has at least one tyrosine phosphorylation site.
引文
[1]Levrero M. Viral hepatitis and liver cancer:the case of hepatitis C. Oncogene, 2006,25(27):3834-3847.
    [2]BartoschB, Cosse FL. Cell entry if hepatitis C virus. Virology,2006,348(1):1-12.
    [3]Lau DT, Fish PM, Sinha M, et al. Interferon regulatory factor-3 activation, hepatic interferon-stimulated gene expression, and immune cell infiltration in hepatitis C virus patients. Hepatology,2008,47(3):799-809.
    [4]Kolykhalov AA, Mihalik K, Feinstone SM, et al. Hepatitis C virus-encoded enzymatic activites and conserved RNA elements in the 3'nontranslated region are essential for virus replication in vivo. Virol,2000,74(4):2046-51.
    [5]Kato N. Molecular virology of hepatitis C virus. Acta Med Okayama,2001,55(3): 133-159.
    [6]Kwun HJ, Jung EY, Ahn JY, et al. p53-dependent transcriptional repression of p21(waf1) by hepatitis C virus NS3. J Gen Virol,2001,82(9):2235-41.
    [7]Zemel R, Gerechet S, Greif H, et al. Cell transformation induced by hepatitis C virus NS3 serine protease. Viral Hepat,2001,8(2):96-102.
    [8]Cheng PL, Chang MH, Chao CH, et al. Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-beta/Smad3-mediated transcriptional activation. Oncogene,2004,23(47):7821-38.
    [9]何琼琼,冯德云,李波,等.丙型肝炎病毒NS3基因对人肝细胞生物学特性的影响.生物技术通报,2007,4:135-140.
    [10]李波,冯德云,程瑞雪,等.丙型肝炎病毒NS3蛋白促进人源性肝细胞的增殖及其相关机制研究.生物化学与生物物理进展,2005,32(10):991-997.
    [11]何琼琼,肖旭贤,冯德云,等HCV/NS3对人肝细胞磷酸化酪氨酸相关蛋白表达的影响.中国普通外科杂志,2008,17(7):666-682.
    [12]郭慧,冯德云,李波,等.表达HCV/NS3蛋白肝细胞中ERK与NF-kB信号转导通路见cross-talk研究.中南大学学报(医学版),2007,32(2):259-263.
    [13]Hassan M, Ghozlan H, Abdel-Kader O. Activation of c-jun NH2-terminal kinase(JNK) signaling pathway is essential for the stimulation of hepatitis C virus(HCV) non-structural protein 3(NS3)-mediated cell growth. Virology,2005, 333(2):324-36.
    [14]Johnson SA, Hunter T, Kinomics. Methods for deciphering the kinome. Nat Meth, 2005,21(1):17-25.
    [15]Hunter T. Tyrosine phosphorylation:thirty years and counting.Curr Opin Cell Biol,2009, Mar 6. Epub ahead of print.
    [16]Koike K. Hepatitis C virus contributes to hepatocarcinogenesis by modulating metabolic and intracellular signaling pathways. Gastroenterol Hepatol,2007,22 Supp11:S108-11.
    [17]Morandell S, Stasyk T, Skvortsov S, et al. Quantitative proteomics and phosphoproteomics reveal novel insights intocomplexity and dynamics of the EGFR signaling network.Proteomics,2008,8(21):4383-401.
    [18]Schreiber TB, Mausbacher N, Breitkopf SB, et al. Quantitative phosphoproteomics-an emerging key technology in signal-transduction research.Proteomics,2008,8(21):4416-32.
    [19]Ray RB, Lagging LM, Meyer K, et al. Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype. J Viro,1996,70(7):4438-4443.
    [20]Gale JM, Kwieciszewski B, Dossett M, et al. Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase. J Virol,1999,73(8):6506-6516.
    [21]Sakamuro D, Furukawa T, Takegami T. Hepatitis C virus nonstructural protein NS3 transforms NIH3T3 cells. J Virol,1995,69(6):3893-3896.
