用户名: 密码: 验证码:
SAR图像处理的独立分量分析方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(Synthetic Aperture Radar,SAR)图像由于其全天侯、全天时、分辨率高等优点,在军事和民用领域中都得到了应用。但是应注意由于SAR成像的机理,使得SAR图像含有斑点噪声,这样与传统光学图像的处理相比,SAR图像的处理具有其特殊性。
     本文研究基于独立分量分析(Independent Component Analysis,ICA)的方法的SAR图像处理问题。针对SAR图像的统计特性,给出了基于多尺度自回归滑动平均(Multiscale Autoregressive Moving Average,MARMA)模型和基于投影寻踪学习网络(Projection Pursuit Learning Network,PPLN)方法的SAR图像压缩方法;给出了基于独立分量分析的极化SAR图像抑制斑点噪声方法;提出了SAR图像增强的稳健独立分量分析方法;研究了SAR图像滤波和增强的子带独立分量分析处理方法。主要研究内容如下:
     (1)提出了基于多尺度ARMA模型的SAR图像压缩新方法,以建立多尺度MARMA模型和多尺度MAR(Multiscale Autoregressive)模型来直接刻画SAR图像的统计相依性为基础,据此构造压缩算法。不使用对SAR图像的分割结果,因而该方法无需SAR图像分割的先验知识。【附录二:(1、3)】
     (2)给出了基于投影寻踪学习网络的SAR图像压缩新方法。该方法综合了投影寻踪回归(Projection Pursuit Regression,PPR)的统计思想和图像压缩的基本思路,试验结果表明该方法既能达到较高的压缩比又能取得较好的保真度。【附录二:(4)】
     (3)极化SAR图像可视为目标信号与噪声的线性混合,利用ICA的分离性,可从其中分离出期望信号,将HH、HV、VV和HV/VV的比值图像做为ICA的输入数据。本文首次基于ICA方法,得到了分别对应于HH、HV和VV极化的三幅降噪图像,取得了较好的实验结果。进而,还分别使用了三种不同的ICA算法,进行了极化SAR图像的相干斑抑制,并对其结果进行了比较分析,这对补充ICA算法的研究成果是有意义的。【附录二:(5、7、9)】
     (4)构造了一个稳健独立分量分析神经网络算法。当数据中存在噪声或异常值时,该方法能够有效地降低噪声的影响。该算法通过应用基于最小协方差行列式(Minimum Covariance Determinant,MCD)估计的异常值拒绝法则,使其具有稳健性。在数据中含有较强噪声或异常值时,算法优于传统的ICA算法。将此算法分别应用到盲噪声图像分离和SAR图像处理上,与传统的ICA方法相比,得到了较好的分离结果。【附录二:(2、6)】
     (5)给出极化SAR图像增强的子带ICA处理方法。子带ICA扩展ICA的基本模型,假设源信号各分量并不具有统计独立性,而是由一些统计独立的子分量组成,与传统算法相比,该方法具有更好的灵活性和鲁棒性结果。本文首次使用基于子带ICA方法进行极化SAR图像增强,得到了较好的实验结果。【附录二:(8、12)】
SAR (Synthetic Aperture Radar) images get the rapid development and wide application because they can be obtained any-time, any-weather and with high resolution. Unfortunately, SAR images are always polluted by the multiplicative noise. For this reason, the traditional methods of image processing do not work well.
     In this paper, a series of new methods are proposed and applied to SAR compression, speckle reduction and enhancement. The main innovative points are as follows:
     At first, a new method based on multiscale autoregressive moving average (MARMA) models is presented to compress SAR image. The method uses the multiscale representation as the cornerstone of the modeling process, and constructs the MARMA models of image. Thus we predict the initialized image data using these multiscale models, and the compression is subsequently achieved through coding the residual image. Unlike published methods, supervising segmentation for SAR image is not used in our compression processes. So the prior knowledge of segmentation is not required. Experimental results have proven that the proposed method achieves high compression radios with impressive image quality.
     Secondly, we present a new algorithm for SAR image compression based on projection pursuit learning networks. At first, we segment an SAR image into regions of different sizes based on mean value in each region and then constructing a distinct code for each block by using the projection pursuit neural networks. The process is stopped when the desired error threshold is achieved. The experimental results show that excellent performance can be achieved for typical SAR images with no significant distortion introduced by image compression.
