用户名: 密码: 验证码:
光场量子态制备与光阱下的超冷原子量子态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子和冷原子及其相互作用体系已成为量子调控、量子计算和量子信息等新兴技术最有效的载体之一。光学系统在量子信息中具有独特的优势,光场量子态及纠缠态的制备掀起了人们极大的研究热情。另一方面,激光冷却和俘获技术使得人们可以对囚禁冷原子的量子态进行精密操控,以玻色-爱因斯坦凝聚体(BEC)为代表的冷原子的量子态具有特殊性质,激光作用下BEC量子态的研究成为一个备受关注的问题。本论文的工作以研究量子态的制备和特性为主线,分别研究了非经典光场量子态及纠缠态的制备、光阱下囚禁超冷原子量子态的特性等,主要内容如下:
     1)附加单光子相干态(SPACS)的实现,使人们观察到了光场量子态从量子领域逐渐过渡到经典领域行为的奇妙现象,对于深入探讨量子和经典领域的边界问题有特殊的价值和意义。我们设计了一个简单的光学方案来产生非经典量子态:附加光子相干态(PACS),与此同时,在出射信号光路得到SPACS的时候,闲置光将塌缩到N-qubit离散变量纠缠态,进而提出了一个使SPACS制备几率得到有效提高的光学方案,该方案同样可以用于杂化纠缠态的制备中。
     2)利用Mach-Zehnder干涉装置,设计了产生SPACS纠缠态的可行光学方案,此方案产生的type II杂化纠缠态不同于其他类型的杂化纠缠态,实现了真正意义上的连续变量和离散变量量子态的纠缠。在type II杂化纠缠态中,无法指出哪个是自旋(或宇称)比特,如果把经典连续变量量子态和量子离散变量量子态分别视为死猫和活猫的话,type II杂化纠缠态可以视为纠缠的薛定谔猫态。
     3)理论分析了双阱中由远共振红失谐激光形成的弱耦合BEC的约瑟夫森效应,通过对BEC密度分布和布居振荡的数值分析,发现当改变红失谐激光的强度来调制双阱BEC时,将呈现出三阱凝聚体的约瑟夫森振荡现象。本工作提供了一个新的实现BEC弱耦合的可行方案,有助于实验观察约瑟夫森效应。
     4)对由光晶格和谐振子势组成的联合囚禁势中的超冷玻色气体,分析了当仅仅保留谐振子势而关掉光晶格时其密度-密度关联的时间演化。研究表明,由于谐振子势的调制作用,密度-密度关联呈现出周期性时间演化行为,我们给出了解析形式的解,该结果与数值分析结果相吻合,该解析表示对于用空间量子噪声干涉法测量谐振子的频率有潜在应用价值。
As it is well known photons, ultra-cold atoms and their interacting systems havebeen the most efficient carriers of the newly developed techniques of quantum manipulation, quantum computation and quantum information. The preparation ofquantum states of optical field has drawn great interests since the optical field has many special advantages in carrying quantum information. On the other hand, the techniques of laser cooling and trapping cold atoms provide an opportunity to manipulate cold atoms including Bose-Einstein condensates (BEC). The research on the properties of quantum states of BEC modulated by lasers is becoming the focused problem recently. Our present study focuses on the preparation and the properties of quantum states, including the optical preparation of some non-classical quantum states and entangled state and the properties of the quantum states of ultra-cold atoms. The main contents are as follows:
     1) The experimental realization of single-photon-added coherent state (SPACS) provides a tool to take a closer look at the evolution of the quantum-to-classical transition and as a starting point for the investigation of the fuzzy border that separates the quantum and classical regimes of light behavior. We proposed a simple scheme to generate a special non-classical quantum state: photon-added coherent state (PACS). When SPACS is observed in the output signal channel, we can simultaneously obtain the generalized N-qubit discrete variable entangled state. Therefore, we give a simple optical scheme to further enhance the success probability of the SPACS generation, which can also be used in the preparation of the hybrid entangled state.
     2) Based on the Mach-Zehnder interferometer, we proposed a feasible scheme to generate the entangled SPACS, and then lead to generation of the novel hybrid entangled state(type II hybrid entangled state). Type II hybrid entangled state is different from any other hybrid entangled state, it realizes the entanglement of continuous-variable and discrete-variable quantum state. This hybrid entangled state can not be interpreted as the spin or the parity qubit. We can view the new hybrid entangled state as the entangled schr?dinger’s cat state if we define the classical-world continuous variable and the quantum-world discrete variable as the living-cat and dead-cat states, respectively.
     3) We theoretically considered the Josephson effect of BEC with a weak link created by superposing a far-off-resonant red-detuned laser beam on a double-well potential. Thenumerical simulations of the density distribution and the population oscillation show that there is clear Josephson effect for this sort of three-well system when the intensity of the laser beam is modulated. Our present work gives a feasible scheme to study a new type ofweak link which is crucial to investigate experimentally the Josephson effect.
     4) For ultra-cold Bose gases in a combined potential of a harmonic trap and an optical lattice, we considered the evolution of the density-density correlation after switching off the optical lattice alone. Our studies show that the density-density correlation exhibits a periodic evolution behavior because of the modulation of the harmonic trap. A simple analytical expression for the motion of the interference peaks in the density-density correlation is given, which agrees well with our numerical results. This analytical expression gives potential application of the measurement of the harmonic frequency based on spatial quantum noise interferometry.