    [22]Park JS, Yang JM, Min MK. Hepatitis C virus nonstructural protein NS4B transforms NIH3T3 cells in cooperation with the Ha-ras oncogene.Biochem Biophys Res Commun,2000,267(2):581-587.
    [23]Hunter T. Signaling 2000 and beyond. Cell,2000,100(1):113-127.
    [24]Soskic V, Gorlach M, Poznanovic S, et al. Functional proteomics analysis of signal transduction pathways of the platelet-derived growth factor beta receptor.Biochemistry,1999,38(6):1757-1764.
    [25]Imam-Sghiouar N, Laude-lemaire I, Labas V, et al. Subproteomics analysis of phosphorylated preoteins:Application to the study of B-lymphoblasts from a patient with Scott syndrom. Proteomics,2002,2(7):828-838.
    [26]Puthalakath H, Strasser A. Keeping killers on a tight leash:transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins.Cell Death Differ,2002,9:505-512.
    [27]Ritchie A, Gutierrez O, Fernandez-Luna JL.PAR Bzip-bik is a novel transcriptional pathway that mediates oxidative stress-induced apoptosis in fibroblasts. Cell Death Differ,2009,16:838-846.
    [28]Bodet L, Menoret E, Descamps G, et al. BH3-only protein Bik is involved in both apoptosis induction and sensitivity to oxidative stress in multiple myeloma. Cancer Reserch UK,2010,103:1808-1814.
    [29]赵小平.Bik诱导细胞凋亡机制的研究,2007.
    [30]赵小平,钱关祥.Bcl-2家族中唯BH3域蛋白的研究进展.生命科学,2005,17(5):411-413.
    [31]Tong YA, Yang Q, Vater Q, et al. The pro-apoptotic protein, Bik, exhibits potent antitumor activity that is dependent on its BH3 domain.Mol Cancer Ther,2001,1: 95-102.
    [32]Nonn L, M Berggren, G Powis. Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis. Mol Cancer,2003,1: 682-689.
    [33]杨柳Perxiredoxin在H202介导的信号通路中的作用.国际病理科学与临床杂志,2006,26(5):417-419.
    [34]位淑梅PeroxiredoxinⅢ蛋白在卵巢浆液性囊腺癌中的表达及临床意义,2009.
    [35]Anamika B, Hiya B, Heather R, et al. Differential expression of peroxiredoxins in Prostate cancer:consistent upregulation of PRDX3 and PRDX4. The Prostate, 2010 Wiley-Liss, Inc.
    [36]Choi JH, Kim S, et al. Overexpression of mitochondrial thioredoxin reductase and peroxiredoxin III in hepatocellular carcinomas. Anticancer Res,2002,22: 3331-3335.
    [37]Oliver JD, Vanderwal FJ, Bulleid NJ, et al. Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science,1997,275:86-88.
    [38]Krynetski EY, Krynetskaia NF, Bianchi ME, et al. A nuclear protein complex containing high mobility group proteins B1 and B2, heat shock cognate protein 70, ERp60, and glyceraldehyde-3-phosphate dehydrogenase is involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analogues. Cancer Res,2003,63:100-106.
    [39]Wiwanitkit House, Bangkhae, Bangkok, et al. Potential protein post-translational modification in ERp57:A phenotype marker for male fertility. J Hum Reprod Sci, 2010, Sep,3(3):146-147.
    [40]丁莹,吕宾,孟立娜,等.肠易激综合症大鼠结肠组织的蛋白质组学研究.中华医学杂志(基础医学),2010,90(8):564-569.
    [41]Chay D, Cho H, Lim BJ, et al. ER-60 (PDIA3) is highly expressed in a newly established serous ovarian cancer cell line, YDOV-139. Int J Oncol,2010,37(2): 399-412.