     Thirdly, the polarimetric synthetic aperture radar (PSAR) images are modeled by a mixture model that results from the product of two independent models, one characterizes the target response and the other characterizes the speckle phenomenon. For the scene interpretation, it is desirable to separate between the target response and the speckle. For this purpose, we proposed a new speckle reduction approach using ICA based on statistical formulation of PSAR image. In addition, we apply three ICA algorithms on real PSAR images and compare their performances. The comparison reveals characteristic differences between the studied neural ICA algorithms, complementing the results obtained earlier.
     Fourthly, we propose a robust ICA network for separation images contaminated with high-level additive noise or outliers. We reduce the power of additive noise by adding outlier rejection rule in ICA. Extensive computer simulations of separation of noisy image confirm robustness and the excellent performance of the resulting algorithms. In addition, its application in SAR is discussed. The results show the potential usage in SAR image processing problems.
     Fifthly, the basic model and methods of subband Independent Component Analysis (SICA) system are introduced in this paper. In our model, the assumption of the standard ICA model that the source signals are mutually independent is relaxed. We presume that the source signals are the sum of some independent and/or dependent subcomponents. This blind source separation (BSS) problem is solves by using the subband decomposition as preprocessing of ICA. The method proposed in the paper has been tested for unsupervised separation and enhancement in SAR images. The results indicate that the method is promising for the analysis problem of SAR images. In addition, we use SICA to speckle reduction of PSAR images. The results indicate that the method is promising for the speckle reduction problem of PSAR images.
引文
[1] R. Tagliaferri, A. Ciaramella, L. Milano, F. Barone, G. Longo (1999). Spectral Analysis of Stellar Light Curves by Means of Neural Networks, Astronomy and Astrophysics Supplement Series, vol. 137, pp. 391 - 405.
    [2] R. Tagliaferri, N. Pelosi, A. Ciaramella,G. Longo, F. Barone, and M. Milano (2001). Soft Computing Methodologies for Spectral Analysis in Cyclostratigraphy, Computers and Geosciences, Vol. 27, pp. 535 - 548.
    [3] L. Zhong, C. Wicks, J. Power, D. Dzurisin, W. Thatcher, and T. Masterlark (2002). Interferometric synthetic aperture radar studies of alaska volcanoes, 2002 IEEE International Geoscience and Remote Sensing Symposium (IGARSS '02), Vol. 1, pp. 191 - 194.
    [4] C. Jutten, J. Herault. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991, 24(1): 1-10.
    [5] J.F. Cardoso. Blind identification of independent signals. Proceedings of Workshop on Higher-Order Specral Analysis, Vail, Colorado, USA, 1989.
    [6] J.F, Cardoso, A. Souloumiac. Blind beamforming for non Gaussian signals. IEE Proceedings-F, 1993, 140(6): 362-370.
    [7] P. Comon. Separation of stochastic processes whose a linear mixture is observed. Proceedings of Workshop on Higher-Order Spectral Analysis, Colorado, 1989, 174-179.
    [8] P. Comon. Independent component analysis: A new concept? Signal Processing, 1994, 36(3): 287-313.
    [9] A. Cichocki, R. Unbehauen, E. Rununert. Robust learning algorithm for blind separation of signals. Electronics Letters, 1994, 30(17): 1386-1387.
    [10] A. Cichocki, R, Unbehauen. Robust neural networks with on-line learning for blind identification and blind separation of sources. IEEE Transactions on Circuits and Systems, 1996, 43(11): 894-906.
    [11] E. Oja, H. Ogawa, J. Wangviwattana. Learning in nonlinear constrained Hebbian networks. Proceedings of International Conference on Artificial Neural Networks (ICANN'91), Espoo, Finland, 1991, 385-390.
    [12] E. Oja, H. Ogawa, J. Wangviwattana. Principal component analysis by homogeneous neural networks, part I: the weighted subspace criterion. IEICE Transactions on Information and Systems, 1992, E75-D(3): 366-375.
    [13] A.J. Bell, T.J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 1995, 7: 1129-1159.