引文
[1] 彭堃墀, 量子光学与量子信息, 中国基础科学, 科学前言, 2000(4): 19-24
    [2] 郭光灿, 量子信息技术, 中国科学院院刊, 2002(5): 325-330
    [3] 詹明生, 冷原子物理, 中国科学院院刊, 2002(6): 407-412
    [4]《国家中长期科学和技术发展规划纲要(2006-2020)》, 国发(2005)44 号
    [5] 薛飞, 杜江峰, 周先意等, 量子计算的物理实现, 物理, 2004(10): 728-733
    [6] 李承祖, 黄明求, 陈平形等, 量子通信和量子计算, 长沙: 国防科技大学出版社, 2000
    [7] E. Knill, R. Laflamme, G. J. Milburn, A scheme for efficient quantum computation with linear optics. Nature, 2001(409): 46-52
    [8] J. L. O'Brien, G. J. Pryde, A. G. White, et al., Demonstration of an all-optical quantum controlled-NOT gate, Nature, 2003(426): 264-267
    [9] C. H. Bennett, G. Brassard, C. Crépeau, et al., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 1993(70):1895-1898中国科学院研究生院博士学位论文:光场量子态制备与光阱下的超冷原子量子态特性研究
    [10] D. Bouwmeester, J. W. Pan, M. Daniell, et al., Experimental quantum teleportation,Nature, 1997, 390(6660): 575-579
    [11] D. Boschi, S. Branca, F. D. Martini, et al., Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 1998(80): 1121-1125
    [12] Z. Zhao,Y. A. Chen, A. N. Zhang, et al., Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation, Nature, 2004(430): 54-58
    [13] Z. Zhao, A.-N. Zhang, Y.-A Chen, et al., Experimental Demonstration of a Nondestructive Controlled-NOT Quantum Gate for Two Independent Photon Qubits,Phys. Rev. Lett., 2005(94): 030501
    [14] Z. Y. Ou, S. F. Pereira, H. J. Kimble, et al., Realization of the Einstein-Podolsky-Rosen paradox for continuous variables, Phys. Rev. Lett.,1992(68): 3663-3666
    [15] A. Furusawa, J. L. S?rensen, S. L. Braunstein, et al., Unconditional Quantum Teleportation, Science, 1998(282): 706-709
    [16] Y. Zhang, H. Wang, X. Y. Li, et al., Experimental. generation of bright two-mode quadrature squeezed light from a narrow-band nondegenrate optical parametric amplifier, Phys. Rev. A, 2000(62): 023813
    [17] X. Y. Li, Q. Pan, J. T. Jing, et al., Quantum Dense coding exploiting a bright einstein-podolsky-rosen beam, Phys. Rev. Lett., 2002(88): 047904
    [18] J. T. Jing, J. Zhang, Y. Yan, et al., Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables, Phys. Rev. Lett., 2003(90): 167903
    [19] C. H. Holbrow, E. Galvez, and M. E. Parks, Photon quantum mechanics and beam splitters, Am. J. Phys. 2002 (70): 260-265
    [20] E. Wolf and L. Mandel, Optical Coherence and Quantum Optics, Cambridge, UK:Cambridge University Press. 1995
    [21] U. Leonhardt, Quantum Physics of Simple Optical Instruments, arxiv: quant-ph/0305007 v2 4 Jul 2003
    [22] D. F. Walls and G. J. Milburn, Quantum Optics, Berlin: Springer-Verlag, 1994
    [23] 尼尔森, 庄; 赵千川译, 量子计算和量子信息, 北京: 清华大学出版社, 2004
    [24] S. K. Ozdemir, T. Yamamoto, M. Koashi, et al., Quantum State Generation and Entanglement Manipulation Using Linear Optics, Turk. J. Phys., 2003(27): 459-479
    [25] 郑仕标, 郭光灿, 量子态的操纵和准备, 物理, 1998(27): 241
    [26] B. Yurke and D. Stoler, Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion, Phys. Rev. Lett., 1986(57): 13-16
    [27] J. Janszky and An. V. Vinogradov, Squeezing via one-dimensional distribution of coherent states, Phys. Rev. Lett., 1990(64): 2771-2774
    [28] Q. H. Xue, W. Zhou, G. C. Guo, The preparation of a Fock state by quamtum measurement in the cross-phase modulation interaction, Phys. Lett. A, 1996 (221): 134
    [29] E. T. Jaynes, F. W. Cummings, Comparison of quantum and semiclassical radiation theory with application to the beam maser, Proc. IEEE, 1963(51): 89-109; B. W. Shore, P. L. Knight, The Jaynew-cummings model, J. Mod. Opt., 1993(40): 1195-1238
    [30] K. Vogel, V. M. Akulin, W. P. Schleich, Quantum state engineering of the radiation field, Phys. Rev. Lett., 1993(71): 1816-1819
    [31] B. C. Sanders, Entangled coherent states, Phys. Rev. A, 1992(45): 6811-6815
    [32] M. Dakna, J. Clausen, L. Kn?ll, et al., Generation of arbitrary quantum states of traveling fields, Phys. Rev. A 1999(59): 1658-1661
    [33] K. Sanaka, Linear optical extraction of photon-number Fock states from coherent states, Phys. Rev. A, 2005(71): 021801(R)
    [34] D. T. Pegg, L. S. Phillips, and S. M. Barnett, Optical State Truncation by Projection Synthesis, Phys. Rev. Lett., 1998(81): 1604-1606
    [35] A. I. Lvovsky, H. Hansen, T. Aichele, et al., Quantum State Reconstruction of the Single-Photon Fock State, Phys. Rev. Lett., 2001(87): 050402; A. I. Lvovsky and J .Mlynek, Quantum-Optical Catalysis: Generating Nonclassical States of Light byMeans of Linear Optics, Phys. Rev. Lett., 2002(88): 250401; A. I. Lvovsky and S. A. Babichev, Synthesis and tomographic characterization of the displaced Fock state of light, Phys. Rev. A, 2002(66): 011801
    [36] G. S. Agarwal and K. Tara, Nonclassical properties of states generated by the excitations on a coherent state, Phys. Rev. A, 1991(43): 492-497
    [37] A. Zavatta, S. Viciani, and M. Bellini, Quantum-to-Classical Transition with Single-Photon-Added Coherent States of Light, Science, 2004(306): 660-662
    [38] Y. Li, H. Jing and M.-S. Zhan, Optical generation of a hybrid entangled state via an entangling single-photon-added coherent state, J. Phys. B: At. Mol. Opt. Phys.,2006(39): 2107-2113
    [39] A. Einstein, B. Podolsky, N. Rosen, Can quantum mechanical description of physical reality be considerded complete, Phys. Rev., 1935(47): 777-780
    [40] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A, 1989(40): 4277-4281
    [41] V. Vedral, M. B. Plenio, M. A. Rippin, et al., Quantifying Entanglement, Phys. Rev. Lett., 1997(78): 2275-2279
    [42] D. M. Greenberger, M. Horne, and A. Zeilinger, "Going beyond Bell's theorem", in Bell's Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos, Dordrecht: Kluwer, 1989
    [43] D. M. Greenberger, M. A. Horne, A. Shimony, et al., Bell's theorem without inequalities, Am. J. Phys., 1990(58): 1131
    [44] W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A, 2000 (62): 062314
    [45] C. H. Bennett, S. J. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett., 1992(69): 2881-2884