    [42]Nicole CP, Helmut K, et al. Differential expression of apoptotic genes PDIA3 and MAP3K5 distinguishes between low-and high-risk prostate cancer. Molecular Cancer,2009,8:130.
    [43]Corazzari M, Lovat PE, Armstrong JL, et al. Targeting homeostatic mechanisms of endoplasmic reticulum stress to increase susceptibility of stress proteins ERdj5 and ERp57. Br J Cancer,2007,96:1062-1071.
    [44]Leys CM, Nomura S, LaFleur BJ, et al. Expression and prognostic significance of prothymosin-alpha and ERp57 in human gastric cancer. Surgery,2007,141: 41-50.
    [45]Mili S, Shu HJ, Zhao Y, et al. Distinct RNP complexes of shuttling hnRNP proteins with pre-mRNA and mRNA:candidate intermediates in formation and export of mRNA. Mol Cell Biol,2001,21(21):7307-7319.
    [46]Ford LP, Wright WE, Shay JW. A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation. Oncogene,2002,21: 580-3.
    [47]沈句信,秦娥,孙继,等.核内不均一核糖核蛋白A2/B1及p53蛋白诊断肺癌的价值.中国老年学杂志,2010,30:30-32.
    [48]吴驰,李为民,陈文彬,等.人肺癌细胞株中hnRNPA2/B1表达的研究.中国肺癌杂志,2004,7(2):121-124.
    [49]Zhou J, Allred DC, Avis J, et al. Differential expression of the early lung cancer detection marker, heterogeneous nuclear ribonucleoprotein A2/B1 in normal breast and neoplastic breast cancer. Breast Cancer Res Treat,2001,66(3): 217-224.
    [50]Tockman MS, Gupta PK, Myers JD, et al. Sensitive and specific monoclonal antibody recognition of human lung cancer antigen on preserved sputum cells:a new approach to early lung cancer detection. J Clin Oncol,1988,61(1): 1685-1693.
    [51]Tockman MS, Mulshine JL, Piantadosi S, et al. Prospective detection of preclinical lung cancer:results from two studies of heterogeneous nuclear ribonucleoprotein A2/B1 overexpression. Clin Cancer Res,1997,3(12): 2237-2246.
    [52]Qiao YL, Tockman MS, Li L, et al. A case-cohort study of an early biomarker of lung cancer in a screening cohort of Yunnan tin miners in China. Cancer Epidemiol Biomarkers Prev,1997,6(11):893-900.
    [53]Fielding P, Turnbull L, Prime W, et al. Heterogeneous nuclear ribonucleoprotein A2/B1 up-regulation in bronchial lavage specimens:a clinical marker of early lung cancer detection. Clin Cancer Res,1999,5(12):4048-4052.
    [54]庞洪刚,李志高,李晓冬,等.核不均一性核糖核蛋白A1在大肠癌中的表达.中华实验外科杂志,2006,23(5):599-601.
    [55]Ushigome M, Ubagai T, Fukuda H, et al. Up-regulation of hnRNPAl gene in sporadic human colorectal cancers. Int J Oncol,2005,26(3):635-640.
    [56]Hosomi O, Misawa Y, Takeya A, et al. Novel oligosaccharide has suppressive activity against human leukemia cell proliferation. Glycoconj J,2009,26(2): 189-198.
    [57]Kim CS, Seol SK, Song OK, et al. An RNA-binding protein, hnRNPAl, and a scaffold protein, septin 6, facilitate hepatitis C virus replication. J Virol,2007, 81(8):3852-3865.
    [58]Piast M, Kustrzeba WI, Matusiewicz M, et al.Molecular evolution of enolase.ActaBiochimPol,2005,52:507-513.
    [59]Craig SP, Day ZN, Thompson RJ, et al. Localisation of neurone-specific enolase to 12p13. Cytogenet Cell Genet,1990,54:71-73.
    [60]Feo S, Oliva D, Barbieri G, et al. The gene for the muscle-specific enolase is on the short arm of human chromosome 17. Genomics,6:192-194.
