用户名: 密码: 验证码:
TiO_2溶胶—凝胶膜电极和贵金属纳米粒子多层膜的组装及分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Fabrication of TiO_2 Sol-Gel Film Electrodes and Noble Metal Nnaoparticle Multilayer Films and Their Analytical Applications
  • 作者:李艳彩
  • 论文级别:博士
  • 学科专业名称:分析化学
  • 学位年度:2007
  • 导师:孙长青
  • 学科代码:070302
  • 学位授予单位:吉林大学
  • 论文提交日期:2007-05-01
摘要
本论文主要研究TiO_2溶胶-凝胶膜修饰电极和贵金属纳米粒子多层膜的组装及分析应用。围绕这个主题,展开了以下两方面的研究工作:(1) TiO_2溶胶-凝胶化学修饰电极的研究。利用气相沉积的方法,将钛酸异丙酯水解,得到多孔的二氧化钛溶胶-凝胶薄膜,并成功地将聚(4-乙烯基吡啶)锇配合物(PVP-Os)、肌红蛋白(Mb)、钴取代的Keggin型钴钨杂多酸固载到玻碳电极表面,制备了一系列TiO_2溶胶-凝胶膜修饰电极。这些修饰电极分别对亚硝酸根、三氯乙酸、溴酸根、碘酸根及过氧化氢的还原有明显的电催化效应,可用作水溶液体系中亚硝酸根、三氯乙酸、溴酸根、碘酸根及过氧化氢测定的安培型电化学传感器。该类传感器具有响应速度快、灵敏度高、干扰小、重现性和稳定性良好的特点。(2)模板法组装有序的金/银纳米粒子多层膜。利用溶剂浇铸膜法将阳离子表面活性剂双十二烷基二甲基溴化铵的有机溶液浇铸到基底上形成有序的多层模板,在模板中分别嵌入了金纳米粒子和银纳米粒子,得到有序的金/银纳米粒子多层膜。用紫外-可见光谱、小角X射线衍射、循环伏安和原子力显微镜表征了所获得的金/银纳米粒子多层膜。并分别用罗丹明6G和4-巯基吡啶作探针分子深入地研究了金/银纳米粒子多层膜的表面增强拉曼光谱效应。
Due to the versatility of the sol-gel processes and its aqueous solution microenvironment, the sol-gel technique becomes an ideal method for film preparation. In 1990s, the sol-gel electrochemistry is progressing rapidly, and applied enough in devices、sensors and fuel batteries, and so on. At the present time, the development of new-type non-silica sol-gel materials for immobilizing electrochemical activity composition is a new trend.
     Because of possessing intriguing size-dependent properties, metal nanoparticles have unique electronic, optical, and catalytic properties, and become an ideal research objective in surface nano- engineering and functionalized nano- structures construction. They have wide application in microelectronic devices, sensor technology, and surface-enhanced Raman spectroscopy. The research of nanoparticles not only continues to focus on the nanoparticles themselves but also has recently expanded to exploring organized assemblies of nanoparticles on surfaces.
     In chapter 2 of this article, a novel nitrite sensor was developed based on the immobilization of a functional compound partially quaternized poly(4-vinylpyridine) complexed with [Os(bpy)2Cl]+/2+ (PVP-Os) in a porous TiO2 sol-gel matrix by a vapor deposition method. The preparation process simplified the traditional sol-gel process and prevented the cracking of conventional sol-gel derived glasses. The PVP-Os entrapped in titania sol-gel films retains its electrochemical activity and shows excellent electrocatalytic reduction for nitrite. The linear range for nitrite determination was from 5.0×10-6 mol/L to 9.5×10-4 mol/L with a detection limit of 4.0×10-7 mol/L. The uniform porous structure of the titania sol-gel matrixes results in a very small mass transport barrier and a fast response for nitrite. The promising sensor also exhibits good mechanical and chemical stability.