    [46] C. H. Bennett, G. Brassard, C. Crépeau, et al., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 1993(70): 1895-1899
    [47] D. W. Berry, B. C. Sanders, Optimal Remote State Preparation, Phys. Rev. Lett.,2003(90): 057901
    [48] S. Bose, V. Vedral, P. L. Knight, Multiparticle generalization of entanglement swapping, Phys. Rev. A, 1998(57): 822-829
    [49] J. W. Pan, C. Simon, C. Brukner, et al., Entanglement purification for quantum communication, Nature, 2001(410): 1067
    [50] C. H. Bennett, G. Brassard, S. Popescu, et al., Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels, Phys. Rev. Lett., 1996(76): 722-725
    [51] J. F. Clauser and A. Shimony, Bell's theorem. Experimental tests and implications,Rep. Prog. Phys., 1978(41): 1881-1927
    [52] S. L. Braunstein and H. J. Kimble, Teleportation of Continuous Quantum Variables, Phys. Rev. Lett., 1998(80): 869-872
    [53] M. A. Horne, A. Shimony, and A. Zeilinger, Two-particle interferometry, Phys. Rev. Lett., 1989(62): 2209-2212
    [54] R. Ghosh and L. Mandel, Observation of nonclassical effects in the interference of two photons, Phys. Rev. Lett., 1987(59): 1903-1905
    [55] S. L. Braunstein, H. J. Kimble, Dense coding for continuous variables. Phys. Rev. A,2000(61): 042302
    [56] G. Adesso and F. Illuminati, Equivalence between Entanglement and the Optimal Fidelity of Continuous Variable Teleportation, Phys. Rev. Lett., 2005(95): 150503
    [57] F. Grosshans and N. J. Cerf, Continuous-Variable Quantum Cryptography is Secure against Non-Gaussian Attacks, Phys. Rev. Lett., 2004(92): 047905
    [58] Ch. Silberhorn, P. K. Lam, O. Wei?, et al., Generation of continuous variableEinstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,Phys. Rev. Lett., 2001(86): 4267-4270
    [59] S. L. Braunstein and P. V. Loock, Quantum information with continuous variables,Rev. Mod. Phys., 2005(77): 513
    [60] B. C. Sanders and D. A. Rice, Nonclassical fields and the nonlinear interferometer,Phys. Rev. A, 2000(61): 013805
    [61] E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantumcomputation with linear optics, Nature, 2001(409), 46-52
    [62] D. Bouwmeester, J. W. Pan, M. Daniell, et al., Observation of Three-photon Greenberger-Horne-Zeilinger Entanglement, Phys. Rev. Lett., 1999(82): 1345
    [63] J. W. Pan, D. Bouwmeester, M. Daniell, et al., Experimental test of quantum nonlo-cality in three-photon Greenberger-Horne-Zeilinger entanglement, Nature(London),2000(403): 515-519
    [64] J. W. Pan, M. Daniell, S. Gasparoni, et al., Experimental demonstration of four-photon entanglement and high-fidelity teleportation, Phys. Rev. Lett., 2001(86):4435
    [65] M. Eibl, N. Kiesel, M. Bourennane, et al., Experimental Realization of a Three-Qubit Entangled W State, Phys. Rev. Lett., 2004(92): 077901
    [66] Z. Zhao, T. Yang, Y. A. Chen, et al., Experimental Violation of Local Realism by Four-Photon Greenberger-Horne-Zeilinger Entanglement, Phys. Rev. Lett., 2003(91): 180401
    [67] E. Hagley, X. Maitre, G. Nogues, et al., Generation of Einstein-Podolsky-Rosen pairs of atoms, Phys. Rev. Lett., 1997(79): 1-5
    [68] A. Rauschenbeutel, G. Nogues, S. Osnaghi. et al., Step-by-step engineered multiparticle entanglement, Science, 2000(288): 2024-2028
    [69] L. M. Duan, H. J. Kimble, Efficient Engineering of Multiatom Entanglement through Single-Photon Detections, Phys. Rev. Lett., 2003(90): 253601
    [70] B. E. King, C. S. Wood, C. J. Myatt, et al., Cooling the collective motion of trapped ions to initialize a quantum register, Phys. Rev. Lett., 1998(81): 1525-1528
    [71] C. A. Sackett, D. Kielpinski, B. E. King, et al., Experimental entanglement of four particle, Nature, 2000(404): 256-259
    [72] I. L. Chuang,N. Gershenfeld, and M. Kubinec, Experimental implementation of fast quantum searching, Phys. Rev. Lett.,1998(80): 3408-3411
    [73] E. Knill, R. Laflamme, R. Martinez, et al., An algorithmic benchmark for quantum information processing, Nature (London), 2000(404): 368-370
    [74] A. S?rensen, L. M. Duan, J. I. Cirac, et al., Many-particle entanglement withBose–Einstein condensates, Nature (London), 2001(409): 63-66
    [75] M. G. Moor and P. Meystre, Generating Entangled Atom-Photon Pairs from Bose-Einstein Condensates, Phys. Rev. Lett., 2000(85): 5026-5029
    [76] M. Zhang, L. You, Quantum Zeno Subspace and Entangled Bose-Einstein Condensates, Phys. Rev. Lett., 2003(91): 230404
    [77] G. X. Li, Y. P. Yang, K. Allaart, et al., Entanglement for excitons in two quantum dots in a cavity injected with squeezed vacuum, Phys. Rev. A, 2004(69): 014301
    [78] X. G. Wang, M. Feng, B. C. Sanders, Multipartite entangled states in quantum dots and cavity QED, Phys. Rev. A, 2003(67): 022302
    [79] M. H. Anderson, J. R. Ensher, M. R. Matthews, et al., Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science, 1995(269): 198-201
    [80] C. C. Bradley, C. A. Sackett, J. J. Tollett, et al., Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett.,1995(75): 1687-1690
    [81] K. B. Davies, M.-O. Mewes, M. R. Andrews, et al., Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett., 1995(75): 3969-3973
    [82] C. J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, CambridgeUniveristy Press, 2005
    [83] 张礼, 葛墨林, 量子力学的前沿问题, 北京:清华大学出版社, 1999, 299
    [84] 王义遒,“原子的激光冷却与囚禁和稀薄气体玻色-爱因斯坦凝聚的实现”,曾谨言, 龙桂鲁, 裴寿镛, 量子力学新进展, 第三辑, 北京:清华大学出版社, 2003
    [85] O. Penrose, L. Onsager, Bose-Einstein Condensation and Liquid Helium, Phys. Rev.,1956(104): 576-584
    [86] E. P. Gross, Nuovo Cimento, 1961(20): 454; J. Math. Phys., 1963(4): 195; L. P. Pitaevskii, Zh. Eksp. Teor. Fiz., 1961(40): 646 [Sov. Phys.-JETP, 1961(13): 451]
    [87] J. Javanainen and S. M. Yoo, Quantum Phase of a Bose-Einstein Condensate with an Arbitrary Number of Atoms, Phys. Rev. Lett., 1996(76): 161-164
    [88] Y. Castin and J. Dalibard, Relative phase of two Bose-Einstein condensates, Phys. Rev. A, 1997(55): 4330-4337