    [14] A.J. Bell, T.J. Sejnowski. Fast blind separation based on information theory. Proceedings of International Symposium on Nonlinear Theory and Applications, 1995, 1:43-47.
    [15] A.J. Bell, T.J. Sejnowski. A non-linear information maximization algorithm that performs blind separation. Advances in Neural Information Processing Systems 7, MIT Press, 1995, 467-473.
    [16] S. Choi, A. Cichocki, S. Amari. Flexible independent component analysis. Neural Networks for Signal Processing, 1998, 8: 83-93.
    [17] S. Amari, A. Cichocki. Adaptive blind signal processing-neural network approaches. Proceedings of the IEEE, 1998, 86(10): 2026-2048.
    [18] S. Cruces, L. Castedo, A. Cichocki. Novel Blind Source Separation Algorithms Using Cumulants. IEEE International Conference on Acoustics, Speech, and Signal Processing V, Istanbul, Turkey, 2000, 3152-3155.
    [19] J.F. Cardoso, B.H. Laheld. Equivariant adaptive source separation. IEEE Transactions on Signal Processing, 1996, 44(12): 3017-3030
    [20] A. Hyvarinen, E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9(7): 1483-1492.
    [21] A. Hyvarinen. A family of fixed-point algorithms for independent component analysis. Proceedings of IEEE International Conferences on Acoustics, Speech and Signal Processing (ICASSP'97), Munich, Germany, 1997, 3917-3920.
    [22] A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 1999, 10(3): 626-633.
    [23] T.W. Lee, M. Girolami, T.J. Sejnowski. Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation, 1999, 11 (2): 417-441.
    [24] J.F. Cardoso. Infomax and maximum likelihood for blind separation. IEEE Signal Processing Letters, 1997, 4(4): 112-113.
    [25] J. Karhunen, P. Pajunen, E. Oja. The nonlinear PCA criterion in blind source separation: Relations with other approaches. Neurocomputing, 1998, 22: 5-20.
    [26] E. Oja. Nonlinear PCA criterion and maximum likelihood in independent component analysis. In Proceedings of International Workshop on Independent Component Analysis and Signal Separation (ICA'99), 1999, 143-148.
    [27] J.F. Cardoso, P. Comon. Independent component analysis: a survey of some algebraic methods. Proceedings of IEEE International Symposium on Circuits and Systems, ISCAS'96, 1996, Z: 93-96.
    [28] A. Hyvarinen, E. Oja. Independent component analysis: algroithms and applications. Neural Networks, 2000, 13(4): 411-430.
    [29] T.W. Lee Academic Independent component analysis: Theory and application. Boston: Kluwer Publishers, 1998.
    [30] N. L. Keshia. A survey paper on independent component analysis. Proceedings of the Thirty-fourth Southeastern Symposium on System Theory, 2002, 239-242.
    [31] A. Hyvarinen, J. Karhunen, E. Oja. Independent Component Analysis, John Wiley&Sons,Inc., 2001.
    [32] 高隽.智能信息处理方法导论,北京:机械工业出版社,2003.
    [33] 斯华龄,张立明.智能视觉图像处理—多通道图像的无监督学习方法及其他方法,上海科技教育出版社,2002.
    [34] 杨行峻,郑君里.人工神经网络与盲信号处理,北京:清华大学出版社,2003
    [35] X. Cao, R. Liu. General approach to blind source separation. IEEE Transactions on Signal Processing, 1996, 44: 562-571.
    [36] L. Tong, R. Liu, V Soon, et al. Indeterminancy and identifiability of blind identification.IEEE Transactions on Circuits and Systems, 1991, 38(5): 499-509.
    [37] 增琪明,焦健.合成孔径雷达遥感原理及应用简介(二),遥感信息,1998,01:41-45.
    [38] 舒宁编著.微波遥感原理,武汉大学出版社,2003.
    [39] Fawwaz T. Ulaby, Charles Elachi. Radar Polarimetry for Geoscience Applications. Artech House Inc, Boston, London, 1990, 281-295.
    [40] (美)M.W朗著,薛德铺译,王福山校.陆地和海面的雷达波散射特性(雷达遥感的理论与实践).科学出版社,北京,1981.pp 43-63,200-227.