     In chapter 3, a new amperometric sensor was fabricated based on the immobilization of complex of Na2H6CoW11Co(H2O)O39·14H2O(CoW11Co)and poly(4-vinylpyridine) (PVP) in a TiO2 sol-gel matrix by vapor deposition method. The electrochemical behavior of the new amperometric sensor was studied in detail by cyclic voltammetry, and three reversible two-electron redox waves were observed in acidic aqueous solution in the potential range of -0.1 to -0.7 V. The sensor displays good electrocatalytic activity toward the reduction of bromate, iodate and hydrogen peroxide in acidic aqueous solution and the catalytic mechanisms were also discussed. The catalysis of the sensor toward bromate and iodate was systematically studied by amperometric method. The method gave a linear range from 2.0×10-5 to 4.4×10-3 mol/L and a detection limit of 5.0×10-6 mol/L for BrO3- and 2.0×10-6 to 2.8×10-4 mol/L and 8.0×10-7 mol/L for IO3-, respectively. In addition, the sensor has some distinct advantages over the traditional polyoxometalate sensor, such as simple preparation process, fast response and long-term stability.
     In chapter 4, by vapor deposition method, both myoglobin (Mb) and colloidal gold nanoparticles were entrapped in a titania sol-gel matrix on the surface of a glassy carbon electrode. This matrix provided a biocompatible microenvironment for retaining the native structure and activity of the entrapped Mb. The sensor showed a pair of well-defined and nearly reversible cyclic voltammetric peaks for the Mb Fe(III)/Fe(II) with a formal potential (E°') of -335 mV and the peak-to-peak separation was 61 mV vs. Ag/AgCl (3.0 mol/L KCl) at 100 mV s-1 in 0.1 mol/L pH 7.0 phosphate buffer solutions (PBS). The formal potential of the Mb Fe(III)/Fe(II) couple shifted linearly with pH with a slope of–51.3 mV/pH, indicating that an electron transfer accompanies single-proton transportation. The sensor displayed a good electrocatalytic response to the reduction of TCA and the catalytic mechanism was also discussed. The overpotential for the reduction of TCA was lowered by at least 0.8 V compared with that obtained at bare glassy carbon electrode. The linear range spans the concentration of TCA from 2.0×10-6 to 1.2×10-5 mol/L and the detection limit was 1.2×10-7 mol/L. This novel method is simple, convenient and versatile. Moreover, the biosensor had good long-term stability. In addition, the biosensor also possesses high sensitivity and good chemical and mechanical stability.
     In chapter 5, highly ordered gold nanoparticle multilayer films were achieved conveniently by using didodecyldimethylammonium bromide (DDAB) films as a template. The template was produced by casting DDAB chloroform solution onto the surface of an (3-aminopropyl)trimethoxysilane (APTMS)-modified indium tin oxide glass substrate and then evaporating the organic solvent. Gold nanoparticle multilayer films were prepared by soaking the template in 2.6 nm colloidal gold solution for 120 min. The well-ordered superlattice structure of the DDAB template and the gold nanoparticle multilayer films was identified by X-ray diffraction. The characterizations of the gold nanoparticle multilayer films by UV-Vis spectroscopy and atomic force microscopy and cyclic voltammerty were described in detail. The application of the as-prepared gold nanoparticle multilayer films in surface-enhanced Raman spectroscopy (SERS) was investigated by using Rhodamine 6G as a probe molecule. It was found that the colloidal gold nanoparticle multilayer films exhibit remarkable enhancement ability, and can be used as SERS substrates.
     In chapter 6, highly ordered silver nanoparticle multilayer films were achieved conveniently by using didodecyldimethylammonium bromide (DDAB) films as a template. The obtained thin films were characterized by UV-Vis spectroscopy, cyclic voltammerty and atomic force microscopy in detail. The well-ordered superlattice structure of the DDAB template and the silver nanoparticle multilayer films were also identified by X-ray diffraction. The application of the as-prepared silver nanoparticle multilayer films in SERS was investigated by using 4-mercaptopyridine as a probe molecule. It was found that the silver nanoparticle multilayer films exhibit remarkable enhancement ability, and can be used as SERS substrates.
引文
[1] (a) M. Ebelmen, Ann. Chimie Phys., 1846, 16, 129; (b) M. Ebelmen, C. R. Acad., Sci., 1847, 25, 854.
    [2] T. Graham, J. Chem. Soc., 1864, 17, 318.
    [3] R. E. Liesegang, Photogr. Archiv., 1896, 221.
    [4] R. Roy, “Aids in Hydrothermal Experimentation: II, Methods of Making Mixtures for Both "Dry" and "Wet" Phase Equilibrium Studies”, J. Am. Ceram. Soc., 1956, 39, 145-146.
    [5] J. Brinke, G. Scherer., “Sol-Gel Science.”, San Diego Academic Press, 1989.
