用户名: 密码: 验证码:
非合作超宽带冲激无线电信号检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文所研究的超宽带(UWB)信号均指超宽带冲激无线电(UWB-IR)信号。
     UWB系统以低占空比的超短冲激脉冲作为载体,无需载波调制,采用跳时扩谱(TH-UWB)或直接序列扩谱(DS-UWB)技术实现信息传输。与传统无线电系统相比,UWB具有更低的功率谱密度和更宽的带宽,具有高数据率、强抗干扰的特点。UWB信号常常被隐蔽在环境噪声和其它干扰信号中,难以检测,是一种很有军事应用前景的低截获/检测概率信号。超宽带无线电技术在高速军事通信、无人机低截获数据链、高分辨率雷达/定位系统中已经得到实际应用。因此在非合作条件下,研究对UWB无线电信号的检测技术,具有重要的军事意义。
     本文研究了在负信噪比且没有先验信息或仅有部分先验信息条件下, UWB无线电信号的检测问题。论文的主要工作如下:
     在全盲和负信噪比情况下,研究了基于希尔伯特-黄变换(HHT)的UWB信号检测方法。仿真实验表明:在进行UWB信号检测时,与传统小波分析方法和Wigner-Ville分布相比,希尔伯特-黄方法具有优越性。
     利用信号和噪声在固有模态函数域中有不同的性态表现,提出了一种固有模态函数积检测器(IMFs product detctor),在低信噪比和背景噪声分布未知条件下,IMF积检测器优于Teager能量算子(TEO)检测器。参考Rosenfeld子带乘积理论,提出了基于固有模态函数域滤波(IMFDF)方法,用于对带噪信号的边缘检测。IMFDF和小波域滤波方法相比,相对简单,计算复杂度小。
     提出了可用于全盲信号检测的CCIO测度准则和两种基于参数可调非周期随机共振(PASR)的UWB信号检测方法。
     利用PASR系统输出信号和输入信号最匹配时,随机共振最显著的这一现象,区别于Collins互相关方法,提出了基于输入(信号+噪声)输出互相关的ASR测度方法,即CCIO方法。利用线性响应理论(LRT),推导了CCIO测度方法的性能,验证了CCIO测度下的PASR方法可以实现全盲负信噪比(低于? 10dB)非合作UWB信号检测。
     在CCIO准则下,提出了基于PASR的DS-UWB系统码序列检测方法。对于低信噪比DS-UWB而言, PASR检测器逊于匹配滤波检测器;但当匹配滤波器存在较大失配时(出现同步误差),结论完全相反。研究发现:PASR方法的检测性能随采样频率的提高而改善。
     在CCIO准则下,利用多窗并行检测的思想,提出了基于PASR的多时窗检测器(PASR-MWD),用于TH-UWB信号检测。仿真试验表明:在负信噪比情况下,PASR多时窗检测器优于多辐射计组和固有模态函数积检测器,但逊于匹配滤波检测方法。
     在负信噪比和全盲的条件下,研究了基于分段自相关积累(PACA)的UWB(DS-UWB和TH-UWB)信号检测方法。经过严格数学推导,指出了TH-UWB信号的PACA函数不但在字符周期整数倍处出现离散峰值,而且按三个峰值(一大峰值左右对称出现小峰值)成对出现,大峰和小峰的间隔就是PPM调制时间偏移。仿真验证了通过增加积累时间,实现负信噪比UWB信号检测的可行性。
     研究了仅需已知字符周期情况下基于特征值分解方法的UWB码序列波形检测方法,首次理论推导了DS-UWB、TH-UWB特征值和码序列波形的分布情况。提出了基于特征值分解的TH-UWB码序列波形估计方法,指出了在时间窗和字符非同步情况下,将会出现三个大的特征值,对应的三个特征向量反映了二元字符跳时序列波形之和的特性。利用矩阵扰动理论,证明了码序列波形估计误差的引理。分析了波形估计误差和输入信噪比、积累窗个数的关系。
Ultra-Wide Band (UWB) signals in this dissertation is restricted in UWB impulse radio (UWB-IR) signals.
     UWB systems rely on ultra-short (nanosecond scale) impulse pulse waveforms of low duty ratio that can be free of sine-wave carriers and transform information via time-hopping(TH) or direct spread(DS) technology. Comparing to traditional radio systems, UWB systems own lower power density of frequence (PDF) and wider bandwith, which can provide extremely high data rate and good property of anti-jamming. For impulse pulse often be covert in environmental noise or the other jamming, UWB exhibits low probability of detection (LPD), which be used in military domain especially. UWB signals are adopted by the military communication of high data rate, low probability of interception (LPI) data link between an unmanned aerial vehicle(UAV) and a ground station, and high resolution radar/location systems.Under the condition of non-cooperative reception, the research on detection technology of UWB signal has important military signification.
     This dissertion is focused on the detection problems of UWB radio signal under the condtion of unknown or partly known apriori information, while signal-to-noise ratio (SNR) is below 0dB. The main work follows below:
     While the input SNR is below 0dB and apriori information are all blind, we study the detection methods of UWB signal based on Hilbert-Huang transform (HHT). The conclusion shows that HHT is superior to traditional wavelet transform and Wigner-Ville distribution.
     For the different property between signal and noise in the intrinsic mode function (IMF) domain, IMFs product detector is proposed. Under the condition of low SNR and the unknown distribution of noise, Simulation shows that IMFs product detector is superior to Teager energy operator (TEO) detector. Refering to Rosenfeld subband product theory, IMF domain filter (IMFDF) is developed and used in the edge detection. In contrary to wavelet transform domain filter, IMFDF is more simple, and has less complexity.
     The measurement rule of coss correlation of input (signal add noise) and output (CCIO) for blind signal detection is proposed. And then, two methods of UWB signal detection via parameter-induced aperiod stochastic resonance (PASR) are presented.
     While the input signal matches the output signal of PASR system, phenomena of stochastic resonance is more prominent. So, we proposed CCIO measurement methods, which is different to Collins cross correlation methods.Using linear response theory (LRT), the theoretically performance of CCIO is deduced. While the input SNR is below -10dB and the signal is all unknown, the detector based on PASR via CCIO measurement can work well.
     Under the rule of CCIO measurement, code sequence detection methods of DS-UWB signal via PASR system are developed. For lower SNR DS-UWB signals, the performance of PASR detector is inferior to matched filter (MF). On the contrary, if there is large error of desychronisation, performance of PASR detector is superior to MF.
     Under the rule of CCIO measurement, the PASR multiple windows detector (PASR-MWD) is proposed to detect the TH-UWB signals. The results show that the performance of the PASR-MWD is inferior to MF, while superior to multi-radiometer and IMFs product detector when the input SNR is below 0dB.
     If there is no apriori knowledge and the SNR is below 0dB, the methods of piecewise auto-correlation accumulation (PACA) for the detection of UWB signals is presented. After rigorously mathematical deduction, some valuable conclusions are drawn: at the multiple times of symbol period, discrete peaks of the PACA function appear with 3 peaks in group, which includes a larger peak located in the middle and the other smaller two located symmetricly beside the larger one. The distance between small peaks is modulation offset of pulse position PPM. The simulation shows that enhance the accumulation time, the detection of UWB signal under 0dB is feasible.