    [89] A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys., 2001(73): 307-356
    [90] H. W. Xiong, S. J. Liu, and M.-S. Zhan, Josepson Effect and Quantum Merging of Two Bose Superfluids, Phys. Rev. B., 2006(73): 224505; H. W. Xiong, S. J. Liu, and M.-S. Zhan, Interaction-induced interference for two independent Bose–Einstein condensates, New. J. Phys., 2006(8): 245
    [91] M. R. Andrews, C. G. Townsend, H.-J. Miesner, et al., Observation of Interference Between Two Bose Condensates, Science, 1997(275): 637-641
    [92] H. T. C. Stoof, Bose-Einstein condensation: Breaking up a superfluid, Nature, 2002(415): 25-26; M. Greiner, O. Mandel, T. Esslinger, et al., Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature, 2002(415): 39-44
    [93] D. S. Hall, M. R. Matthews, C. E. Wieman, et al., Measurements of Relative Phase in Two-Component Bose-Einstein Condensates, Phys. Rev. Lett., 1998(81): 1543-1546
    [94] I. Bloch, T. W. Hansch, and T. Esslinger, Measurement of the spatial coherence of a trapped Bose gas at the phase transition, Nature, 2000(403): 166-170
    [95] E. W. Hagley, L. Deng, M. Kozuma, et al., Measurement of the Coherence of a Bose-Einstein Condensate, Phys. Rev. Lett., 1999(83): 3112-3115
    [96] M. K?hl, T. W. H?nsch, and T. Esslinger, Measuring the Temporal Coherence of anAtom Laser Beam, Phys. Rev. Lett., 2001(87):160404
    [97] B. P. Anderson and M. A. Kasevich, Macroscopic Quantum Interference from Atomic Tunnel Arrays, Science, 1998(282): 1686-1689
    [98] F. S. Cataliotti, S. Burger, C. Fort, et al., Josephson Junction Arrays with Bose-Einstein, Science, 2001(293): 843
    [99] M. Albiez, R. Gati, J. Folling, et al., Direct Observation of Tunneling and Nonlinear Self-Trapping in a Single Bosonic Josephson Junction, Phys. Rev. Lett., 2005(95): 010402; R. Gati, M. Albiez, J. Folling, et al., Realization of a single Josephson junction for Bose-Einstein condensates, Appl. Phys. B, 2006 (82): 207-210
    [100] A. Smerzi, and S. Fantoni, S. Giovanazzi, et al., Quantum Coherent AtomicTunneling between Two Trapped Bose-Einstein Condensates, Phys. Rev. Lett., 1997(79): 4950-4953
    [101] S. Giovanazzi, A. Smerzi, and S. Fantoni, Josephson Effects in Dilute Bose-Einstein Condensates, Phys. Rev. Lett., 2000(84): 4521-4524
    [102] C. Orzel, A. K. Tuchman, M. L. Fenselau, et al., Squeezed States in a Bose-Einstein Condensate, Science, 2001(291): 2386-2389
    [103] M. Kozuma, L. Deng, E. W. Hagley, et al., Coherent Splitting of Bose-Einstein Condensed Atoms with Optically Induced Bragg Diffraction, Phys. Rev. Lett.,1999(82): 871-875
    [104] Y. Torii, Y. Suzuki, M. Kozuma, et al., Mach-Zehnder Bragg interferometer for a Bose-Einstein condensate, Phys. Rev. A, 2000(61): 041602
    [105] 印建平, “几何与波动原子光学及其器件”, 原子光学讲座, 物理, 2006(35):69
    [106] O. Carnal and J. Mlynek, Young’s double-slit experiment with atoms: A simple atom interferometer, Phys. Rev. Lett., 1991(66): 2689-2692
    [107] D. M. Giltner, R. W. McGowan, and S. A. Lee, Atom Interferometer Based on Bragg Scattering from Standing Light Waves, Phys. Rev. Lett., 1995(75): 2638-2641
    [108] P. D. Featonby, G. S. Summy, C. L. Webb, et al., Separated-Path Ramsey Atom Interferometer, Phys. Rev. Lett., 1998(81): 495-499
    [109] M. Kasevich, S. Chu, Atomic interferometry using stimulated Raman transitions,Phys. Rev. Lett., 1991(67): 181-184
    [110] A. Lenef, T. D. Hammond, E. T. Smith, et al., Rotation Sensing with an Atom Interferometer, Phys. Rev. Lett., 1997(78): 760-763
    [111] R. H. Brown and R. Q. Twiss, Correlation between Photons in two Coherent Beams of Light, Nature, 1956(177): 27-29
    [112] M. Yasuda and F. Shimizu, Observation of two-atom correlation of an ultracold neon atomic beam, Phys. Rev. Lett., 1996(77): 3090-3093
    [113] E. Altman, E. Demler, and M. D. Lukin, Probing many-body states of ultra-coldatoms via noise correlations, Phys. Rev. A, 2004(70): 013603-013607; C. Lobo, I. Carusotto, S. Giorgini, et al., Pair Correlations of an Expanding Superfluid Fermi Gas, Phys. Rev. Lett., 2006(97): 100405
    [114] R. Bach and K. Rzazewski, Correlation functions of cold bosons in an optical lattice,Phys.Rev.A, 2004(70): 063622; C. Ates, Ch. Moseley, and K. Ziegler, Density fluctuations of a hard-core Bose gas in a one-dimensional lattice near the Mott insulating phase, Phys. Rev. A, 2005(71): 061601
    [115] N. M. Bogoliubov, C. Malyshev, R. K. Bullough, et al., Finite temperature correlations in the one dimensional trapped and untrapped Bose gases, Phys. Rev. A,2004(69): 023619
    [116] D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Regimes of Quantum Degeneracy in Trapped 1D Gases, Phys. Rev. Lett., 2000(85): 3745-3749
    [117] M. Schellekens, R. Hoppeler, A. Perrin, et al., Hanbury Brown Twiss Effect for Ultracold Quantum Gases, Science, 2005(310): 648-651
    [118] S. F?lling, F. Gerbier, A. Widera, et al., Spatial quantum noise interferometry in expanding ultracold atom clouds, Nature, 2005(434): 481-484; I. B. Spielman, W. D. Phillips, and J. V. Porto, The Mott insulator transition in two dimensions,Preprint cond-mat/0606216(2006)
    [119] W. Zhang, D. F . Wall, Gravitational and collective effects in an output coupler for a Bose-Einstein condensate in an atomic trap, Phys. Rev. A, 1998(57): 1248-1252; T. L. Ho, Spinor Bose Condensates in Optical Traps, Phys. Rev. Lett., 1998(81): 742-745
    [120] T. Rom, Th. Best, D. van Oosten, et al., Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice, Nature, 2006(444): 733-736
    [121] A. Ottl, S. Ritter, M. K?hl, et al., Correlations and Counting Statistics of an Atom Laser, Phys. Rev. Lett., 2005(95): 090404