    [6] O. Lev, M. Tsionsky, L. Rabinovich, V. Glezer, S. Sampath, I. Pankratov, J. Gun, “Organically modified sol-gel sensors”, Anal. Chem., 1995, 67, 22A-30A.
    [7] B. C. Dave, B. Dunn, J. S. Valentine, J. I. Zink, “Sol-gel encapsulation methods for biosensors”, Anal. Chem., 1994, 66(22), 1120A-1127A.
    [8] J. Livage, M. Henry, C. Sanchez, Progress in solid state chemistry, 1988, 18, 259.
    [9] J. Zarzycki, D. R. Ulrich, L. L. Hench, “Ultrastructure processing of ceramics glasses and composites”, Eds., New York: Wiley , 1984, 27.
    [10] G. W. Scherer, in Drying 92, A. S. Mujum dar, New York: Elsevier, 1992, 92.
    [11] G. W. Scherer, “Recent progress in drying of gels”, J. Non-Cryst. Solids, 1992, 147-148, 363-374.
    [12] R. D. Shoup, “Colloid and interface science”, New York: Academic, 1977, Vol. III, 63.
    [13] E. Degn Egeberg, J. Engell, Rev. Phys. App., 1989, 24, C4.
    [14] J. Phalippou, T. Woignier, M. Prassas, “Glasses from aerogels”, J. Mater. Sci., 1990, 25, 3111-3117.
    [15] J. Zarzycki, M. Prassas, J. Phalippou, “Synthesis of glasses from gels: the problem of monolithic gels”, J. Mater. Sci., 1982, 17, 3371-3379.
    [16] L. L. Hench, J. K. West, The sol-gel process, 1990, 90, 33.
    [17] M. D. Petit-Dominguez, H. Shen, W. R. Heineman, et al., “Electrochemical behavior of graphite electrodes modified by spin-coating with sol-gel-entrapped ionomers”, Anal. Chem., 1997, 69(4), 703-710.
    [18] P. B. Wagh, R. Begag, G. M. Pajonk, et al., “Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors”, Mater. Chem. Phys., 1999, 57(3), 214-218.
    [19] K. C. Chen, T. Tsuchiya, J. D. Mackenzie, “Sol gel processing of silica. I. The role of the starting compounds”, J Non-Cryst Solids, 1986, 81(1-2), 227-237.
    [20] Z. Jiang, Y. Zuo, “Synthesis of Porous Titania Microspheres for HPLC Packings by Polymerization-Induced Colloid Aggregation (PICA)”, Anal. Chem., 2001, 73, 686-688.
    [21] T. Akiyama, A. Miyazaki, M. Sutoh, I. Ichinose, T. Kunitake, S. Yamada, “Fabrication of porphyrin–titanium oxide–fullerene assemblies on an ITO electrode and their photocurrent responses”, Colloids Surf. A, 2000, 169, 137-141.
    [22] S. Castillo, M. Moran-Pineda, V. Molina, R. Gomezl, T. Lopezl, “Catalytic reduction of nitric oxide on Pt and Rh catalysts supported onalumina and titania synthesized by the sol-gel method”, Appl. Catal. B, 1998, 15, 203-209.
    [23] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weiss?rtel, J. Salbeck, H. Spreitzer, M. Gr?tzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies”, Nature, 1998, 395, 583-585.
    [24] S. Kobayashi, K. Hanabusa, M. Suzuki, M. Kimura, H. Shirai, Chem. Lett., 1999, 1077.
    [25] V. Glezer, O. Lev, “Sol-gel vanadium pentaoxide glucose biosensor”, J. Am. Chem. Soc., 1993, 115, 2533-2534.
    [26] Z. Liu, J. Deng, D. Li, “A new tyrosinase biosensor based on tailoring the porosity of Al2O3 sol–gel to co-immobilize tyrosinase and the mediator”, Anal. Chim. Acta, 2000, 407, 87-96.
    [27] Z. Liu, B. Liu, J. Kong, J. Deng, “Probing Trace Phenols Based on Mediator-Free Alumina Sol-Gel-Derived Tyrosinase Biosensor”, Anal. Chem., 2000, 72, 4707-4712.
    [28] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes”, J. Am. Chem. Soc., 1993, 115, 6382-6390.