     If the symbol period is known only, the methods of detection UWB code sequence waveform based on the eigenvalues decomposition(EVD) is developed. The distribution of eigenvalue and eigenvectors of the covariance matrix of UWB signal is deduced theoretically. The estimation methods of TH-UWB code sequence based on EVD are proposed especially.The phenomena of appearing 3 eigenvectors corresponding to 3 bigger eigenvalues reflects the sum of 2-arry TH symbol’s waveform in the asynchronous situation for TH-UWB systems. The error lemma of estimation of code sequence via matrix perturbation theory is proved. At last, the relations among the error of estimation, the input SNR, and the number of accumulation windows are analyzed.
引文
[1] G.R. Aiello and G.D. Rogerson, “Ultra–wideband wireless systems,” Micro– wave Mag., vol. 4, no. 2, pp. 36–47, 2003.
    [2] T.W. Barrett, “History of ultra wideband (UWB) radar and communications: Pioneers and innovators,” in Proc. Progress in Electromagnetics Symposium, Cambridge, MA, 2000.
    [3] P. Withington, “Impulse radio overview,” [Online]. Available: http://user. it.uu.se/~carle/Notes/UWB.pdf
    [4] A.Bharadwaj, J.K.Townsend, "Evaluation of the covertness of time–hopping impulse radio using a multi–radiometer detection system", IEEE MILCOM,Vol.1, pp.128–134, 2001,
    [5] Assessment of Ultra–Wideband (UWB) Technology, OSD/DARPA, Ultra– Wideband Radar Review Panel, R–6280, July 13, 1990.
    [6] FCC First Report and Order: In the matter of Revision of Part 15 of the Commission’s Rules Regarding Ultra–Wideband Transmission Systems,FCC 02–48, April 2002.
    [7] L.Fortuna, M.Frasca, A.Rizzo, "Chaos preservation through continuous chaotic pulse position modulation",IEEE international Symposium on Circuits and Systems, pp.803–806,2001.
    [8] L.Fortuna,M.Frasca,A.Rizzo,"Chaotic pulse position modulation to improve the efficiency of sonar sensors",IEEE trans. Instr&measu,vol.52,no.6,pp.1809–1814,2003.
    [9] M.Sushchik, J.N.Rulkov, L.Larson, L.Tsimring, etc, "Chaotic pulse position modulation: a robust method of communicating with chaos",IEEE trans.commu letters,vol.4,No.4,pp.128–130,2000.
    [10] G.M.Maggio, N.Rulkov, L.Reggiani, "Pseudo–chaotic time hopping for UWB impulse radio",IEEE trans.Circuits and systems,vol.48,No.12,PP.1424–1435,2001.
    [11] Laney,David C., “Multiple access for UWB impulse radio with pseudochaotic time hopping”,IEEE Journal on Selected Areas in Communications,Vol.20(9), pp.1692–1700,2002.
    [12] Maggio, Gian Mario, “BER and error–floor calculation for multi–access PCTH”, IEEE Global Telecommunications Conf. Vol.2,pp.1324–1328,2002.
    [13] S. Verdú, “Wireless bandwidth in the making,” IEEE Commun. Mag., vol.38, no. 7, pp. 53–58, 2000.
    [14] Mark Hewish and Scott.R.Gourley, “Ultra–wideband technology opens up new horizons”, Janes international defense review,2/1999
    [15] F.Dowla, A.Spiridon, D.Benzel, T.Rosenbury, FY02 engineering technology reports
    [16] http://www.timedomain.com
    [17] http://www.multispectral.com
    [18] Scientific and technical aerospace reports(STAR),NASA,Vol.43,2005
    [19] http://www.navysbir.com/05_1/198.htm
    [20] Robert J. Fontana, “Recent Applications of Ultra Wideband Radar and Communications systems”, Multispectral Solutions, Inc. EuroEM 2000_Applications–1, Gaithersburg, Maryland USA, http://www.multispectral.com
    [21] M.Z. Win and R.A. Scholtz, “Ultra wide bandwidth time–hopping spread– spectrum impulse radio for wireless multiple access communications,” IEEE Trans. Commun., vol. 48, no. 4, pp. 679–691, 2000.
    [22] H.G. Schantz and L. Fullerton, “The diamond dipole: A Gaussian impulse antenna”, in Proc. IEEE Int. Symp. Antennas and Propagation Society, vol. 4, Boston, MA, 2001, pp. 100–103.
    [23] R.A. Scholtz, “Multiple access with time–hopping impulse modulation,”in Proc. MILCOM Conf., Boston, MA, 1993, pp. 447–450.
    [24] H.G. Schantz and L. Fullerton, “The diamond dipole: A Gaussian impulse antenna,” in Proc. IEEE Int. Symp. Antennas and Propagation Society, vol. 4, Boston, MA, 2001, pp. 100–103.
    [25] C.L. Martret and G.B. Giannakis, “All–digital impulse radio for wireless cellular systems,” IEEE Trans. Commun., vol. 50, no. 9, pp. 1440–1450,2002.
    [26] F. Ramirez–Mireles and R.A. Scholtz, “N–orthogonal time–shift–modulated signals for ultra wide bandwidth impulse radio modulation,” in Proc. IEEE Mini Conf. Communication Theory, Phoenix, AZ, 1997, pp. 245–250.
    [27] J.R. Foerster, “The performance of a direct–sequence spread ultra wideband system in the presence of multipath, narrowband interference, and multiuser interference,” in Proc. Conf. Ultra–Wideband Systems and Technologies, Baltimore, MD, 2002, pp. 87–92.
    [28] Z. Wang, “Multi–carrier ultra–wideband multiple–access with good resilience against multiuser interference,” in Proc. Conf. Info. Sciences and Systems, Baltimore, MD, 2003.
    [29] L. Yang and G.B. Giannakis, “Digital–carrier multi–band user codes for baseband UWB multiple access,” J. Commun. Networks, vol. 5, no. 4, pp.374–385, 2003.
    [30] J. Romme and L. Piazzo, “On the power spectral density of time–hopping impulse radio,” in Proc. Conf. Ultra–Wideband Systems and Technologies,Baltimore, MD, 2002, pp. 241–244.
    [31] M.Z. Win, “On the power spectral density of digital pulse streams generated by m–ary cyclostationary sequences in the presence of stationary timing jitter,” IEEE Trans. Commun., vol. 46, no. 9, pp. 1135–1145, 1998.
    [32] Liuqing Yang, G.B.Giannakis, “Ultra–wideband communications, an idea whose time has come, ” IEEE Signal processing magazine,pp.26–54,2004.
    [33] R. Fleming, C. Kushner, G. Roberts, and U. Nandiwada, “Rapid acquisition for Ultra– Wideband localizers,” in Proc. Conf. Ultra–Wideband Systems and Technologies, Baltimore, MD, 2002, pp. 245–250.
    [34] J.S. Lee, C. Nguyen, and T. Scullion, “New uniplanar subnanosecond monocycle pulse generator and transformer for time–domain microwave applications,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 6, pp.1126–1129, 2001.