    [122] H. W. Xiong, S. J. Liu, G. X. Huang, et al., Evolution of a coherent array of Bose-Einstein condensates in a magnetic trap, J. Phys. B: At. Mol. Opt. Phys.,2002(35): 4863-4873; S. J. Liu, H. W. Xiong, Z. J. Xu, et al., Interference patternsof Bose-condensed gasses in a two-dimensional optical lattice, J. Phys. B: At. Mol. Opt. Phys., 2003(36): 2083-2092; H. W. Xiong, S. J. Liu, G. X. Huang, et al., Phase diffusion of Bose–Einstein condensates in a one-dimensional optical lattice, J. Phys.B:At. Mol. Opt. Phys., 2003(36): 3315
    [123] I. H. Deutsch, G. K. Brennen, P. S. Jessen, Quantum computing with neutral atoms in an optical lattice, Progress of Physics, 2000(48): 925-943
    [124] S. K. Adhikari, Expansion of a Bose-Einstein condensate formed on a joint harmonic and one-dimensional optical-lattice potential, J. Phys. B: At. Mol. Opt. Phys., 2003(36): 3951-3959; J. H Müller, O Morsch, M Cristiani, et al., Hitting Bose–Einstein condensates with a comb: evolution of interference patterns inside a magnetic trap, J. Opt. B: Quantum Semiclass. Opt., 2003(5): S38
    [125] S. F?lling, F. Gerbier, A. Widera, et al., Spatial quantum noise interferometry in expanding ultracold atom clouds, Nature, 2005(434): 481-484
    [126] T. Rom, Th. Best, D. van Oosten, et al., Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice, Nature, 2006(444): 733-736
    [127] M. Greiner, O. Mandel, T. Esslinger, et al., Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature, 2002(415): 39-44
    [128] C. Monroe, Quantum information processing with atoms and photons, Nature, 2002(416): 238-246
    [129] O. Mandel, M. Greiner, A. Widera, et al., Controlled collisions for multi-particle entanglement of optically trapped atoms, Nature, 2003(425):937-940
    [1] E. Wolf and L. Mandel, Optical Coherence and Quantum Optics, Cambridge, U.K.:Cambridge University Press, 1995
    [2] M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge, U.K.: Cambridge University Press, 1997
    [3] A. I. Lvovsky and S. A. Babichev, Synthesis and tomographic characterization of thedisplaced Fock state of light, Phys. Rev. A, 2002(66): 011801
    [4] G. S. Agarwal and K. Tara, Nonclassical properties of states generated by theexcitations on a coherent state, Phys. Rev. A, 1991(43): 492-497
    [5] A. Zavatta, S. Viciani, and M. Bellini, Quantum-to-Classical Transition with Single-Photon-Added Coherent States of Light, Science, 2004(306): 660-662
    [6] 李永明, 樊代和, 翟泽辉等, 单光子态的产生与测量, 量子光学学报, 2004(10):29-33
    [7] J. E. Midwinter and J. Warner, The effect of phase matching method and of uniaxial crystal symmetry on polar distribution of second order nonlinear optical polarization, J. Appl. Phys., 1965(16): 1135-1142
    [8] R.W. Boyd, Nonlinear Optics, Academic Press, Inc. 1992: 87
    [9] 夏江帆, 魏志义, 张杰, BBO 晶体中非共线参量过程的带宽与增益特性研究, 物理学报,2002(49):0256
    [10] 王忠和, 张光寅, 光子学物理基础, 北京: 国防工业出版社, 1998
    [11] 郭光灿, 量子光学, 合肥:中国科学技术大学, 1988
    [12] A. Zavatta, S. Viciani, and M. Bellini, Single-photon excitation of a coherent state: Catching the elementary step of stimulated light emission, Phys. Rev. A, 2005(72): 023820
    [13] M. Eibl, N. Kiesel, M. Bourennane, et al., Experimental Realization of a Three-Qubit Entangled W State, Phys. Rev. Lett., 2004(92): 077901
    [14] J.-W. Pan, D. Bouwmeester, M. Daniell, et al., Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement, Nature (London), 2000(403): 515-519; D. Bouwmeester, J.-W. Pan, M. Daniell, et al.,Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement, Phys. Rev. Lett., 1999(82): 1345-1349; M. Eibl, S. Gaertner, M. Bourennane, et al.,Experimental Observation of Four-Photon Entanglement from Parametric Down-Conversion, Phys. Rev. Lett., 2003(90): 200403
    [15] C.W. Zhang, C. F. Li, Z. Y. Wang, et al., Probabilistic quantum cloning viaGreenberger-Horne-Zeilinger states, Phys. Rev. A, 2000(62): 042302
    [16] J. W. Pan, M. Daniell, S. Gasparoni, et al., Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation, Phys. Rev. Lett.,2001(86): 4435
    [17] S. K. ?zdemir, A. Miranowicz, M. Koashi, et al., Quantum-scissors device for optical state truncation: A proposal for practical realization, Phys. Rev. A, 2001(64): 063818
    [18] M. G. A. Paris, Optical qubit by conditional interferometry, Phys. Rev. A, 2000(62): 033813; D. T. Pegg, L. S. Phillips, and S. M. Barnett, Optical State Truncation by Projection Synthesis, Phys. Rev. Lett., 1998(81): 1604-1606
    [19] C. W. Gardiner and P. Zoller, in Quantum Noise, A Handbook of Stochastic Methods, edited by Hermann Haken, Berlin: Springer, 2000
    [20] X. Zou, K. Pahlke, and W. Mathis, Generation of an entangled four-photon W state,Phys. Rev. A, 2002(66): 044302; T. Yamamoto, K. Tamaki, M. Koashi. et al.,Polarization-entangled W state using parametric down-conversion, Phys. Rev. A,2002(66): 064301; V. N. Gorbachev. A. I. Trubilko, A. A. Rodichkina, et al., On preparation of the entangled W-states from atomic ensembles, Phys. Lett. A,2003(310): 339
    [21] Y. Li, H. Jing and M.-S. Zhan, Chin. Phys., 2007(7) (in press)
    [22] A. P. Lund, H. Jeong, T. C. Ralph, et al., Conditional production of superpositions of coherent states with inefficient photon detection, Phys. Rev. A, 2004(70): 020101(R)
    [23] M. Dakana, L. Kn?ll, D.-G. Welsch, Quantum state engineering using conditional measurement on a beam splitter, Eur. Phys. J. D, 1998(3): 295
    [24] J. Wenger, R. Tualle-Brouri, P. Grangier, Non-Gaussian Statistics from Individual Pulses of Squeezed Light, Phys. Rev. Lett., 2004(92): 153601
    [25] V. Scarani, N. Gisin, Quantum Communication between N Partners and Bell's Inequalities, Phys. Rev. Lett., 2001(87): 117901; M. Eibl, S. Gaertner, M. Bourennane, et al., Experimental Observation of Four-Photon Entanglement from Parametric Down-Conversion, Phys. Rev. Lett., 2003(90): 200403; Z. Zhao, T. Yang,Y.-A. Chen, et al., Experimental Violation of Local Realism by Four-Photon Greenberger-Horne-Zeilinger Entanglement, Phys. Rev. Lett., 2003(91): 180401
    [26]Y. Li, H. Jing and M.-S. Zhan, Phys. Lett. A (resubmitted)