    [29] T. Lopez, J. Hemandez-Ventura, R. Gomez, F. Tzompantzi, E. Sanchez, X. Bokhimi, A. Garcia, “Photodecomposition of 2,4-dinitroaniline on Li/TiO2 and Rb/TiO2 nanocrystallite sol–gel derived catalysts”, J. Mol.alumina and titania synthesized by the sol-gel method”, Appl. Catal. B, 1998, 15, 203-209.
    [23] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weiss?rtel, J. Salbeck, H. Spreitzer, M. Gr?tzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies”, Nature, 1998, 395, 583-585.
    [24] S. Kobayashi, K. Hanabusa, M. Suzuki, M. Kimura, H. Shirai, Chem. Lett., 1999, 1077.
    [25] V. Glezer, O. Lev, “Sol-gel vanadium pentaoxide glucose biosensor”, J. Am. Chem. Soc., 1993, 115, 2533-2534.
    [26] Z. Liu, J. Deng, D. Li, “A new tyrosinase biosensor based on tailoring the porosity of Al2O3 sol–gel to co-immobilize tyrosinase and the mediator”, Anal. Chim. Acta, 2000, 407, 87-96.
    [27] Z. Liu, B. Liu, J. Kong, J. Deng, “Probing Trace Phenols Based on Mediator-Free Alumina Sol-Gel-Derived Tyrosinase Biosensor”, Anal. Chem., 2000, 72, 4707-4712.
    [28] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes”, J. Am. Chem. Soc., 1993, 115, 6382-6390.
    [29] T. Lopez, J. Hemandez-Ventura, R. Gomez, F. Tzompantzi, E. Sanchez, X. Bokhimi, A. Garcia, “Photodecomposition of 2,4-dinitroaniline on Li/TiO2 and Rb/TiO2 nanocrystallite sol–gel derived catalysts”, J. Mol.platinum electrodes”, J. Am. Chem. Soc., 1978, 100, 7870-7876.
    [38] K. N. Kuo, P. R. Moses, J. R. Lenhard, D. C. Green, R. W. Murry, “Immobilization, electrochemistry and surface interaction of tetrathiafulvalene on chemically modified ruthenium and platinum oxide electrodes”, Anal. Chem., 1979, 51, 745-748.
    [39] M. S. Wrighton, R. G. Austin, A. B. Bocarsly, J. M. Bolts, O. Haas, K. D. Legg, L. Nadgo, M. C. Palazzotto, “A chemically derivatized platinum electrodes: persistent attachment of an electroactive ferrocene derivative”, J. Electroanal. Chem., 1978, 87, 429-433.
    [40] G. S. Calabrese, R. M. Buchanan, M. S. Wrighton, “Electrochemical behavior of a surface-confined naphthoquinone derivative and photoelectrochemical reduction of oxygen to hydrogen peroxide at derivatized electrodes”, J. Am. Chem. Soc., 1982, 104, 5786-5788.
    [41] D. C. Bookbinder, M. S. Wrighton, “Thermodynamically uphill reduction of a surface confined N, N’-dialkyl-4, 4’-bipyridinium on illuminated p-type silicon surfaces”, J. Am. Chem. Soc., 1980, 102, 5125-5130.
    [42] J. M. Bolts, M. S. Wrighton, “Chemically derivatized n-type semiconducting germanium photoelectrodes. Persistent attachment and photoelectrochemical activity of ferrocene derivatives”, J. Am. Chem. Soc., 1978, 100, 5257-5262.
    [43] M. S. Wrighton, “Surface functionalization of electrodes with molecular reagents”, Science, 1986, 231, 32-37.
    [44] G. Philipp, H. Schmidt, “New materials for contact lenses prepared from Si- and Ti- alkoxides by the sol-gel process”, J. Non-Cryst. Solids, 1984, 63,283-292.
    [45] D. Avnir, D. Levy, R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhances photostability of trapped Rhodamine 6G”, J. Phys. Chem., 1984, 88, 5956-5959.
    [46] M. Tsionsky, J. Gun, V. Glezer, O. Lev, “Sol-gel-derived ceramic-carbon composite electrodes: introduction and scope of applications”, Anal. Chem., 1994, 66, 1747-1753.
    [47] M. H. Huang, B. S. Dunn, J. I. Zink, “In situ luminescence probing of the chemical and structural changes during formation of dip-coated lamellar phase sodium dodecyl sulfate sol-gel thin films”, J. Am. Chem. Soc., 2000, 122, 3739-3745.