    [35] Z. Tian, L. Yang, and G.B. Giannakis, “Symbol timing estimation in Ultra–Wideband communications,” in Proc. Asilomar Conf. Signals,Systems, and Computers, Pacific Grove, CA, 2002, pp. 1924–1928.
    [36] Z. Tian and G.B. Giannakis, “Data–aided ML timing acquisition in Ultra– Wideband radios,” in Proc. Conf. Ultra–Wideband Systems and Technologies,Reston, VA, 2003, pp. 142–146.
    [37] L. Yang and G.B. Giannakis, “Blind UWB timing with a dirty template,” in Proc. Int. Conf. Acoustics, Speech, and Signal Processing, Montreal, Quebec, Canada, 2004, pp. 509–512.
    [38] J.D. Choi and W.E. Stark, “Performance of ultra–wideband communications with suboptimal receivers in multipath channels,” IEEE Areas Commun., vol. 20, no. 9, pp. 1754–1766, 2002.
    [39] C.L. Martret and G.B. Giannakis, “All–digital impulse radio for wireless cellular systems,” IEEE Trans. Commun., vol. 50, no. 9, pp. 1440–1450,2002.
    [40] T.W. Parks and J.H. McClellan, “Chebyshev approximation for nonrecursive digital filters with linear phase,” IEEE Trans. Circuit Theory, vol. 19,no. 2, pp. 189–194, 1972.
    [41] J. Proakis, Digital Communications, 4th ed. New York: McGraw–Hill, 2001.
    [42] L. Yang and G.B. Giannakis, “Multi–stage block–spreading for impulse radio multiple access through ISI channels,” IEEE J. Select. Areas Commun., vol. 20, no. 9, pp. 1767–1777, 2002.
    [43] Q. Li and L.A. Rusch, “Multiuser detection for DS–CDMA UWB in the home environment,” IEEE J. Select. Areas Commun., vol. 20, no. 9, pp.1701–1711, 2002.
    [44] V. Tripathi, A. Mantravadi, and V.V. Veeravalli, “Channel acquisition for wideband CDMA signals,” IEEE J. Select. Areas Commun., vol. 18, no. 8,pp. 1483–1494, 2000.
    [45] V. Lottici, A.D. Andrea, and U. Mengali, “Channel estimation for ultra wide band communications,” IEEE J. Select. Areas Commun., vol. 20, no.9, pp. 1638–1645, 2002.
    [46] M.Z. Win and R.A. Scholtz, “Characterization of Ultra–Wide bandwidth wireless indoor channels: a communication–theoretic view,” IEEE J. Select. AreasCommun., vol. 20, no. 9, pp. 1613–1627, 2002.
    [47] C. Carbonelli, U. Mengali, and U. Mitra, “Synchronization and estimation for UWB signals,” in Proc. Global Telecommunications San Francisco, CA, 2003, pp. 764–768.
    [48] I. Maravic, J. Kusuma, and M. Vetterli, “Low–sampling rate UWB channel characterization and synchronization,” J. Commun. Networks, vol. 5, no. 4,pp. 319–327, 2003.
    [49] Z. Wang and X. Yang, “Ultra wide–band communications with blind channel estimation based on first–order statistics,” in Proc. Int. Conf. Acoustics, Speech, and Signal Processing, Montreal, Quebec, Canada, 2004,pp. 529–532.
    [50] M.K. Simon, Spread Spectrum Communications Handbook. New York: McGraw–Hill, 1985.
    [51] J.D. Taylor, Ultra Wideband Radar Technology. New York: CRC Press, 2001.
    [52] R.T. Hoctor and H.W. Tomlinson, “An overview of delay–hopped, transmitted–reference RF communications,” in G.E. Research and DevelopmentCenter, Technical Information Series, 2002, pp. 1–29.
    [53] L. Yang and G.B. Giannakis, “Optimal pilot waveform assisted modulation for Ultra–Wideband communications,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 1236–1249, 2004.
    [54] J.D. Choi and W. E. Stark, “Performance of ultra–wideband communications with suboptimal receivers in multipath channels,” IEEE Areas Commun. , vol. 20, no. 9, pp. 1754–1766, 2002.
    [55] R.T. Hoctor and H.W. Tomlinson, “An overview of delay–hopped, transmitted–reference RF communications,” in G.E. Research and DevelopmentCenter, Technical Information Series, 2002, pp. 1–29.
    [56] L. Yang and G.B. Giannakis, “Optimal pilot waveform assisted modulation for Ultra–Wideband communications,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 1236–1249, 2004.
    [57] B.M. Hochwald and T.L. Marzetta, “Unitary space–time modulation for multiple–antenna communications in Rayleigh flat fading,” IEEE Trans. Inform. Theory, vol. 46, no. 2, pp. 543–564, 2000.
    [58] L. Yang and G.B. Giannakis, “Analog space–time coding for multi–antenna Ultra–Wideband transmissions,” IEEE Trans. Commun., vol. 52, no. 3, pp. 507–517, 2004.
    [59] L. Yang and G.B. Giannakis, “Multi–stage block–spreading for impulse radio multiple access through ISI channels,” IEEE J. Select. Areas Commun., vol. 20, no. 9, pp. 1767–1777, 2002.
    [60] H. Lee, B. Han, Y. Shin, and S. Im, “Multipath characteristics of impulse radio channels,” in Proc. Vehicular Technology Conf., Tokyo, Japan, Spring 2000, pp.2487–2491.
    [61] A.A.M. Saleh and R.A. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE J. Select. Areas Commun., vol. 5, no. 2, pp.128–137, 1987.
    [62] R.A. Scholtz, “Multiple access with time–hopping impulse modulation,”in Proc. MILCOM Conf., Boston, MA, 1993, pp. 447–450.
    [63] C.L. Martret and G.B. Giannakis, “All–digital impulse radio for wireless cellular systems,” IEEE Trans. Commun., vol. 50, no. 9, pp. 1440–1450,2002.
    [64] Torrieri, D. J.,Principles of Secure Communications Systems.Boston: Artech House, 1992.
    [65] Park, K. Y., Performance evaluat~on of energy detectors.IEEE Transactions on Aerospace and Electronzc Systems,AES–14 (Mar. 1978), 237–241.
    [66] Dillard, R. A., “Detectability of spread–spectrum signals”, IEEE Transactions on Aerospace and Electronic Systems, AES–15 (July 1979), 526–537,1979
    [67] P.F.Mills,G.E.Prescott, “A comparision of various radiometer detection models”,IEEE trans. AES,vol.32,No.1,pp.468–473, 1996.
    [68] J.J. Lehtom?ki,M.Juntti, and H.Saarnisaari, “CFAR Strategies for Channelized Radiometer”, IEEE S&P Letters, vol.12, no.1, pp13–16,2005.
    [69] J.J. Lehtom?ki,M.Juntti, and H.Saarnisaari, “Detection of Frequency Hopping Signals With a Sweeping Channelized Radiometer”,IEEE 38th Asilomar Conf. on Signals,Systems and Computers,Vol.2, pp.2178–2182,2004.