    [27] S. Bose and D. Home, Generic Entanglement Generation, Quantum Statistics, and Complementarity, Phys. Rev. Lett., 2002(88): 050401; R. A. Campos, Three-photon Hong-Ou-Mandel interference at a multiport mixer, Phys. Rev. A, 2000(62): 013809
    [28] 赵志, 量子纠缠操纵及量子非局域性测试, 中科院武汉物理与数学研究所博士学位论文,2001
    [29] http://qis.ucalgary.ca/quantech/repeated.html
    [1] C. H. Bennett, G. Brassard, C. Crépeau, et al., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 1993(70):1895-1899; M. Murao, D. Jonathan, M. B. Plenio, et al., Quantum telecloning and multiparticle entanglement, Phys. Rev. A, 1999(59): 156-161
    [2] M. Dakna, J. Clausen, L. Kn?ll, et al., Generation of arbitrary quantum states of traveling fields, Phys. Rev. A, 1999(59): 1658-1661; X. B. Wang, Theorem for the beam-splitter entangler, Phys. Rev. A, 2002(66): 024303; K. Sanaka, Linear optical extraction of photon-number Fock states from coherent states, Phys. Rev. A, 2005(71):021801(R); A. I. Lvovsky and J. Mlynek, Quantum-Optical Catalysis: Generating Nonclassical States of Light by Means of Linear Optics, Phys. Rev. Lett., 2002(88):250401
    [3] B. E. King, C. S. Wood, C. J. Myatt, et al., Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register, Phys. Rev. Lett., 1998(81): 1525-1528
    [4] A. Rauschenbeutel, G. Nogues, S. Osnaghi, et al., Step-by-Step Engineered Multiparticle Entanglement, Science, 2000(288): 2024-2028
    [5] A. Sorensen, L. M. Duan, J. I. Cirac, et al., Many-particle entanglement with Bose–Einstein Condensates, Nature(London), 2001(409): 63; M. G. Moore and P. Meystre, Generating Entangled Atom-Photon Pairs from Bose-Einstein Condensates,Phys. Rev. Lett., 2000(85): 5026-5029; H. Jing, J.-L. Chen and M.-L. Ge,Quantum-dynamical theory for squeezing the output of a Bose-Einstein condensate,Phys. Rev. A, 2001(63): 015601
    [6] 薛飞, 杜江峰, 周先意等, 量子计算的物理实现, 物理, 2004(10): 728-733
    [7] C. H. Bennett, G. Brassard, S. Popescu, et al., Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels, Phys. Rev. Lett., 1996(76): 722-725
    [8] J. F. Clauser and A. Shimony, Bell's theorem. Experimental tests and implications,Rep. Prog. Phys., 1978(41): 1881-1927
    [9] R. Ghosh and L. Mandel, Observation of nonclassical effects in the interference of two photons, Phys. Rev. Lett., 1987(59): 1903-1905
    [10] M. A. Horne, A. Shimony, and A. Zeilinger, Two-particle interferometry, Phys. Rev.Lett., 1989(62): 2209-2212
    [11] D. C. Burnham and D. L. Weinberg, Observation of Simultaneity in Parametric Production of Optical Photon Pairs, Phys. Rev. Lett., 1970(25): 84-87
    [12] Z. Y. Ou, S. F. Pereira, H. J. Kimble, et al., Realization of the Einstein-Podolsky-Rosen paradox for continuous variables, Phys. Rev. Lett.,1992(68): 3663-3666;S. L. Braunstein and H. J. Kimble, Teleportation of Continuous Quantum Variables, Phys. Rev. Lett., 1998(80): 869-872
    [13] G. Adesso and F. Illuminati, Equivalence between Entanglement and the Optimal Fidelity of Continuous Variable Teleportation, Phys. Rev. Lett., 2005(95): 150503
    [14] F. Grosshans and N. J. Cerf, Continuous-Variable Quantum Cryptography is Secure against Non-Gaussian Attacks, Phys. Rev. Lett., 2004(92): 047905
    [15] Ch. Silberhorn, P. K. Lam, O. Wei?, et al., Generation of continuous variableEinstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,Phys. Rev. Lett., 2001(86): 4267-4270
    [16] S. L. Braunstein and P. V. Loock, Quantum information with continuous variables,Rev. Mod. Phys., 2005(77): 513-577
    [17] B. C. Sanders and D. A. Rice, Nonclassical fields and the nonlinear interferometer,Phys. Rev. A, 2000(61): 013805
    [18] M. S. Kim, W. Son, V. Bu?ek, et al., Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement, Phys. Rev. A, 2002(65): 032323
    [19] C. H. Holbrow, E. Galvez, and M. E. Parks, Photon quantum mechanics and beam splitters,Am. J. Phys., 2002 (70): 260-265
    [20] S. Scheel and D.-G.Welsch, Entanglement generation and degradation by passive optical devices, Phys. Rev. A, 2001(64): 063811
    [21] A. I. Lvovsky and J. Mlynek, Quantum-Optical Catalysis: Generating Nonclassical States of Light by Means of Linear Optics, Phys. Rev. Lett., 2002(88): 250401
    [22] J. L. van Velsen, Entangling ability of a beam splitter in the presence of temporal which-path information, Phys. Rev. A, 2005(72): 012334
    [23] 逯怀新,郁司夏,杨洁等, “连续变量系统的量子信息处理与非定域性”,曾谨言, 龙桂鲁, 裴寿镛, 量子力学新进展(第三辑), 北京:清华大学出版社, 2003
    [24] S. L. Braunstein and H. J. Kimble, Teleportation of Continuous Quantum Variables,Phys. Rev. Lett., 1998(80): 869-872; A. Furasawa, J. L. Sorensen, S. L. Braunstein,et al., Unconditional quantum teleportation, Science, 1998(282): 706-709
    [25] 彭堃墀, “利用明亮 EPR 光束实现量子密集编码和量子离物传态”, 曾谨言,裴寿镛,龙桂鲁, 量子力学新进展(第二辑), 北京:北京大学出版社, 2001;谢常德, 贾晓军, 苏晓龙等, 连续变量无条件纠缠交换, 物理,2005(34): 573; 苏晓龙, 潘庆, 谢常德, 连续变量纠缠交换对系统物理参量的依赖关系, 量子光学学报, 2004(10): 157
    [26] P. van Loock and S. L. Braunstein, Multipartite Entanglement for Continuous Variables: A Quantum Teleportation Network, Phys. Rev. Lett., 2000(84): 3482-3485
    [27] M. D. Reid and P. D. Drummond, Quantum Correlations of Phase in Nondegenerate Parametric Oscillation, Phys. Rev. Lett., 1988(60): 2731-2733
    [28] B. C. Sanders and D. A. Rice, Nonclassical fields and the nonlinear interferometer,Phys. Rev. A, 1999(61): 013805
    [29] A. Zavatta, S. Viciani, and M. Bellini, Quantum-to-Classical Transition with Single-Photon-added Coherent States of Light, Science, 2004(306): 660
    [30] B. C. Sanders, Entangled coherent states, Phys. Rev. A, 1992(45): 6811-6815
    [31] B. C. Sanders, S. D. Bartlett, T. Rudolph, et al., Photon-number superselection and the entangled coherent-state representation, Phys. Rev. A, 2003(68): 042329
    [32] X. L. Feng, R. X. Li, and Z. Z. Xu, Beam splitter entangler for light fields, Phys. Rev. A, 2005(71): 032335
    [33] Z. B. Chen, G. Hou, and Y. D. Zhang, Quantum nonlocality and applications in quantum-information processing of hybrid entangled states, Phys. Rev. A, 2002(65):032317