    [61]Rider CC, Taylor CB.Enolase isoenzymes Ⅱ Hybridization studies, developmental and phylogenetic aspects.Biochim Biophys Acta,1975, 405:175-187.
    [62]Pancholi V. Multifunctional alpha-enolase:its role in disease. Cell Mol Life Sci, 2001,58:902-920.
    [63]Fletcher L, Rider CC, Toylor CB. Enolase isoenzymes Ⅲ Chromatographic and immunological Characteristics of rat brain enolase. Biochim Biophys Acta,1976, 452:245-252.
    [64]Fletcher L, Rider CC, Toylor CB, et al. Enolase isoenzymes as markers tissues of mouse. Dev Biol,1978,65:462-475.
    [65]Marangos PJ, Zis AP, Clark RL, et al. Neuronal, non-neuronal and hybrid forms of enolase in brain:structural, immunological and functional comparisons. Brain Res,1978,150:117-133.
    [66]朱理安,方宁远,高平进等.α烯醇化酶靶向RNA干扰对原代培养乳鼠心肌细胞能量代谢及收缩功能的影响.中华高血压杂志,2008,16(1):41-45.
    [67]Sousa LP, Brasil BS, Silva Bde M, et al. Characterization of alpha-enolase as an interferon-alpha 2 alpha 1 regulated gene. Front Biosce,2005,10(5):2534-2547.
    [68]Ghosh AK, Steele R, Ray R B. C-myc promoter-binding protein 1 (MBP-1) regulates prostate cancer cell growth by inhibiting MAPK pathway. J Biol Chem,2005,280(14):14325-14330.
    [69]Pancholi V. Multifunctional alpha-enolase:its role in diseases. Cell Mol Life Sci, 2001,58:902-920.
    [70]Ray R, Miller DM. Cloning and characterization of a human c-myc promoter-binding protein. Mol Cell Biol,1:2154-2161.
    [71]Subramanian A, Miller DM. Structural analysis of alpha-enolase:Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem,2000,275:5958-5965.
    [72]Lo Presti M, Ferro A, Contino F, et al. Myc promoter-binding protein-1 (MBP-1) is a novel potential prognostic marker in invasive ductal breast carcinoma. PLoS ONE,2010,5.
    [73]Takashima M, Kuramitsu Y, Yokoyama Y, et al. Overexpression of alpha enolase in hepatitis C virus-related hepatocellular carcinoma:association with tumour progression as determined by proteomic analysis. Proteomics,2005,5(6): 1686-1692.
    [74]Kinloch A, Tatzer V, Wait R, et al. Identification of citrullinated alpha-enolase as a candidate autoantigen in reheumatoid arthritis. Arthritis Res Ther,2005,7(6): R1421-1429.
    [75]Nahm D H, Lee K H, Shim J Y. Identification of alpha-enolase as an autoantigen associated with severe asthma.J Allergy Clin Immunol,2006,118(2):376-381.
    [76]Chang GC, Liu KJ, Hsieh CL, et al. Identification of alpha-enolase as an autoantigen in lung cancer:Its overexpression is associated with clinical outcomes. Clin Cancer Res,2006,12(19):5746-5754.
    [77]Plow EF, Felez J, Miles LA. Cellular regulation of fibrinolysis. Thromb Haemost, 1991,66:32-36.
    [78]Tomaino B, Cappello P, Novarino A, et al. Circulating autoantibodies to phosphorylated alpha-enolase are a hall mark of pancreatic cancer. J Proteome Res,2001,1:105-112.
    [79]Michela C, Sammy F, Paolo C, et al. a-enoalse:a promising therapeutic and diagnostic tumor target. FEBS Journal,2011,278,7:1064-1074.
    [80]Launonen V, Vierimaa O, Kiuru M, et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci,2001,98:3387-3392.
    [81]Tomlinson I P, Alam NA, Rowan A J, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet,2002,30:406-410.