    [70] S.Mallat,杨力华 等译,信号处理的小波导引(第二版),机械工业出版社,2002.
    [71] B.Porat, B.Friedlander, "Adaptive detection of transient signals", IEEE trans. ASSP, vol.34, pp.1410–1418,1996.
    [72] I. Daubechies, “The wavelet transform, time–frequency localization and signal analysis”, IEEE trans. Information Theory ,vol.36,pp.961–1005,1990.
    [73] L. Cohen and C.Lee, “Instantaneous bandwidth for signals and spectrogram,” in ICASSP 1990, pp.2451–2454.
    [74] M. Frisch and H. Messer, “The use of the wavelet transform in the detection of an unknown transient signal”, IEEE trans. Information Theory, vol.38, no.2, pp.892–897, 1992.
    [75] M. Frisch , H. Messer, “Detection of a transient signal of unknown scaling and arrival time using the discrete wavelet transform”, IEEE international Conf. on Acoustics, Speech and Processing,Vol.2, pp.1313–1316,1991.
    [76] Z. Wang, P. Willett, “A performance study of some transient detectors”, IEEE trans. Signal Processing , vol.48, no.9,pp.2682–2685, 2000.
    [77] J. Zhang, X. Jiang , “Wide–band signal detection based on time–scale domain two–dimensional correlation”,IEEE conf.MTS, pp.1660–1665.
    [78] T. C. Farrel ,G. Prescott, “Nine–tile algorithm for LPI signal detection using QFM filter bank trees”,MILCOM,pp.974–978,1996.
    [79] T. C. Farrel ,G. Prescott, “Low probability of intercept signal detection receiver using quadrature mirror filter bank’’, IEEE ICASSP,Part(3) pp.1558–1561, 1996.
    [80] M. Medley ,G.J.Saulnier, P.Das, “Radiometric detrection of ditect–sequence spread spectrum signals with interference excision using the wavelet transform”, SUPERCOMM/ICC’94,vol.3,pp.1648–1652,1994.
    [81] L.科恩,白居宪译,时频分析:理论与应用[M],西安交通大学出版社,1998
    [82] B. Friedlander and B. Porat, “Detection of transient signals by the Gabor representation”,IEEE trans.ASSP,vol.37,pp.169–180,1989.
    [83] T. A. C. M. Classen and W. F. G. Mecklenbraucker, “The Wigner distribution–A tool for time–frequency analysis, Part 1”, Philips J. Res. , vol.35, pp.217–250,1980.
    [84] I.H.Choi, J.W.Williams, “Improved Time–frequency Representation of Multicomponent Signals Using Exponential”, IEEE Trans. Acoust., Speech, Signal Processing, 37:862–871,1989.
    [85] J. Jeong, J.W. Williams, “Kernel Design for Reduced Interference Distributions”, IEEE Trans. Signal Processing, 40:402–412,1992.
    [86] J.W. Williams, J. Jeong, “New Time–frequency Distributions: Theory and Application”, In: Proc. IEEE ICASSP–89, pp.1243–1247,1989.
    [87] Y. Zhao, Y Atlas, Marks R.“The Use of Cone–shaped Kernels for Generalized Time–frequency Representations of Nonstationary Signals”, IEEE Trans. Acoust., Speech, Signal Processing,1990,38:1084–1091.
    [88] F. Auger, P. Flandrin, “Improving the Readability of Time–frequency and Time–scale Representations by the Reassignment Method”, IEEE Trans. Signal Processing, 43:1068–1089,1995.
    [89] L. Cohen,T.E. Posch,“Positive Time–frequency Distribution Functions”, IEEE Trans. Acoust.,Speech, Signal Processing, 1985, 33:31–38
    [90] 邹红星等, “不含交叉干扰且具有 WVD 聚集性的时频分布之不存在性”,中国科学 E 辑, (31) 4, pp.348–354, 2001.
    [91] S.D.Marco, J.Weiss, “Improved transient signal detection using a wavepacket– based detector with an extended translationi–invariant wavelet transform”, IEEE trans. Signal Processing ,vol.45,no.4,pp.841–850,1997.
    [92] S. Efromovich , J.Lakey, M.C.Pereyra, and N.Tymes,Jr, “Data–driven and optimal denoising of a signal and recovery of its derivative using multiwavelets” ,IEEE trans.Signal Processing ,Vol.53, No.3,pp,628–635,2004.
    [93] G.Burel, C.Bouder, “Detection of direct spread spectrum transmissions without apriori knowledge”, IEEE–GLOBCOM, pp.236–239,2001.
    [94] G.Burel, “Detection of spread spectrum transmissions using fluctuations of correlations estimators” , IEEE ISPACS,Hawaii,2000.
    [95] G.Burel, S.Azou, G.Burel, “A robust synchronization procedure for blind estimation of the symbol period and timing offsets in spread spectrum transmissions”,IEEE Int.Symp.on SST&A,Prague,Czech Republic,pp.238–241,2002.
    [96] G.Burel, C.Bouder, “Blind estimation of the pseudo–random sequence of a direct sequence spread spectrum signal”,IEEE MILCOM,pp.1–4, Los Angeles,2000.
    [97] C.Naiala, R.Gautier, G.Burel , “Blind synchronization and sequences identification in CDMA transmissions” ,IEEE MILCOM,pp.1384–1390,2004.
    [98] W. A. Gardner, “The spectral correlation theory of cyclostationary time series”, Signal Process, 1986(2)7,pp.13–36.
    [99] W. A. Gardner, “Measurement of spectral correlations”, IEEE trans. ASSP, vol.34, pp.1111–1123,1986.
    [100] W. A. Gardner, “The role of spectral correlation in design and performance analysis of synchromize”, IEEE trans. Com, vol.34,pp.1089–1095,1986.
    [101] W. A. Gardner, G. M. Spooner “Signal interception : performance advantages of cyclic–feature detector”, IEEE trans.Com.,vol.40,pp.149–159,1992.
    [102] 黄春琳,周一宇等,“基于循环谱包络的扩谱直序信号的码元时宽、载频、幅度估计”,电子学报,2002,(9),pp.9–11.
    [103] 黄春琳,“基于循环平稳特性的低截获概率信号的截获技术研究”,工学博士论文,国防科学技术大学,2001 年 10 月。
    [104] 黄知涛,“循环平稳信号处理及其应用研究”,工学博士论文,国防科学技术大学,2003 年 9 月。
    [105] 李 月,杨宝俊,混沌振子检测引论[M],电子工业出版社,2004。
    [106] 李 月,杨宝俊,石要武, “用混沌振子检测淹没在强背景噪声中的方波信号”,.吉林大学自然科学学报,2001,136(2):68~71.
    [107] 刘曾荣.混沌的微扰判据[M].上海:上海科技教育出版社,1994,12~20.
    [108] Arker T.S., Chua L.D. “Chaos: a tutorial for engineers”, Pro. Conf. IEEE, 75(8): 982~1008,1987.
    [109] Aaykin. S, Principe J, “Making sense of a complex world”, IEEE SP Mag, 1998, 15(3):66~81.