    [41] Chris Oliver, Shaun Quegan, Understanding Synthetic Aperture Radar Images. Artech House, Boston London, 1998.
    [42] L. M. J. Brown, J. A. Conway, J. T. Macklin, Polarimetric Synthetic Aperture Radar: Fundamental Concepts and Analysis Tools. Gec Journal of Research, Vol.9, No.1, pp. 23-35, 1991.
    [43] Jakob J. van Zyl, Overview of SAR Polarimetry and lnterferometry. Proceedings of SPIE, Vol. 3210, San Diego, California, USA, 1997, pp. 16-23.
    [44] Tsunoda, S.I,Lynx. a high resolution synthetic aperture radar. SPIE, 1999.
    [45] Ulaby F T. Texture Information in SAR Imagings. IEEE Trans on Geo. Remote Sening, 1986,Vol.24 (2): 235-245.
    [46] U Benz, K Strodl, A Moriera. Comparison of several Algorithms for SAR Raw Data Compression.IEEE Trans Geoscience and Remote Sensing, 1995, 33(9): 1266-1276.
    [47] Arps Ronald B, Truong Thomas K. Comparison of International Standards for Lossless Still Image Comprssion. Proc. IEEE, 1994, 82(6): 889-899.
    [48] R W Ives. On the Comprssion of Synthetic Aperture Radar Imagery. Albuquerque, New Mexica Dept of Electrical and Computer Engineering the University of New Mexico, 1998.
    [49] 陆军等.合成孔径雷达—系统和信号处理.合肥:华东电子工程研究所,1999.
    [50] 余松煜等.现代图像信息压缩技术.北京:科学出版社,1998.
    [51] M Datcu, G Schwarz, K Schmidt, et al. Quality Evaluation of Compressed Optical and SAR Images JPEG vs. Wavelets. Richmond,BC, Canada, Int Geoscience and Remote Sensing Symposium, 1995, 1678-1689.
    [52] G Staples,et al. Data Compression Effects on SAR Image Compression. Int Geoscience and Remote Sensing Symposium, (Richmond, BC,Canada) 1995(3): 1678-1680.
    [53] Chen W H, et al. Adaptive Coding of Monochrome and Color Images. IEEE Trans Comm.COM-25, I977, 1285-1292.
    [54] 宋建社.小波分析及其应用例选.北京:现代出版社1998.
    [55] S A Werness, S C Wei, R Carpinella. Experiments with Wavelets for Compression of SAR Data. IEEE Trans. Geoscience and Remote.Sensing, 1994,32(1): 197-201.
    [56] D Wei, J Odegard, H Gue, et al. Simultaneous Noise Reduction and SAR Image Data Compression Using Best Wavelet Packet Bases with Application to SAR Based ATD/R. Orlando, FL: Proc. SPIE, 1995,2491:200-203.
    [57] Z Zeng, I G Cumming. SAR Image Data Compression Using a Tree-Structured Wavelet Transfom. IEEE Trans. Geoscience and Remote Sensing, 2001,39(3): 546-552.
    [58] R D Dony, S Haykin. Compression of SAR Images Using KLT, VQ and Mixture of Principal Components. IEEE Proc. Radar Sonar Navig, 1997, 144(6): 113-120.
    [59] Jain A K. Image Data Compression: A Review. Proc. IEEE, 1981, 69: 349-387.
    [60] Lee J S. Speckle Analysis and Smoothing of Synthetic Aperture Radar Images. Computer Graphic and Image Processing,1981, 17, pp.24-32.
    [61] Lee J S. Digit.al Image Enhancement and Noise Filtering by Use of Local Statistics. IEEE Trans. On Pattern Analysis and Machine Intelligence, March 1980, VOl.PAMI-2, No.2, pp.165-168.
    [62] Kuan D T., Sawchuk A A., Strand T C.and Chavel P. Adaptive Restoration of Images with Speckle. IEEE Trans. On Acoustics, Speech, and Signal Processing, March, 1987, Vol.ASSP-35, No.3, pp.373-383.
    [63] Lopes A-Touzi R., and Nezry E. Adaptive Speckle Filters and Scene Heterogeneity. IEEE Trans. On Geoscience and Remote Sensing, 1990, Vol.28, No.6, pp.992-1000.