    [48] G. Gun, M. Tsionsky, O. Lev, “Voltammetric studies of composite ceramic carbon working electrodes”, Anal. Chim. Acta, 1994, 294, 261-270.
    [49] O. Dvorak, M. K. D. Armond, “Electrode modification by the sol-gel methods”, J. Phys. Chem., 1993, 97, 2646-2648.
    [50] P. Audebert, C. Demaille, C. Sanchez, “Electrochemical probing of the activity of glucose oxidase embedded sol-gel matrices”, Chem. Mater., 1993, 5, 911-913.
    [51] J. Li, S. N. Tan, H. Goh, “Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide”, Anal. Chim. Acta, 1996, 335, 137-145.
    [52] M. Opallo, J. Kukulka, “Electrochemical redox reaction in a silica sol-gel glass with embedded organic electrolyte”, Electrochem. Commun., 2000, 2, 394-398.
    [53] M. M. Collinson, “Solid-state electrogenerated chemiluminescence insol-gel derived monoliths”, Chem. Commun., 1999, 899-900.
    [54] K. Kimura, T. Sunagawa, S. Yajima, S. Miyake, M. Yokoyama, “Neutral carrier- type ion sensors based on sol-gel-derived membranes incorporating a bis(crown ether) derivative by covalent bonding”, Anal. Chem., 1998, 70, 4309-4313.
    [55] M. M. Collinson, C. G. Rausch, A. Voigt, “Electroactivity of redox probes encapsulated within sol-gel-derived silicate films”, Langmuir, 1997, 13, 7245-7251.
    [56] W. Y. Lee, K. S. Lee, T. H. Kim, M. C. Shin, J. K. Park, “Microfabricated conductometric urea biosensor based on sol-gel immobilized urease”, Electroanalysis, 2000, 12, 78-82.
    [57] M. M. Collinson, P. J. Zambrano, H. Wang, J. S. Taussig, “Diffusion coefficient of redox probes encapsulated within sol-gel derived silica monoliths measured with ultramicroelectrodes”, Langmuir, 1999, 15, 662-668.
    [58] J. A. Cox, K. S. Alber, M. E. Tess, T. E. Cummings, W. Gorski, “Voltammetry in the absence of a solution phase with solids prepared by a sol-gel process as the electrolytes: facilitation of an electrocatalytic anodic process in the presence of ammonia”, J. Electroanal. Chem., 1995, 396, 485- 490.
    [59] D. Avnir, “Organic chemistry within ceramic matrices: doped sol-gel materials”, Acc. Chem. Res., 1995, 28, 328-334.
    [60] J. Lin, C. W. Brown, “Sol-gel glass as a matrix for chemical and biochemical sensing”, Trends in Anal. Chem., 1997, 16, 200-211.
    [61] O. Lev, Z. Wu, S. Bharathi, V. Glezer, A. Modestov, J. Gun, L. Rabinovich, S. Sampath, “Sol-gel materials in electrochemistry”, Chem. Mater., 1997, 9, 2354-2375.
    [62] A. Walcarius, “Analytical applications of silica-modified electrodes - a comprehensive review”, Electroanalysis, 1998, 10, 1217-1235.
    [63] M. M. Collinson, “Analytical applications of organically modified silicates”, Microchim. Acta, 1998, 129, 149-165.
    [64] M. M. Collinson, “Sol-gel strategies for the preparation of selective materials for chemical analysis”, Critical Rev. in Anal. Chem., 1999, 29, 289-311.
    [65] J. Wang, “Sol-gel materials for electrochemical biosensors”, Anal. Chim. Acta, 1999, 399, 21-27.
    [66] M. M. Collinson, A. R. Howells, “Sol-gel and electrochemistry: research at the intersection”, Anal. Chem., 2000, 72, 702A-709A.
    [67] A. Walcarius, “Electroanalysis with pure, chemically modified, and sol-gel-derived silica-based materials”, Electroanalysis, 2001, 13, 701-718.
    [68] L. Rabinovich, O. Lev, “Sol-gel derived composite ceramic carbon electrodes”, Electroanalysis, 2001, 13, 265-275.
    [69] L. L. Hench, J. K. West, “The sol-gel process”, Chem. Rev., 1990, 90, 33-72.
    [70] C. J. Brinker, G. Scherer, “Sol-gel science, the physics and chemistry of sol-gel processing”, London: Academic Press, 1990.