    [110] Banel H.D.,et al, “Obtaining order in a world of chaos”, IEEE, SPMag, 1998, 15(3): 49~65.
    [111] Haykin S.,Li X.B., “Detection of signals in chaos ”, Proc. of IEEE,83(1), pp.95~122, 1995.
    [112] S. Wiggins, Introduction to Applied : Nonlinear Dynamical Systems and Chaos[M].Springer2Verlag,World Publishing Corp,1990.
    [113] 肖先赐,“混沌信号处理”,电子对抗,83(2),pp.20–30,2002.
    [114] 郭双冰, “混沌时间序列预测及其混沌理论在通信信号调制识别中的应用”, 工学博士论文,电子科技大学, 2002.
    [115] 张家树,“混沌信号的非线性自适应预测技术及其应用研究”,工学博士论文,电子科技大学, 2001.
    [116] 曾以成, “信号的混沌测量研究”, 博士论文,浙江大学,2002。
    [117] S.Kim ,L.E.Reichl, "Stochastic chaos and resonance in a bistable stochastic system",Phy.Rev.E(53),1996.
    [118] 谢文录,陈彦辉,谢维信.雷达杂波的分形特性分析[J].系统工程与电子技术,1999,21(1):41–441
    [119] 裴留庆,顾勇.混沌与噪声[J].电子学报,1991,19(6):80–901
    [120] 龚云帆,徐健学.混沌信号与噪声[J].信号处理, 13(2):112–1181,1997.
    [121] Lo T., Leung H., “Fractal Characterization of Sea2 Scattered Signals and Detection of Sea 2Surface Targets”, IEE Proc.F, 140(4):243–249.,1993.
    [122] Lai Y.C., Lerner D., “Effective Scaling Regime for Computing the Correlation Dimension from Chaotic Time Series”, PhysicaD, 115:1–181,1998.
    [123] Ding M., Grebogi C., Ott E., et al. “Estimating Correlation Dimension from Chaotic Time Series: When Does Plateau Onset Occur”, PhysicaD, 69:404,1993.
    [124] 杜鹏飞,王永良,孙文峰, “混沌海杂波背景下的弱信号检测”, 第 24 卷第 7期, 系统工程与电子技术, Vol.24,No.17,2002.
    [125] 张雪娟,“双稳态系统、单稳态系统、耦合振子系和混沌系统的随机共振现”,博士学位论文,北京大学研究生院,2002。
    [126] 杨定新,“微弱特征信号检测的随机共振方法与应用研究”,博士学位论文,国防科学技术大学,2004。
    [127] R. Benzi, A. Sutera, &A. Vulpiani, "The mechanism of stochastic resonance," J. Phys. A, Vol.14(11), pp. L453–L457, 1981.
    [128] R.Benzi, G.Parisi, &A.Vulpiani, "Stochastic resonance in climatic change," Tellus, Vol. 34, pp. 10–16, 1982.
    [129] J.J. Collins, C.C. Chow, A.C. Capela, and T.T. Imhoff, “Aperiod stochastic resonance.” Phys. Rev. E,1996, 54(5):5575–5584.
    [130] J.J. Collins, C.C. Chow, and T.T. Imhoff, “Aperiod stochastic resonance in excitable systems. ” Phys.Rev. E, 1995, 52(4):R3321–3324.
    [131] C. Heneghan, C. C. Chow, J. J. Collins, T. T. Imhoff, S.B. Lowen, and M. C. Teich, “Information measures quantifying aperiodic stochastic resonance”, Phys. Rev. E, 1996, 54(3):R2228–2231.
    [132] J.J. Collins, T.T. Imhoff, and P. Grigg, “Noise–enhanced tactile sensation,” Nature, 1996, 383:770.
    [133] S. Fauve&F. Heslot, "Stochastic resonance in a bistable system," Phys. Lett., Uol. 97A (1–2), pp. S–7, 1983.
    [134] B. McNamara, K. Wiesenfeld, &R. Roy, "Observation of stochastic resonance in a ring laser," Phys. Rev.Lett,Vol. 60, p. 2626,1988.
    [135] B. McNamara, K. Wiesenfeld,&R. Roy, "Theory of stochastic resonate," Phys. Rev A, Vol. 39(9), pp. 4854–4868, 1989.
    [136] M.I. Dykman, R. Mannella, P.V.E. McClintock, et al., “Comment on Stochastic resonance in bistable systems’ ”,proceeding comment, Rev Lett., Vol. 65, p. 2606, 1990.
    [137] M.I. Dykman, R. Mannella, P.V.E. McClintock, et al., "Giant nonlinearity in the low–frequency response of a fluctuating bistable system," Phys. Rev E, Vol. 47(3), pp. 1629–1632, 1993.
    [138] T Zhou&F. Moss, "Analog simulations of stochastic resonance," Phys. Rev A, Vol. 41(8), pp. 4255–4264, 1990.
    [139] M.H. Choi, R.F. Fox&P. Jung, "Quantifying stochastic resonance in bistable systems: response vs residence–time distribution functions," Phys. Rev E, Vol. 57(6), pp. 6335–6344, 1998.
    [140] L. Gammaitoni, F. Marchesoni,&S. Santucci, "Stochastic Resonance as a Bona Fide resonance", Phys. Rev. Lett., Vol. 74, p.1052, 1995
    [141] G Giacomelli, F. Maria&I. Rabbiosi, "Stochastic and bona–fide resonance: an experimental investigation," Phys. Rev. Lett., Vol. 82(4), pp. 675–678, 1999.
    [142] P. Hdnggi&P.V.E. McClintock, "Bistablity driven by colored noise: Theory and experiment," Phys. Rev. A,Vol. 32( I ), pp. 695–698, 1985
    [143] P. Jung&P. Hdnggi, "Stochastic nonlinear dynamic modulated by external periodic forces," Europhys. Lett., Vol. 8(6); pp. 505–510, 1989.
    [144] R. F. Fox, "Stochastic resonance in a double well," Phys. Rev A, Vol. 39(8), pp. 4148–4153, 1989.
    [145] Hu G., Cz Nicolis&C. Nicolis, "Periodically forced Fokker–Planck equation and stochastic resonance," Phys.Rev. A, Vol. 42(4), pp. 2030–2041, 1990
    [146] P. Jung&P. Hdnggi, "Amplification of small signals via stochastic resonance," Phys. Rev A, Vol. 44( l2), pp.8032–8042, 1991.
    [147]Bohou Xu, Fabing Duan, Ronghao Bao and Jianlong Li, "Stochastic resonance with tuning system parameters: the application of bistable systems in signal processing", Chaos Solitons & Fractals, Vol. 13, No. 4, pp. 633–644, 2002.
    [148] Bohou Xu, Jianlong Li, Fabing Duan and Jinyang Zheng, "Effects of colored noise on multi–frequency signal processing via stochastic resonance with tuning systemparameters", Chaos, Solitons and Fractals, Vol. 16, No. 1, pp. 93–106, 2003.
    [149] Jianlong Li, Ronghao Bao and Bohou Xu, "Effects of some sorts of nonlinear systems on signal processing via parameter optimized stochastic resonance", Physica A, Vol. 323, pp. 249–262,2003.