    [64] Donoho and David L. De-noising by soft-thresholding. IEEE Trans. On Information Theory, 1995,Vo 1.41, No.3, pp.613-627.
    [65] L.M.Novak, M.C.Burl. Optimal speckle reduction in polarimetric SAR imagery, IEEE Trans. Aerosp.Electron.Syst., 1990,AES-26 (2),293-305.
    [66] Guoqing Liu, Shunji Huang. A. Torre, F. Rubertone,. Optimal multi-look polarimetric speckle reduction, inProc. IGARSS'95 Symp. Florenze, Italy, 1995, 664-666.
    [67] 郭华东.雷达对地观测理论与应用[M].北京:科学出版社,2000.
    [68] Chang C Y, et al. Spatial Compression of Seasat SAR Imagery[J]. IEEE Trans Geoscience and Remote Sensing, 1988, 26(6): 673-685.
    [69] M.Basserille, A.Berveniste, and A Willsky, Multiscale Auto-regressive Processes, Part Ⅰ: Schur-Levinson Parameterizations, IEEE Transactions on signal Processing, 40: 1915-1934, 1992.
    [70] M.Basserille, A.Berveniste, and A Willsky, Multiscale Auto-regressive Processes, Part Ⅱ: Lattice structures for Whitening and Modeling, IEEE Transaction on signal Processing, 40: 1935-1944, 1992.
    [71] M.Basserille, A.Berveniste, K.chou, and A.Willsky, Modeling and Estimation of Multiresolution Stochastic Process, IEEE Transactions on Information Theory, 38: 766-784, 1992.
    [72] A.Benveniste, R.Nikoukhah and A.willsky, Multiscale System Theory, IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications, 41:2-14, 1994.
    [73] Basserille M, Berveniste A, Chou K, and Willsky A. Modeling and Estimation of Multiresolution Stochastic Process [J]. IEEE Transactions on Information Theory, 1992, 38: 766-784.
    [74] Chou K. A Stochastic Modeling Approach to Multi-scale Signal Processing [D]. PhD thesis, Massachusetts Institute of Technology, 1993.
    [75] Chou K, Willsky A and Benveniste A. Multiscale Recursive Estimation, Data Fusion, and Regularization [J]. IEEE Transactions on Automatic Control, 1994, 39: 464-478.
    [76] Schoeder J., Howard D. and Guanawardean A. Multiscale Modeling for Target Detection in Complex Synthetic Aperture Radar Imagery, In Proceedings of the Asilomar Conference on Signals, Speech and Signal Processing, Phoenix, AZ. 2000.
    [77] Andrew. Kim and Hamid.Krim. Hierarchical stochastic modeling of SAR imagery for segmentation/compression [J]. IEEE Trans. Signal Processing. Vol.47 (2), 1999: 458-468.
    [78] Huber,R. Projection pursuit(with discussion). The Annals of Statistics. 13: 435-475,1985.
    [79] Friedman,J.H. Exploratory projection pursuit. J. Amer. Statist. Assoc. 82:249-266 1987.
    [80] Friedman,J.H.& Tukey, J.W..A projection pursuit algorithm for exploratory data analysis. IEEE Trans.Computers, 1974,23:881-889.
    [81] Nason,G. P..Design and choice of projection indices. Ph.D thesis, University of Bath, 1992.
    [82] Krause,A.& Liebscher, V.. Multimodal Projection Pursuit using the Dip Statistic. 2005.
    [83] Friedman,J.H.& Stuetzle,W. A projection pursuit regression. J.Amer.Statist.Assoc. 76: 817-823.1981.
    [84] Chiang,S.S. &Chang,C.H.. Target subpixel detection for hyperspectral imagery using projection pursuit. In Proc. Conf. Image and Signal Processing for Remote Sensing V, Florence, Italy, 107-115. Sept. 1999.
    [85] Jones, M.C. & Sibson, R. what is projection pursuit?(with discussion). J. Roy. Statist. Ser. A 150:29-30,1987.
    [86] Hall, P. On polynomial-based projection indices for exploratory projection pursuit. Ann. Statist. 17(2): 589-605,1989.