    [71] M. E. Tess, J. A. Cox, “Humidity-independent solid-state amperometric sensor for carbon monoxide based on an electrolyte prepared by sol-gelchemistry”, Anal. Chem., 1998, 70, 187-190.
    [72] S. D. Holmstrom, J. A. Cox, “Solid-state voltammetric determination of gaseous hydrogen peroxide using nanostructured silica as the electrolyte”, Electroanalysis, 1998, 10, 597-601.
    [73] B. Barroso-Fernandez, M. T. Lee-Alvarez, C. J. Seliskar, W. R. Heineman, “Electrochemical behavior of methyl viologen at graphite electrodes modified with Nafion sol-gel composite”, Anal. Chim. Acta, 1998, 370, 221-230.
    [74] Z. Hu, A. F. Slaterbeck, C. J. Seliskar, T. H. Radgway, W. R. Heineman, “Tailoring perfluorosulfonated ionomer-entrapped sol-gel-derived silica nanocomposite for spectroelectrochemical sensing of Re(DMPE)3+”, Langmuir, 1999, 15, 767-773.
    [75] C. C. Hsueh, M. M. Collinson, “Perm-selectivities and ion-change properties of organically modified sol-gel electrodes”, J. Electroanal. Chem., 1997, 420, 243-249.
    [76] H. Wei, M. M. Collinson, “Functional- group effects on the ion-exchange properties of organically modified silicates”, Anal. Chim. Acta, 1999, 397, 113-121.
    [77] A. N. Khramov, M. M. Collinson, “Sol-gel preparation of macroporous silica films by templating with polystyrene microspheres”, Chem. Commun., 2001, 767-768.
    [78] R. Makote, M. M. Collinson, “Template recognition in inorganic-organic hybrid films prepared by the sol-gel process”, Chem. Mater., 1998, 10, 2440-2445.
    [79] R. Makote, M. M. Collinson, “Dopamine recognition in templated silicate films”, Chem. Commun., 1998, 425-426.
    [80] Y. Guo, A. R. Guadalupe, O. Resto, L. F. Fonseca, S. Z. Weisz, “Chemically derived Prussian blue sol-gel composite thin films”, Chem. Mater., 1999, 11, 135-140.
    [81] J. Wang, M. M. Collinson, “Electrochemical characterization of inorganic/organic hybrid films prepared from ferrocene modified silanes”, J. Electroanal. Chem., 1998, 455, 127-137.
    [82] R. Makote, M. M. Collinson, “Organically modified silicate films for stable pH sensors”, Anal. Chim. Acta, 1999, 394, 195-200.
    [83] S. Yang, Y. Lu, P. Atanossov, E. Wilkins, X. Long, “Microfabricated glucose biosensor with glucose oxidase entrapped in sol-gel matrix”, Talanta, 1998, 47, 735-743.
    [84] U. Kunzelmann, H. Bottcher, “Biosensor properties of glucose oxidase immobilized within SiO2 gels”, Sens. Actuators B, 1997, 38-39, 222-228.
    [85] S. L. Chut, J. Li, S. N. Tan, “Reagentless amperometric determination of hydrogen peroxide by silica sol-gel modified biosensor”, Analyst, 1997, 122, 1431-1434.
    [86] T. M. Park, E. I. Iwuoha, M. R. Smyth, R. Freaney, A. J. Mcshane, “Sol-gel based amperometric biosensor incorporating an osmium redox polymer as mediator for detection of L-lactate”, Talanta, 1997, 44, 973-978.
    [87] T. M. Park, E. I. Iwuoha, M. R. Smyth, “Development of a sol-gel enzyme inhibition-based amperometric biosensor for cyanide”, Electroanalysis, 1997, 9, 1120-1123.
    [88] M. C. Roco, “Nanoparticles and nanotechnology research”, J. Nanoparticle Research, 1999, 1, 1-6.
    [89] J. Turkevich, P. C. Stevenson, J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold”, Discuss, Faraday Soc., 1951, 11, 55-75.
    [90] C. Yee, M. Scotti, A. Ulman, H. White, M. Rafailovich, J. Sokolov, “One-phase synthesis of thiol-functionalized platinum nanoparticles”, Langmuir, 1999, 15, 4314-4316.
    [91] T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, “Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition”, J. Phys. Chem. B., 1999, 103, 3818-3827.