    [34] P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping, Phys. Rev. A,1999(59): 2631-2634
    [35] S. K. ?zdemir, A. Miranowicz, M. Koashi, et al., Quantum-scissors device foroptical state truncation: A proposal for practical realization, Phys. Rev. A, 2001(64):063818
    [36] M. G. A. Paris, Optical qubit by conditional interferometry, Phys. Rev. A, 2000(62):033813; D. T. Pegg, L. S. Phillips, and S. M. Barnett, Optical State Truncation by Projection Synthesis, Phys. Rev. Lett., 1998(81): 1604-1606
    [37] E.Wolf and L. Mandel, Optical Coherence and Quantum Optics, Cambridge University Press, 1995. 1069-1108
    [38] S. Scheel and D.-G. Welsch, Entanglement generation and degradation by passive optical devices, Phys. Rev. A, 2001(64): 063811; C. C. Gerry and A. Benmoussa.Beam splitting and entanglement: Generalized coherent states, group contraction, and the classical limit, Phys. Rev. A, 2005(71): 062319; M. G. A. Paris,Entanglement and visibility at the output of a Mach-Zehnder interferometer, Phys. Rev. A, 1999(59): 1615-1621
    [39] Y. Zhang, H. Wang, X. Y. Li, et al., Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenrate optical parametric amplifier, Phys. Rev. A, 2000(62): 023813
    [40] X. Y. Li, Q. Pan, J. T. Jing, et al., Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam, Phys. Rev. Lett., 2002(88): 047904
    [41] J. T. Jing, J. Zhang, Y. Yan, et al., Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables, Phys. Rev. Lett., 2003(90): 167903
    [1] M. H. Anderson, J. R. Ensher, M. R. Matthews, et al., Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science, 1995(269): 198-201; C. C. Bradley, C. A. Sackett, J. J. Tollett, et al., Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett., 1995(75): 1687-1690; K. B. Davis, M.-O. Mewes, M. R. Andrews, et al., Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett., 1995(75): 3969-3973
    [2] M. R. Andrews, C. G. Townsend, H.-J. Miesner, et al., Observation of Interference Between Two Bose Condensates, Science, 1997(275): 637-641
    [3] B. P. Anderson and M. A. Kasevich, Macroscopic Quantum Interference from Atomic Tunnel Arrays, Science, 1998(282): 1686-1689
    [4] B. D. Josephson, Possible New Effects in Superconductivity Tunneling, Phys. Lett.,1962(1): 251-253
    [5] 王义遒,“原子的激光冷却与囚禁和稀薄气体玻色-爱因斯坦凝聚的实现”,曾谨言, 龙桂鲁, 裴寿镛, 量子力学新进展(第三辑), 北京:清华大学出版社, 2003
    [6] 李师群, 超冷原子物理学与原子光学, 物理与工程,2002(12): 6-10
    [7] 印建平,“几何与波动原子光学及其器件”, 原子光学讲座, 物理, 2006(35): 69-75
    [8] H. T. C. Stoof, Bose-Einstein condensation: Breaking up a superfluid, Nature, 2002(415): 25-26
    [9] W. Zhang, D. F . Wall, Gravitational and collective effects in an output coupler for a Bose-Einstein condensate in an atomic trap, Phys. Rev. A, 1998(57): 1248-1252; T. L. Ho, Spinor Bose Condensates in Optical Traps, Phys. Rev. Lett., 1998(81): 742-745
    [10] I. H. Deutsch, G. K. Brennen, P. S. Jessen, Quantum computing with neutral atoms in an optical lattice. Progress of Physics, 2000(48): 925-943
    [11] M. Greiner, O. Mandel, T. Esslinger, et al., Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature, 2002(415): 39-44
    [12] C. Monroe, Quantum information processing with atoms and photons, Nature, 2002(416): 238-246
    [13] O. Mandel, M. Greiner, A. Widera, et al., Controlled collisions for multi-particle entanglement of optically trapped atoms, Nature, 2003(425):937-940
    [14] P. L. Anderson, J. W. Rowell, Probable Observation of the Josephson Superconducting Tunneling Effect, Phys. Rev. Lett., 1963(10): 230-232
    [15] 李前树, 邵彬, 邹健, 场与介观约瑟夫森结的相互作用, 科学出版社,2002
    [16] F. S. Cataliotti, S. Burger, C. Fort, et al., Josephson Junction Arrays with Bose-Einstein, Science, 2001(293): 843
    [17] M. Albiez, R. Gati, J. Folling, et al., Direct Observation of Tunneling and Nonlinear Self-Trapping in a Single Bosonic Josephson Junction, Phys. Rev. Lett., 2005(95): 010402
    [18] R. Gati, M. Albiez, J. Folling, et al., Realization of a single Josephson junction for Bose-Einstein condensates, Appl. Phys. B, 2006 (82): 207-210
    [19] A. Smerzi, and S. Fantoni, S. Giovanazzi, et al., Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates, Phys. Rev. Lett., 1997(79): 4950-4953
    [20] S. Giovanazzi, A. Smerzi, and S. Fantoni, Josephson Effects in Dilute Bose-Einstein Condensates, Phys. Rev. Lett., 2000(84): 4521-4524
    [21] C. Orzel, A. K. Tuchman, M. L. Fenselau, et al., Squeezed States in a Bose-Einstein Condensate, Science, 2001(291): 2386-2389
    [22] E. Sakellari, N. P. Proukakis, M. Leadbeater, et al., Josephson tunnelling of a phase-imprinted Bose–Einstein condensate in a time-dependent double-well potential, New. J. Phys., 2004(6): 42
    [23] N. Tsukada, M. Gotoda, Y. Nomura, et al., Laser-assisted coherent atomic tunneling between two trapped Bose-Einstein condensates, Phys. Rev. A, 1999(59): 3862-3867
    [24] R. Paredes, Tunneling of ultracold Bose gases in multiple wells, Phys. Rev. A,2006(73): 033616
    [25] A. Eckardt, T. Jinasundera, C. Weiss, et al., Analog of Photon-Assisted Tunneling ina Bose-Einstein Condensate, Phys. Rev. Lett., 2005(95): 200401
    [26] H. Xiong, S. Liu, and M.-S. Zhan, Josepson Effect and Quantum Merging of Two Bose Superfluids, Phys. Rev. B., 2006(73): 224505
    [27] E. Sakellari, M. Leadbeater, N. J. Kylstra, et al., Josephson spectroscopy of a dilute Bose-Einstein condensate in a double-well potential, Phys. Rev. A, 2002(66): 033612
    [28] E. P. Gross, Nuovo Cimento, 1961(20): 454; E. P. Gross, J. Math. Phys., 1963(4): 195; L. P. Pitaevskii, Zh. Eksp. Teor. Fiz., 1961(40): 646 [Sov. Phys.-JETP, 1961(13): 451]
    [29] K. K. Likharev, Superconducting weak links, Rev. Mod. Phys., 1979(51): 101-159
    [30] J. C. Davis and R. E. Packard, Superfluid 3He Josephson weak links, Rev. Mod.Phys., 2002(74):741-773; F. S. Cataliotti, S. Burger, C. Fort, et al., Josephson Junction Arrays with Bose-Einstein Condensates, Science, 2001(293): 843-846