    [87] Cook,D.,Buja,&Cabrera,J.. Projection pursuit indices based on expansions with orthonormal functions. Journal of Computational and Graphical Statistics, 1993.
    [88] Nason,G. P. Robust projection indecs. Technical Report 00:05,Department of Mathematics,University of Bristol,2000.
    [89] Lee,E.K., DCook,D., Klinke,S. & Lumley,T.. Projection Pursuit for Exploratory Supervised Classification. 2004.
    [90] Posse,C. Projection pursuit discriminant analysis for two groups[C] .Communications in Statistics, Part A-Theory and Methods,21:1-19,1992.
    [91] Friedman,J.H.,Stuetzle,W.& Schroeder.A.: Projection pursuit density estimation. J.Amer.Statist.Assoc. 79: 599-608,1984.
    [92] Leng-Neng Hwang, et.al. Regression Modeling in Back-propagation and projection pursuit learning. IEEE Transactions On Neural Networks, 5(3), 1994.
    [93] Polzehl,J.. Projection pursuit discriminant analysis. Computational Statistics& Data Analysis, 20: 141-157,1995.
    [94] Jimenez,L. & Landgrebe,D.A.. Projection pursuit in high dimensional data reduction: Initial conditions, feature, selection and the assumption of normality, IEEE Trans. Geosci. Remote Sensing 37:2653-2667, Nov. 1999.
    [95] Triza,D.B.,&Bachmann, et.al. Projection pursuit Classification of Multiband Polarimetric SAR Land Image. IEEE Trans. Geosci. Remote sensing 39:2380- 2386,2001.
    [96] Kourtellos,A. A Projection Pursuit Approach to Cross Country Growth Data. University of Cyprus, Discussion Paper, 2002.
    [97] Lee Te-Won. Independent Component Analysis: Theory and Applications. Boston: Kluwer Academic Publishers, 1998.
    [98] Vaisey J. and Gersho A.: Image compression with variable block size segmentation. IEEE Trans. Signal Processing, vol. 40(1992) 2040-2060.
    [99] Burlet, J.; Aycard, O.; Fraichard, T.: Robust motion planning using markov decision processes and quadtree decomposition. Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on, Volume: 3(2004)2820-2825.
    [100] 李宏贵,李兴国.灰度图像的子块压缩方法[J].红外与激光工程,2002,31:390-394.
    [101] 斯华龄,张立明.智能视觉图像处理—多通道图像的无监督学习方法及其他方法,上海科技教育出版社,2002.
    [102] Cichocki, A. and Amari, S. Adaptive Blind Signal and Image Processing[M]. John Wiley & Sons, New York, New revised and improved edition (2003).
    [103] Giannakopoulos, X. Karhunen, J. and Oja, E.: An experimental comparison of neural ICA algorithms. In Proc. Int. Conf. on Artificial Neural Networks, Skovde, Sweden, 1998. M. Girolami and C. Fyfe. Generalised idependent.
    [104] 倪晋平.水声信号盲分离技术研究,西北工业大学博士学位论文,2002.
    [105] J. F. Cardoso, B. Laheld. Equivariant adaptive source separation. IEEE Transactions on Signal Processing, 1996, 44(12): 3017-3030.
    [106] Cruces, S. Castedo, L. Cichocki. A.: Robust blind source separation algorithms using cumulants. Neurocomputing. vol. 49, (2002) 87-118.
    [107] Peter J. Rousseeuw, Least median of squares regression, Journal of the. American Statistical Association 1984 Vol79 No. 388 p871-880.
    [108] Peter J. Rousseeuw, Katrien Van Driessen, A Fast Algorithm for the Minimum Covariance Determinant Estimator, Technometrics 1999 Vol41 No. 3 p212-223.
    [109] Grubel, R. A Minimal Characterization of the Covariance Matrix [J]. Metrika, 1988, 35, 49-52.
    [110] Cardoso, J. -F.: High-order contrasts for independent component analysis. Neural Computation. vol. 11(1999) 157-192.
    [111] Hyvarinen, A.: Gaussian moments for noisy independent component analysis. IEEE Signal Processing Letters. vol. 6(1999)145-147.