    [150] Bohou Xu, Huafeng Li, Fabing Duan and Jianlong Li, "The applications of parameter–tuning stochastic resonance in signal processing", Fifth International Conference on Stochastic Structural Dynamics, pp. 505–508, 2003.
    [151] Bohou Xu, Jianlong Li and Jinyang Zheng, "How to tune the system parameters to realize stochastic resonance", .I. Phys. A, Vol. 36, No. 48, pp. 11969–11979, 2003.
    [152] Bohou Xu, Jianlong Li, and Jinyang Zheng, "Parameter–induced aperiodic stochastic resonance in the presence of multiplicative noise and additive noise", Physica A, Vol, 343, pp.156–166, 2004.
    [153] 段法兵,“参数调节随机共振在数字信号传输中的应用”,浙江大学博士论文, 2002。
    [154] 李华锋,“双稳态随机共振系统的输出的性能衡量”,浙江大学博士论文, 2003。
    [155] 李建龙,“随机共振的参数调节方法及在信号处理中的应用”,浙江大学博士论文,2005。
    [156] N.G. Stocks, "Suprathreshold stochastic resonance in multilevel threshold systems," Phys. Rev Lett., Vol.84(11), pp. 2310–2313, 2000.
    [157] N.G. Stocks, "Suprathreshold stochastic resonance: an exact result for uniformly distributed signal and noise," Phys. Lett. A, Vol. 279, pp. 308–312, 2001.
    [158] S. Mitaim, B. Kosko, "Neural fuzzy stochastic resonance," Systems, Man, and Cybernetics, IEEE International Conference on,Vol. 3,pp. 2237–2242, 1998.
    [159] S. Mitaim, B. Kosko, "Adaptive stochastic resonance with fuzzy systems," Fuzzy formation Processing Society 一 NAFIPS, Conference of the North American, pp. 355–359, 1998.
    [160] S. Mitaim, 8. Kosko, "Adaptive stochastic resonance and fuzzy approximation," Intelligent Control (ISIC),Intelligent Systems and Semiotics (ISAS), Proceedings of the 1998 IEEE International Symposium on, pp.471–476, 1998.
    [161] D.E. Postnov&O.V Sosnovtseva, "Stochastic synchronization of coupled coherence resonance oscillators,"Int. J. B, Frcation & Chaos, Vol. 10(11), pp. 2541–2550, 2000.
    [162] Zhang Y, Hu G.&L. Gammaitoni, "Signal transmission in one–way coupled bistable system: noise effect,"Phys. Rev E, Vol. 58(3), pp. 2952–56, 1998.
    [163] F.Chapeau–Biondesu&J. Rojas–Varela, "Nonlinear signal propagationenhanced by noise via stochastic resonance," Int. J. Bifurcation & Chaos, Vol. 10(8), pp. 1951–1959, 2000.
    [164] I. Sbitney&M.A. Pustovoit, "Stochastic resonance in 2D coupled map lattice model of field–like neural tissue," Int. J. Bifurcation & Chaos, Vol. 10(8), pp. 1961–1971, 2000.
    [165] U. Siewert&L. Schimansky–Geier, "Analytical study of coupled two–state stochastic resonance," Phys. Rev:E, Vol. 58(3), pp. 2843–2852, 1998.
    [166] Zhou C., J. Kurths&B. Hu, "Array–enhanced coherence resonance: nontrivial effects of heterogeneity and spatial independence of noise," Phys. Rev Lett., Vol. 87(9), pp. 098101, 2001
    [167] A.A. Zaikin, K. Murali&J. Kurths, "Simple electronic circuit model for doubly stochastic resonance," Phys.Rev.Vol. 63(2), p. 020103, 2001.
    [168] T.Kanamaru,T.Horita&Y.Okabe, "Theoretical analysis of array–enhanced stochastic resonance in the diffusively coupled FitzHugh–Nagumo equation," Phys. Rev. E, Vol. 64(3), p. 031908, 2001.
    [169] N.G. Stocks&P. Mannella, "Generic noise–enhanced coding in neural arrays," Phys. Rev E, Vol. 64(3), p.030902, 2001.
    [170] Y. Horikawa, "Coherence resonance with multiple peaks in a coupled FitzHugh–Nagumo model," Phys. Rev.E, Vol. 64(3), p. 031905, 2001.
    [171] C. Hauptmann,E Kaiser&C. Eichwals, "Signal transfer and stochastic resonance in copied nonlinear systems," Int. J Bifurcation & Chaos, Vol. 9(6), pp. 1159–1167, 2000.
    [172] G. Mato, "Stochastic resonance using noise generated by a neural network," Phys. Rev E, Vol. 59(3), pp.3339–43,1999
    [173] N. Sungar, J.P. Sharpe&S. Weber, "Stochastic resonance in two–dimensional arrays of copied nonlinear oscillators," Phys. Rev E, Vol. 62(1), pp. 1413–15, 2000.
    [174] B. Lindner&L. Schimansky–Geier, "Transmission of noise coded versus additive signal through a neuronal ensemble," Phvs. Rev Lett., Vol. 86(4), pp. 2934–2937, 2001.
    [175] S. Kim, S.H. Park&H.B. Pyo, "Stochastic resonance in coupled oscillator systems with time delay," Phy.Rev Lett., Vol. 82(8), pp. 1620–23, 1999.
    [176] A. Krawiecki, A. Sukiennicki&R.A. Kosinski, "Stochastic resonance and noise–enhanced with spatitemporal periodic signal," Phys. Rev E, Vol. 62(6), pp. 7683–89, 2000.
    [177] A.A. Zaikin, J.Kurths&L. Schimansky–Geier, "Doubly stochastic resonance," Phys. Rev Lett., Vol. 85(2),pp. 227–231, 2000.
    [178] M. Riani&E. Simonotto, "Stochastic resonance in the perceptual interpretation of ambiguous figures: A neural network model," Phys. Rev Lett., Vol. 72(19), pp. 3120–23, 1994.
    [179] S. Matyjaskiewicz, A. Krawiecki, "Stochastic multiresonance in a chaotic map with fractal basins of attraction," Phys. Rev E, Vol. 63(2), p. 026215, 2001.
    [180] D.Cz Luchinsky, R. Mannella, P.VE. McClintock, et al. "Stochastic resonance in electrical circuits–II: Nonconventional stochastic resonance," IEEE Trans. Cir. & Sys.Analog and digital signal processing, Vol. 46(9), pp. 1215–1224, 1999.
    [181] A.Neiman,L.S.Geier,F.Moss, “Linear response theory applied to stochastic resonance in models of ensembles of oscillators ”,Phy.Rev.E,vol.56,R.9,1997.
    [182] J.J. CoVins, C.C. Chow&TT Imhoff "Stochastic resonance without tuning," Nat., Vol. 376, pp. 236–239,1995.
    [183] F. Chapeau–Biondeau, "Stochastic resonance and optimal detection of pulse trains by threshold devices," Digtal Signal.Proc., Vol. 9, pp.162–177, 1999.