    [82]Harris A. Hypoxia-a key regulatory factor in tumor growth. Nat. Rev. Cancer, 2002,2:38-47.
    [83]Isaacs JS, Jung YJ, Mole DR, et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer:novel role of fumarate in regulation of HIF stability. Cancer cell,2005,8:143-153.
    [84]Pollard P, Wortham N, Barclay E, et al. Evidence of increased microvessel density and activation of the hypoxia pathway in tumours from the hereditary leiomyomatosis and renal cell cancer syndrome. J Pathol,2005,205:41-49.
    [85]Pollard PJ, Briere JJ, Alam NA, et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1 alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet,2005,14:2231-2239.
    [86]Ohad Y, Orli Y, Esti S, et al. Fumarase:A mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response. PLOS Biology,2010. 8(3).
    [1]Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005 [J]. Clin Oncol,2009,27(9):1485-1491.
    [2]Levrero M. Viral hepatitis and liver cancer:the case of hepatitis C [J]. Oncogene, 2006,25 (27):3834-3847.
    [3]Bartosch B, Cosset FL. Cell entry of hepatitis C virus [J]. Virology,2006, 348(1):1-12.
    [4]Lau DT, Fish PM, Sinha M, et al. Interferon regulatory factor-3 activation, hepatic interferon-stimulated gene expression, and immune cell infiltration in hepatitis C virus patients [J]. Hepatology,2008,47(3):799-809.
    [5]Castello G, Scala S, Palmieri G,et al. HCV-related hepatocellular carcinoma:from chronic inflammation to cancer [J]. Clin Immunology,2010,134(3):237-250.
    [6]Donato F, Tagger A, Gelatti U, et al. Alcohol and hepatocellular carcinoma:the effect of lifetime intake and hepatitis virus infections in men and women [J]. Am J Epidemiol,2002,155(4):323-331.
    [7]Imazeki F, Yokosuka O, Fukai K, et al. Favorable prognosis of chronic hepatitis C after interferon therapy by long-term cohort study [J]. Hepatology,2003, 38(2):493-502.
    [8]Kasahara A, Hayashi N, Mochizuki K, et al. Risk factors for hepatocellular carcinoma and its incidence after interferon treatment in patients with chronic hepatitis C.Osaka Liver Disease Study Group [J]. Hepatology,1998,27(5): 1394-1402.
    [9]Degos F, Christidis C, Ganne-Carrie N, et al. Hepatitis C virus related cirrhosis: time to occurrence of hepatocellular carcinoma and death [J]. Gut,2000, 47(1):131-136.
    [10]Koike K. Pathogenesis of HCV-associated HCC:Dual-pass carcinogenesis through activation of oxidative stress and intracellular signaling [J]. Hepatol Res, 2007,37(Suppl 2):S115-S120
    [11]Chen S, Wang YM. Genetic evolution of struchlral region of hepatitis C virus in primary infection [J]. World J Gastroenterol,2002,8(4):686-693.
    [12]Zhu LX, Liu J, Li YC, et al. Full-length core sequence dependent complex-type glycosylation of hepatitis C Virus E2 glycoprotein [J]. World J Gastroenterol, 2002,8(3):499—504
    [13]Zhu LX, Liu J, Ye Y, et al. A candidate DNA vaccine elicits HCV specific humoral and cellular immune responses [J]. World J Gastroenterol,2004, 10(17):2488-2492.
    [14]Nitkiewicz J. Chronic hepatitis C infection—mechanisms of virus "immune escape" [J]. Przegl Epidemiol,2004,58(3):423—433
    [15]Mcgivern DR, Lomon SM. Tumor suppressors.chromosomal instability,and hepatitis C virus-associeated liver cancer [J]. Annu Rev Pathol,2009,4: 399-415.
    [16]Koike K. Pathogenesis of HCV-associated HCC:Dual-pass carcinogenesis through activation of oxidative stress and intracellular signaling [J]. Hepatol Res, 2007,37(Supp12):S115-S120.