    [112] Attias, H.: Independent Factor Analysis. Neural Computation. vol. 11(1999) 803-851.
    [113] Moulines, E.; Cardoso, J. F.; Gassiat, E.: Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. Proc. ICASSP' 97. vol. 5(1997) 3617-3620.
    [114] Hubert, M. Rousseeuw, P. J. Vanden Branden, K.: ROBPCA: a new approach to robust principal component analysis. Technometrics 47(2005): 64-79.
    [115] Giannakopoulos X, Karhunen J, Oja E.: An experimental comparison of neural algorithms for independent component analysis and blind separation. International Journal of Neural Systems, 9(2), (1999): 99-114.
    [116] Adams, J. B. Smith, M. 0. and Johnson, P. E.: Spectral mixture modeling-A new analysis of rock and soil types at the Viking Lander 1 site. J. Geophys. Res. vol. 91(B8), (1986) 8090-8112.
    [117] S. Haykin. Modern Filters. Macmillan, 1989.
    [118] A. Oppenheim and R. Schafer. Discrete-Time Signal Processing. Prentice Hall, 1989.
    [119] S. Mitra. Digital Signal Processing: A Computer-Based Approach. McGraw-Hill, 1998.
    
    [120] S. Haykin. Adaptive Filter Theory. Prentice Hall, 3rd edition, 1996.
    [121] K. Torkkola. Blind separation of delayed and convolved sources. In S. Haykin, editor, Unsupervised Adaptive Filtering, Vol. I, pages 321-375. Wiley, 2000.
    [122] Romberg J et al. Bayesian Tree-Structured Image Modeling Using Waelet-Domain Hidden Markov Models [J]. IEEE Transactions on Image Processing, 2001,10(7): 1056-1067.
    [123] Wang Y P. Image Representations Using Multiscale Differential Operators [J]. IEEE Transactions on Image Processing, 1999, 8: 1757-1771.
    [124] Pizurica A et al. Despeckling SAR Images Using Wavelets and a New Class of Adaptive Shrinkage Estimators [C]. ICIP, 233-236, 2001.
    [125] Basserille M., Berveniste A. and Willsky A.. Multiscale Autoregressive Processes, Part 1: Schur-Levinson Parameterizations, IEEE Transactions on signal Processing, 1992,40(8): 1915-1934.
    [126] Basserille M., Berveniste A. and Willsky A.. Multiscale Autoregressive Processes, Part 2: Lattice Structures for Whitening and Modeling, IEEE Transactions on signal Processing, 1992, 40(8): 1935-1944.
    [127] Schneider M, Fieguth P, Karl W, and Willsky A. Multiscale Methods for the Segmentation of Images [J]. IEEE Transactions on Image Processing. 2000, 9(3): 456-468.
    [128] Irving W W, Novak L M and Willsky A S. A Multiresolution Approach to Discrimination in SAR Imagery [J]. IEEE Tran. Aerosp. Electron. Syst., 1997,33: 1157-1169.
    [129] Bel A J.,Sejnowski T J. An information maximization approach to blind separation and blind deconvolution[J]. Neural computation, 1995; 7(6): 1004-1034.
    [130] Lathauwer L.D. et al.Fetal electrocardiogram extraction by source subspace separation[C]. In: Proc HOS'95. Aiguablava, Spain , 1995:134-138.
    [131] Makeig S el al. Independent component analysis in electroencephalographic data[C].In: Advances in Neural Information Processing Systems,Denver, CO:MIT Press,1996:145-151.
    [132] Papadias C. B.,Paulraj A. A constant modulus algorithm for multi-user signal separation in presence of delay spread using antenna arrays[J]. IEEE signal procession Lett, 1997;4(6):178-181.
    [133] Pearlmutter B A, Parra L C. A context sensitive generalization of ICA[C]. In: Proc Int Conf Neural Information Processing, ICONIP'96, Hong Kong, 1996:151-157.
    [134] Karhunen J et al. Applications of neural blind separation to signal and image processing[C]. In: Proc ICASSP, 1997;(1): 131-134.
    [135] Shannon, C. E., and Weaver, W. The Mathematical Theory of Communication. Univ. of Illinois Press, Urbana. [Orig. pulb. (1948)].