    [184] F.Chapeau–Blondeau, "Periodic and aperiodic stochastic resonv}ce with output signal–to–noise ratio exceeding that at the input," Int. J. Bifurcation and Chaos, Vol. 9(1), pp. 267–272, 1999.
    [185] F. Chapeau–Blondeau. "Noise–enhanced capacity via stochastic resonance in an asymmetric binary channel,"Phys. Rev E, Vol. 55(2), pp. 2016–2019, 1997.
    [186] X. Godivier, J. Rojas–Varela,&F. Chapeau–Blondeau, "Noise–assisted signal transmission via stochastic resonance in a diode non–linearity," Electronics Letters, Vol. 33(20), pp. 1666–1668, 1997.
    [187] X. Godivier&F. Chapeau–Blondeau, "Noise–assisted signal transmission in a nonlinear electronic comparator: Experiment and theory," Signal Processing, Vol. 56, pp. 293303, 1997.
    [188] 胡岗,随机力与非线性系统[M],1994,上海科技教育出版社。
    [189] Z.L.Huang,W.Q.Zhu,"Stochastic averaging of strongly non–linear oscillators under bounded noise excitation", Journal of Sound and Vibaration, 254(2), pp.245–267, 2002.
    [190] Y.M.Kang,J.X.Xu,Y.xie,"Observing stochastic resonance in an underdamped bistable Duffing oscillator by the method of moments",Phy.Rev.E68,P.036123,2003.
    [191] T.Kapitaniak, “Stochastic resonance as crisis”,Phy.Rev.E,49(6),1994.
    [192] X. Wu, W. Guo, W. Cai, X. Shao, Z.Pan, “A method based on stochastic resonance for the detection of weak analytical signal”, Talanta (61),pp.863–869,2003.
    [193] 谭善文,“多分辨希尔波特-黄变换方法的研究”,重庆,重庆大学博士学位论文,2001.
    [194] N.E.Huang, Z.Shen, S.R.Long, M.L.Wu, H.H.Shih, Q.Zheng, N.C.Yen, C.C.C.Tung, and H.H.Liu, “The empirical mode decomposition and hilbert spectrum for nonlinear and nonstationary time series analysis”, proc.R.Soc.London A, vol.454, pp.903–995, 1998.
    [195] N.E. Huang, “Computer Implicated Empirical Mode DecompositionMethod”, Apparatus, and Article of Manufacture, U.S., U.S. Provisional Application, No.60/023,822, 1996.
    [196] N.E. Huang, “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non–stationary Time Series Analysis”, J. Proc. R. Soc. Lond. A, 454:903–995, 1998.
    [197] N.E. huang, Z. Shen, S.R. Long, “A new View of Nonlinear Water Waves: the Hilbert Spectrum”, J. Annu. Rev. Fluid Mech., 31:417–457, 1999.
    [198] N.E. huang, H.H. Shin,S.R. Long, “The Ages of Large Amplitude Coastal Seiches on the Caribbean Coast of Puerto Rice”, J. Phy. Oceanograhy, 30(8), pp.2001–2012, 2000.
    [199] Patrick Flandrin,Gabriel Rilling,and Paulo Goncalves,“Empirical mode decomposition as a filter bank”,IEEE signal processing letters, Vol.11, No.2, pp.112–114, Feb. 2004.
    [200] 钟佑明,“希尔波特-黄变换局瞬信号分析理论的研究”,重庆,重庆大学博士论文,2002.
    [201] A.O.Andrade,P.J.Kyberd,and S.D.Taffler “A novel spectral representation of electromyographic signals ”, proceedings of the 25th annual international conference of the IEEE EMBS, Cacun, Mexico, Sept. Vol.3, pp.2598–2601,2003.
    [202] Per.Gloersen, Norden Huang, “Comparison of interannual intrinsic modes in hemispheric sea ice covers and other geophysical parameters”,IEEE Trans.Geoscience and Remote sensing,Vol.41,No.5,pp.1062–1074,May. 2003.
    [203] 王明阳,柳 征,周一宇,“基于希尔波特-黄变换的冲击无线电信号检测”,信号处理,vol.22,no.4, pp.581–584,2006。
    [204] Wang Mingyang(王明阳), Zhou Yiyu, Lu Qizhong, Zhang Tao, “An EMD–wavelet detector for the UWB signal with low signal–to–noise ratio”,ICEMI’2005,Beijing,vol.3,pp.201–205,Aug.2005.
    [205] WANG Mingyang(王明阳), ZHOU Yiyu,JIANG Wenli, HAN le, “An IMFs–product detector for the UWB radar signal with low signal–to–noise ratio”, Chinese Journal of Astronautics, Sup., vol.27, pp.83–86, 2006. .
    [206] 王明阳,周一宇,姜文利,“基于固有模态函数域滤波方法”,信号处理,已录用待刊,2006。
    [207] Chen C–H, Li C–P, Teng T–L, “Surface –Wave Dispersion Measurements Using Hilbert–Huang Transform”, TAO, 2002, 13 (2): 171–184
    [208] P. J. Oonincx, “Empirical Mode Decomposition: A New Tool for S–Wave Detection”,In: REPORT,PNA–80203, pp.1–16, 2002.
    [209] Zhang R.R., “HHT–Based Characterization of Soil Nonlinearity and Liquefaction in earthquake Recordings”, 2003.
    [210] Zhang R.R., Larner K, “Rationale of HHT Data Processing for Studies of Seismology and Earthquake Engineering”, 2003.
    [211] Liu R. Empirical Mode Decomposition:A useful technique for neuroscience. Computational, Tournal Club 2002.
    [212] Chang F.K., “Damage Detection Using Empirical Mode Decomposition Method and a Comparison with Wavelet Analysis”, Signal Processing and Diagnostic Methods:Structural Health Monitoring, pp.891–900, 2000.
    [213] Zhong C, Yan–ming ZS–xS. “Gearbox Vibration Recognition Using Empirical Mode Decomposition Method”, Journal of the South China University of Techonlogy (Natural Science Edition), 30 (9) ,pp.61–64,2002.
    [214] 杨世锡,胡劲松,吴昭同,严拱标. “旋转机械振动信号基于 EMD 的希尔伯特变换和小波变换时频分析比较”.中国电机工程学报,2003, 23 (6): 102 ^107
    [215] 于德介,程军圣,杨宇. “Hilbert 能量谱及其在齿轮故障诊断中的应用”.湖南大学学报(自然科学版),30 (4),pp.47–50,2003.
    [216] 胡劲松,杨世锡. “基于 HHT 的转子横向裂纹故障诊断”,动力工程,24(2),pp.218–221,2004.
    [217] 葛利嘉,曾凡鑫等,“超宽带无线通信”,国防工业出版社,2005 年 8 月。
    [218] 张振宇,曾凡鑫,葛利嘉,“超宽带无线电中跳时序列相关性能的研究”,电子与信息学报,2004,26(8):1256-1261。
    [219] 张振宇,曾凡鑫,葛利嘉,“一类适用于超宽带无线电的跳时序列族”,系统工程与电子技术,系统工程与电子技术,25(12):1447-1450,2003。
    [220] Erseghe T., “Two novel time–hopping sequence constructions for impulse radio”, in proceedings of the IEEE international conference on communications, New York, USA , 2002.