    [1] R. H. Brown and R. Q. Twiss, Correlation between Photons in two Coherent Beams of Light, Nature, 1956(177): 27-29
    [2] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge Univ. Press: Cambridge, 1995
    [3] M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge Univ. Press: Cambridge, 1997
    [4] G. Baym, The physics of Hanbury Brown-Twiss intensity interferometry: From stars to nuclear collisions, Acta Phys. Pol. B, 1998(29): 1839-1884
    [5] D. H. Boal, C. K. Gelbke, and B. K. Jennings, Intensity interferometry in subatomic physics, Rev. Mod. Phys., 1990(62): 553-602
    [6] M. Naraschewski and R. J. Glauber, Spatial coherence and density correlations oftrapped Bose gases, Phys. Rev. A, 1999(59): 4595-4607
    [7] E. A. Burt, R. W. Ghrist, C. J. Myatt, et al., Coherence, correlations, and collisions: What one learns about Bose-Einstein condensates from their decay, Phys. Rev. Lett.,1997(79): 337-340
    [8] M. Yasuda and F. Shimizu, Observation of two-atom correlation of an ultracold neon atomic beam, Phys. Rev. Lett., 1996(77): 3090-3093
    [9] E. Altman, E. Demler, and M. D. Lukin, Probing many-body states of ultra-cold atoms via noise correlations, Phys. Rev. A, 2004(70): 013603-013607
    [10] C. Lobo, I. Carusotto, S. Giorgini, et al., Pair Correlations of an Expanding Superfluid Fermi Gas, Phys. Rev. Lett., 2006(97): 100405
    [11] R. Bach and K. Rzazewski, Correlation functions of cold bosons in an optical lattice,Phys.Rev.A, 2004(70): 063622; C. Ates, Ch. Moseley, and K. Ziegler, Density fluctuations of a hard-core Bose gas in a one-dimensional lattice near the Mott insulating phase, Phys. Rev. A, 2005(71): 061601
    [12] N. M. Bogoliubov, C. Malyshev, R. K. Bullough, et al., Finite temperature correlations in the one dimensional trapped and untrapped Bose gases, Phys. Rev. A,2004(69): 023619
    [13] J. O. Andersen, U. Al Khawaja, and H. T. C. Stoof, Phase Fluctuations in Atomic Bose Gases, Phys. Rev. Lett., 2002(88): 070407; N. P. Proukakis, Spatial correlation functions of one-dimensional Bose gases at equilibrium, Phys. Rev. A, 2006(74):053617
    [14] S. J. Liu and H. W. Xiong, Density-density correlation and interference mechanism for initially independent Bose-Einstein condensates,Preprint cond-mat/0612133(2006)
    [15] L. Mathey, E. Altman and A. Vishwanath, Noise correlations in one-dimensional systems of ultra-cold fermions, Preprint cond-mat/0507108(2005)
    [16] M. Schellekens, R. Hoppeler, A. Perrin, et al., Hanbury Brown Twiss Effect for Ultracold Quantum Gases, Science, 2005(310): 648-651
    [17] S. F?lling, F. Gerbier, A. Widera, et al., Spatial quantum noise interferometry in expanding ultracold atom clouds, Nature, 2005(434): 481-484
    [18] I. B. Spielman, W. D. Phillips, and J. V. Porto, The Mott insulator transition in two dimensions, Preprint cond-mat/0606216(2006)
    [19] T. Rom, Th. Best, D. van Oosten, et al., Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice, Nature, 2006(444): 733-736
    [20] A. Ottl, S. Ritter, M. K?hl, et al., Correlations and Counting Statistics of an Atom Laser, Phys. Rev. Lett., 2005(95): 090404
    [21] M. Greiner, C. A. Regal, J. T. Stewart, et al., Probing Pair-Correlated Fermionic Atoms through Correlations in Atom Shot Noise, Phys. Rev. Lett., 2005(94): 110401
    [22] D. Hellweg, L. Cacciapuoti, M. Kottke, et al., Measurement of the Spatial Correlation Function of Phase Fluctuating Bose-Einstein Condensates, Phys. Rev. Lett., 2003(91): 010406
    [23] J. Esteve, J.-B. Trebbia, T. Schumm, et al., Observations of Density Fluctuations in an Elongated Bose Gas: Ideal Gas and Quasicondensate Regimes, Phys. Rev. Lett.,2006(96): 130403
    [24] H. W. Xiong, S. J. Liu, G. X. Huang, et al., Evolution of a coherent array of Bose-Einstein condensates in a magnetic trap, J. Phys. B: At. Mol. Opt. Phys.,2002(35): 4863-4873; S. J. Liu, H. W. Xiong, Z. J. Xu, et al., Interference patterns of Bose-condensed gasses in a two-dimensional optical lattice, J. Phys. B: At. Mol. Opt. Phys., 2003(36): 2083-2092; H. W. Xiong, S. J. Liu, G. X. Huang, et al., Phase diffusion of Bose–Einstein condensates in a one-dimensional optical lattice, J. Phys.B:At. Mol. Opt. Phys., 2003(36): 3315
    [25] J. H Müller, O Morsch, M Cristiani, et al., Hitting Bose–Einstein condensates with a comb: evolution of interference patterns inside a magnetic trap, J. Opt. B: Quantum Semiclass. Opt., 2003(5): S38
    [26] S. K. Adhikari, Expansion of a Bose-Einstein condensate formed on a joint harmonic and one-dimensional optical-lattice potential, J. Phys. B: At. Mol. Opt. Phys.,2003(36): 3951-3959
    [27] M.-O. Mewes, M. R. Andrews, N. J. van Druten, et al., Collective excitations of a Bose-Einstein condensate in a magnetic trap, Phys. Rev. Lett., 1996(77): 988-991
    [28] J. Kinast, S. L. Hemmer, M. E. Gehm, et al., Evidence for Superfluidity in a Resonantly Interacting Fermi Gas, Phys. Rev. Lett., 2004(92): 150402; M. Bartenstein, A. Altmeyer, S. Riedl, et al., Collective Excitations of a Degenerate Gas at the BEC-BCS Crossover, Phys. Rev. Lett., 2004(92): 203201
    [29] M. P. A. Fisher, P. B. Weichman, G. Grinstein, et al., Boson localization and the superfluid-insulator transition, Phys. Rev. B, 1989(40): 546-570; D. Jaksch, C. Bruder, J. I. Cirac, et al., Cold Bosonic Atoms in Optical Lattices, Phys. Rev. Lett.,1998(81): 3108-3111; M. Greiner, O. Mandel, T. Esslinger, et al., Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature,2002(415): 39-44
    [30] H. W. Xiong and S. J. Liu, Anomalous fermion bunching in density-density correlation, Preprint cond-mat/0701471(2007)
    [31] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, New York: McGraw-Hill Book Co., Inc., 1965
    [32] T. Jeltes, J. M. Mcnamara, W. Hogervorst, et al., Hanbury Brown Twiss effect for bosons versus fermions,Preprint cond-mat/0612278 (2006)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700