    [17]Sakamuro D, Furukawa T, Takegami T. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells [J]. J Virol,1995,69(6):3893-3896
    [18]Ray RB, Lagging LM, Meyer K, et al. Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype [J]. J Virol,1996,70(7):4438-4443.
    [19]Gale Jr M, Kwieciszewski B, Dossett M, et al. Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase [J]. J Virol,1999,73(8):6506-6516.
    [20]Park JS, Yang JM, Min MK. Hepatitis C virus nonstructural protein NS4B transforms NIH3T3 cells in cooperation with the Ha-ras oncogene [J]. Biochem Biophys Res Commun,2000,267(2):581-587.
    [21]Moriya K, Fujie H, Shintani Y, et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice [J]. Nat Med,1998,4(9):1065-1067.
    [22]Ray RB, Steele R, Meyer K, et al. Transcriptional repression of p53 promoter by hepatitis C virus core protein [J]. J Biol Chem,1997,272(17):10983-10986.
    [23]Kao CF, Chen SY, Chen JY, et al. Modulation of p53 transcription regulatory activity and post-translational modification by hepatitis C virus core protein [J]. Oncogene,2004,23(14):2472-2483.
    [24]Ray RB, Steele R, Meyer K. Hepatitis C virus core protein represses p21WAFl/Cipl/Sidl promoter activity [J]. Gene,1998,208(2):331-336
    [25]Jung EY, Lee MN, Yang HY, et al. The repressive activity of hepatitis C virus core proteinon the transcription of p21(wafl) is regulated by protein kinase A-mediated phosphorylation [J]. Virus Res,2001,79(1-2):109-115.
    [26]Ruggieri A, Murdolo M, Harada T, et al. Cell cycle perturbation in a human hepatoblastoma cell line constitutively expressing Hepatitis C virus core protein [J]. Arch Virol,2004,149(1):61-74.
    [27]Tetesuro S, KanKanstu Y, Kaoru S, et al. Increased expression of insulin-like growth factor Ⅱ in hepatocellular carcinoma is primary regulate at the transcriptional level [J]. Lablnvest,1996,75(2):307-311.
    [28]Lee S, Park U, Lee YI. Hepatitis C. virus core protein transactivates insulin-like growth factor Ⅱ gene transcription through acting concurrently on Egrl and Spl sites [J]. Virology,2001,283:167-177
    [29]Okuda M, Li K, Beard MR, et al. Mitochondrial injury, oxidativestress, and antioxidant gene exp ression are induced by hepatitis Cvirus core p rotein [J]. Gastroenterology,2002,122 (2):366-375.
    [30]MakiA, Kono H, Gupta M, et al. Predictive power of biomarkers of oxidative stress and inflammation in patients with hepatitis C virus2associated hepatocellular carcinoma [J]. Ann SurgOncol,2007,14(3):1182-1190.
    [31]Gong G, Waris G, Tanveer R, et al. Human hepatitis C virusNS5Ap rotein alters intracellular calcium levels, induces oxidative stress,and activates STAT23 and NF2kappa B [J]. Proc Natl Acad SciUSA,2001,98 (17):9599-9604.
    [32]Yoshida T, Hanada T, Tokuhisa T. Activation of STAT3 by the hepatitis C virus core protein leads to cellular transformation [J].2002,196(5):641-653.
    [33]Melen K, Fagerlund R, Nyqvist M. Expression of hepatitis C virus core protein inhibits interferon induced nuclear import of STATs [J].2004,73(4):536-547.
    [34]You LR, Chen CM, Lee YH. Hepatitis C virus core protein enhances NF-kappaB signal pathway triggering by lymphotoxin-beta receptor ligand and tumor necrosis factor alpha [J].1999,73(2):1672-1681
    [35]Kato N. Molecular virology of hepatitis C virus [J]. Acta Med Okayama,2001, 55(3):133-159
    [36]何琼琼,冯德云,李波,等.丙型肝炎病毒NS3基因对人肝细胞生物学特性的影响[J].生物技术通报,2007,4:135-140.He Qiong-qiong, Feng De-yun, Li Bo, et al. Effect of HCV NS3 Gene on Biological Charictarization of Human Hepatocyte [J].Biotechnology Bulletin, 2007,4:135-140(In Chinese).