    [136] Kun Zhang and Lai-Wan Chan. An Adaptive Method for Subband Decompostion ICA. Neural Computation. 2006, 18(1): 191-223.
    [137] J. Cao, N. Murata, S. Amari, A. Cichocki, and T. Takeda. A Robust Approach to Independent Component Analysis of Signals With High-Level Noise Measurements. IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003: 621-645.
    [138] Cichocki A., Unbehauen R., Moszczynski L. et al. A new on-line adaptive learnin algorithm for blind separation of sources [C]. In: Proc ISANN-94, Tainan, Taiwan, 1994:406-411.
    [139] Ifarraguerri, A.; Chein-I Chang; Unsupervised hyperspectral image analysis with projection pursuit, Geoscience and Remote Sensing, IEEE Transactions on , Volume: 38 , Issue: 6 , Nov. 2000 , Pages:2529 - 2538.
    [140] Huang-de Lin; Bruce, L.M. Projection pursuits for dimensionality reduction of hyperspectral signals in target recognition applications. Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International. Volume 2, 2004 Page(s):960 - 963 vol. 2.
    [141] Demirci, O.; Tyo, J. S.; Ritchie, E. A.; Spatial and Spatiotemporal Projection Pursuit Techniques to Predict the Extratropical Transition of Tropical Cyclones. Geoscience and Remote Sensing, IEEE Transactions on. Volume 45, Issue 2, Feb. 2007 Page(s): 418-425.
    [142] Kalman, R. E. A new approach to linear Filtering and prediction problems [J]. IEEE Transactions on Pattern Analysis and Machine intelligence, 1980, 2(2): 286-294.
    [143] 祁大勇,韩月秋.一种快速图象中值滤波算法[J].北京理工大学学报,1996,16(4):454-456.
    [144] 柏连发,陈钱,顾国华.一种易于硬件实现的超快速中值滤波算法[J].南京理工大学学报,1997,21 (6):544-547.
    [145] 贾永红,李德仁.多源遥感影像像素级融合分类与决策级分类融合法的研究[J].武汉大学学报 (信息科学版),2001,26(5):430-434.
    [146] J. W. Goodman. Some fundamental properties of speckle[J]. J. Opt. Soc. Amer., 1976, 66: 1145-1149.
    [147] Narasimha Rao, R V. Vidyadhar, M. S. R. R. An adaptative filter for speckle suppression in syntetic aperture radar images [J]. Int. J. Remote Sensing. 1995, 16(5): 877-889.
    [148] L. Alparone, E Argenti, A. Garzelli. A multiscale geometric filter based on the wavelet transform[J]. SPIE Int Symp on Optical Sc, Eng, and instr, Conf. on Wavelet Applications on Signal and Image procession Ⅳ, Denver, August 4-9, 1996: 652-659.
    [149] A. Pitas and A. Venetsanopoulos. Order statistics in digital image processing [J]. Proceedings of the IEEE, 1992, 80: 892-1921.
    [150] Martin, f. J. and Turner, R. W. SAR speckle reduction by weighted filtering [J]. Int, J. Remote sening, 1993, 14(9): 1759-1774.
    [151] Lee, J. S. Digital image noise smoothing and the sigma filter. Computer Vision[J]. Graphics and image processing, 1983, 24: 255-269.
    [152] 谭衢霖等.全方向自适应动态窗口SAR斑点噪声抑制算法[J].遥感学报,2002,6(6):464-469.
    [153] Touzi, R., Lopes, A., and Bpousquet, P. Astastical and geometrical edge detector for SAR images [J]. IEEE Trans. Geosci. Remote Sensing, 1988, 26: 764-773.
    [154] Lopes, A., nezry, E., Touz, R. and Laur H. Structure detection and statistical adaptive speckle filtering in SAR image[J]. Int. J. Remote Sensing, 1993, 14(9): 1735-1758.
    [155] R. W. Ives. On the compression of synthetic aperture radar imagery [D]. Albugineering, the University of New Mexiw, 1998.
    [156] Xian-Bin Wen, Zheng Tian.: Mixture multiscale autoregressive modelling of SAR imagery for segmentation. Electronics Letters. 39(17), (2003) 1272-1274,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700