    [221] Erseghe T, Ultra wide band pulse communications, Ph.D., Thesis, Universita degli studi Di padova,2001.
    [222] Guvenc I, et al, “TH–sequence construction for centralised UWB–IR systems in dispersive channels ”, IEEE electronics letters, 40(8):491–492, 2004.
    [223] Kim S, Park K H,Yang S,Kim H S,et al. “Time hopping sequence based on pseudo random coeds for ultra wideband impulse radio systems”,Proc. ITCCSCC 2002,PP.1350–1353,2002.
    [224] 王明阳,周一宇,黄知涛,徐欣“基于正交 M 元脉位调制的 DIRMA 接收机性能”,系统工程与电子技术, Vol.27, No.12, pp.2019–2022,2005.
    [225] F. Ramirez–Mireles and Robert A. scholtz, “Multiple–access with time hopping and block waveform PPM Modulation”, in Proc. IEEE ICC Conf., pp775–779,1998.
    [226] Moe Z. Win and Robert A. Scholtz, “Impulse radio:how it works”, IEEECommunications Letters, Vol .2, Feb1998, pp36–38
    [227] Li Zhao and Alexander M.Haimovich, Multi–user capacity of M–ary PPM ultra–wideband communications, IEEE. Conf.UWBST, Baltimore, pp.175–179,2002.
    [228] A.Rosenfeld, “A Nonlinear edge detection technique”,IEEE Proc., pp.814–816, May 1970.
    [229] A.Rosenfeld,Y.H.Lee,and R.B.Thomas, “Edge and curve detection for texture discrimination’’,in Picture Processing and Psychopictorics, pp.381–393 (Academic Press),1970.
    [230] A.Rosenfeld and M.Thurston, “Edge and curve detection for visual scene analysis’’,IEEE trans. On Comp.,Vol.20,No.5,pp.562–569,May 1971.
    [231] KIM. K.H, and KIM S.J, “A wavelet–based method for action potential detection from extracelluar neural signal recording with low signal–to–noise ratio”,IEEE.Trans.Biomed.Eng.,50,pp.999–1011,2003.
    [232] KIM. K.H, and KIM S.J, “Neural spike sorting under nearly 0–dB signal–to–noise ratio using nonlinear energy operator and artificial neural–network classifier”,IEEE.Trans.Biomed.Eng.,47,pp.1406–1411,2000.
    [233] Mallat S., “Singularity detection and processing with wavelets”, IEEE Trans. on IT, Vol. 41,No.3,1995.
    [234] J. Lu, “Contrast enhancement of medical images using multiscale edge representation”, Optical Engineering, Vol.33, No.7, pp.2151–2161, 1994.
    [235] Brian M. Sadler, Ananthram Swami, “Analysis of multiscale products for step detection and estimation”, IEEE Trans. Information theory, Vol.45, No.3, pp.1043–1051, 1999.
    [236] Yansun Xu, John B. Weaver, Dennis M. Healy, Jr., Jian Lu, “Wavelet transform domain filters:a spatially selective noise filtration technique”, IEEE Trans. Image processing, Vol.3, No.6, pp.747–758,1994.
    [237] 潘泉,戴冠中等,“基于阀值决策的子波域去噪方法”,电子学报,Vol.26, No.1, pp.115–121,1998 年 1 月。
    [238] 潘泉,张磊等,“子波域自适应滤波方法”,航空学报,Vol.18, No.5, pp.583–586, 1997 年 9 月。
    [239] 潘泉,戴冠中等,“具有理论阀值的子波域滤波方法”,宇航学报,Vol.19, No.4, pp.81–86, 1998 年 10 月。
    [240] 王博,潘泉等,“基于子波分解的信号滤波算法”,电子学报,Vol.27, No.11, pp.71–73, 1999 年 11 月。
    [241] 张磊,潘泉等,“一种子波域滤波算法的改进”,电子学报, Vol.27, No.2, pp.19–21, 1999 年 2 月。
    [242] 周云才,李建华,“周期样条插值的算法设计和分析及其应用”,石油矿场机械,33(6), pp.77~79, 2004。
    [243] 齐治昌编,数值分析及其应用(第二版)[M],国防科技大学,1998.
    [244] D.G. Manolakis, V.K. Ingle, S.M. Kogon, Statistical and adaptive signal processing, McGraw–Hill companies,Inc,2003.
    [245] Fabing Duan, David Rousseau, Francois Chapeau–Blondeau, “Residual aperiodic stochastic resonance in a bistable dynamic system transmitting a suprathreshold binary signal”,Phys.Rev.E(69),011109,2004.
    [246] Fabing Duan, Derek Abbott, “Signal detection for frequency–shift keying via short–time stochastic resonance”, Physics Letters A 344,pp.401–410,2005.
    [247] Bohou Xu, Fabing Duan, F.C.Blondeau, “Comparision of aperiodic stochastic resonance in a bistable system realized by adding noise and by tunning system parameters”, Phy.Rev.E69,061110,2004.
    [248] Maria–Gabriella, Di Benedetto, Guerino Giancola 著,葛利嘉、朱林、袁晓芳、陈帮富等译,超宽带无线电基础[M],电子工业出版社,2005 年。
    [249] P.Stoica, A.Nehorai, “MUSIC,Maximum likelihood, and Cramer–Rao Bound ”, IEEE, trans.ASSP.Vol.37,No.5,pp.720–741,1989.
    [250] H.Krim, P.Forster, G.Proakis, “Operator approach to Performance analysis of Root–MUSIC and Root–Min–Norm” , IEEE trans. Sig Proc., Vol.40, No.7, pp.1687–1696, 1992.
    [251] G.H.戈卢布,G.F.范洛恩(著),袁亚湘等译,矩阵计算[M],科学出版社,2001。
    [252] R.J.Muirhead, “Aspects of multivariate statistical theory”, New York: Wiley, 1982.
    [253] 张贤达著,矩阵分析与应用,清华大学出版社,2004。
    [254] Z.Wu and N.E. Huang, “A study of the characteristics of white noise using the Empirical Mode Decomposition method,” Proc. Roy. Soc. London A, 2004.
    [255] 盖强,“局域波时频分析方法的理论应用与研究”,博士论文,大连理工大学,2001。
    [256] 盖强,张海勇,徐晓刚,“Hilbert–Huang 变换的自适应频率多分辨分析研究”,电子学报,vol.33,no.3,pp.563–566,2005.
    [257] M.Soumekh,“SAR–ECCM using phase–perturbed LFM chirp signals and DRFM repeat jammer penalization”,IEEE Trans.AES,vol.42,no.1,pp.191–205,2006.
    [258] J.S.贝达特(著),沈民奋、范佩鑫(译),随机数据的非线性系统分析与辨识[M],西南交通大学出版社,1992。
    [259] D.Rouseau, J.R.Varela, F.Duan, “Evaluation of a nonlinear bistable filter for binary signal detection”,Int.J. Bifu&Chaos,vol.15,no.2,pp.667–679,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700