    [37]李波,冯德云,程瑞雪,等.丙型肝炎病毒NS3蛋白促进人源肝细胞的增殖及其相关机制研究[J].生物化学与生物物理进展,2005,32(10):991-997.Li Bo, Feng De-Yun, Cheng Rui-Xue, et al. The Mechanisms for HCV NS3 Protein Upregulating Cell Proliferation in Human Hepatocytes [J]. Progress in Biochemistry and Biophysics,2005,32(10):991-997(In Chinese).
    [38]Borowski P, Oehlmann K, Heiland M, et al. Nonstructural protein 3 of hepatitis C virus blocks the distribution of the free catalytic subunit of cycline AMP-dependent protein kinase [J]. Virol,1997,71(4):2838-2843.
    [39]Aoubala M, Holt J, Clegg RA, et al. The inhibition of cAMP-protein kinase by full-length hepatitis C virus NS3/4A complex is due to ATP hydrolysis [J].Gen Virol,2001,82(7):1637-1646
    [40]冯德云,郑晖,颜亚晖,等.肝细胞癌组织中丙型肝炎病毒NS3蛋白对P53蛋白表达的影响[J].中华医学杂志,1998,78(4):278-280.Feng De-yun, Zheng Hui, Yan Ya-hui, et al. The effect of HCV NS3 protein in Hepatocellular carcinoma on P53 protein expression [J]. Nat Med J China,1998, 78(4):278-280(In Chinese).
    [41]Kwun HJ, Jung EY, Ahn JY, et al. p53-dependent transcriptional repression of p21wafl by hepatitis C virus NS3 [J]. Journal of General Virology,2001,82(Pt 9): 2235-2241.
    [42]牟劲松,刘妍,王刚,等.应用抑制性消减杂交技术克隆丙型肝炎病毒非结构蛋白Ns3反式激活的相关基因[J].世界华人消化杂志,2003,11(4):399-403.Mu Jin-song, Liu Yan, Wang Gang, et al. Cloning of genes transactivated by NS3 protein of HCV with suppressive and subtractive hybridization [J]. World Chinese Journal of Digestology,2003,11(4):99-403(In Chinese).
    [43]Majumder M, Ghosh AK, Steele R, et al. Hepatitis C virus NS5A protein impairs TNF-mediated hepatic apoptosis, but not by anti-FAS antibody, in transgenic mice [J]. Virology,2002,294(1):94-105
    [44]Ghosh AK, MajumderM, Steele R, et al. Hepatitis C virus NS5a protein protects against TNF-α mediated apoptotic cell death [J]. Virus Res,2000,67(2): 173-178.
    [45]Miyasaka Y, Enomoto NK, urosaki M, et al. Hepatitis C virus non-structural protein 5A inhibits tumor necrosis factor-amediated apoptosis in Huh7 cells [J]. J Infect Dis,2003,188(10):1537-1544.
    [46]Macdonald A, Crowder K, Street A, et al. The hepatitis C virus NS5A protein binds to members of the Src family of tyrosine kinases and regulates kinase activity [J]. J Gen Virol,2004,85(Pt 3):721-729.
    [47]Tan SL, Nakao H, He Y, e t al. NS5A, A nonstructual protein of hepatitis C virus binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling [J]. Proc Natl Acad Sci USA,1999,96(10):5533-5538.
    [48]Gale M Jr, Blakely CM, Kwieeiszewski B, et al. Control of PKR protein kinase by hepatitis C virus nonstructual 5A protein molecular mechanisms of kinase regulation [J]. Mol Cell Biol,1998,18(9):5208-5218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700