    [92] T. Cassagneau, J. H. Fendler, “Preparation and layer-by-layer self-assembly of silver nanoparticles capped by graphite oxide nanosheets”, J. Phys. Chem. B., 1999, 103, 1789-1793.
    [93] C. D. Keating, K. M. Kovaleski, M. J. Natan, “Protein: colloid conjugates for surface enhanced Raman scattering: stability and control of protein orientation”, J. Phys. Chem. B., 1998, 102, 9404-9413.
    [94] R. M. Bright, D. G. Walter, M. D. Musick, M. A. Jackson, K. J. Allison, M. J. Natan, “Chemical and electrochemical Ag deposition onto preformed Au colloid monolayers: approaches to uniformly-sized surface features with Ag-like optical properties”, Langmuir, 1996, 12, 810-817.
    [95] K. R. Brown, M. J. Natan, “Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces”, Langmuir, 1998, 14, 726-728.
    [96] A. Eychmuller, “Structure and photophysics of semiconductornanocrystals”, J. Phys. Chem. B., 2000, 104, 6514-6528.
    [97] X. K. Zhao, Y. X. Yuan, J. H. Fendler, Chem. Commun., 1990, 1248.
    [98] X. K. Zhao, S. Q. Xu, J. H. Fendler, “Ultrasmall magnetic particles in Langmuir-Blodgett films”, J. Phys. Chem., 1990, 94, 2573-2581.
    [99] X. K. Zhao, J. H. Fendler, “Ultrasmall magnetic particles in Langmuir-Blodgett films”, J. Phys. Chem., 1991, 95, 3716.
    [100] X. K. Zhao, J. H. Fendler, “Semiconductor particles formed at monolayer surfaces”, Langmuir, 1991, 7, 520-524.
    [101] N. A. Kotov, F. C. Meldrum, C. Wu, J. H. Fendler, “Monoparticulate Layer and Langmuir-Blodgett-Type Multiparticulate Layers of Size-Quantized Cadmium Sulfide Clusters: A Colloid-Chemical Approach to Superlattice Construction”, J. Phys. Chem., 1994, 98, 2735-2738.
    [102] F. C. Meldrum, N. A. Kotov, J. H. Fendler, “Preparation of Particulate Mono- and Multilayers from Surfactant-Stabilized, Nanosized Magnetite Crystallites”, J. Phys. Chem., 1994, 98, 4506-4510.
    [103] M. Sastry, K. S. Mayya, V. Patil, “Facile Surface Modification of Colloidal Particles Using Bilayer Surfactant Assemblies: A New Strategy for Electrostatic Complexation in Langmuir-Blodgett Films”, Langmuir, 1998, 14, 5921-5928.
    [104] M. Sastry, M. Rao, K. N. Ganesh, “Electrostatic Assembly of Nanoparticles and Biomacromolecules”, Acc. Chem. Res., 2002, 35, 847-855.
    [105] J. H. Fendler, F. C. Meldrum, “The Colloid Chemical Approach to Nanostructured Materials”, Adv. Mater., 1995, 7, 607-632.
    [106] R. K. IIer, “Multilayers of colloidal particles”, J. Colloid Interface Sci., 1966, 21, 569-594.
    [107] G. Decher, J. D. Hong, Macromol. Chem., Macromol. Symp., 1991, 46, 321.
    [108] G. Decher, J. D. Hong, Ber. Bunsenges. Phys. Chem., 1991, 95, 1430.
    [109] G. Decher, J. D. Hong, J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces”, Thin Solid Films, 1992, 210/211, 831-835.
    [110] G. Decher, J. Schmitt, Progr. Colloid Polym. Sci., 1992, 89, 160.
    [111] P. Bertrand, A. Jonas, A. Laschewsky, R. Legras, “Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties”, Macromol. Rapid Commun., 2000, 21, 319-348.
    [112] P. T. Hammond, “Recent explorations in electrostatic multilayer thin film assembly”, Curr. Opin. Colloid Interface Sci., 2000, 4, 430-442.
    [113] G. Decher, “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites”, Science, 1997, 277, 1232-1237.
    [114] M. D. Musick, C. D. Keating, M. H. Keefe, M. J. Natan, “Stepwise Construction of Conductive Au Colloid Multilayers from Solution”, Chem. Mater., 1997, 9, 1499-1501.
    [115] M. Brust, D. Bethell, C. J. Kiely, D. J. Schiffrin, “Self-Assembled Gold Nanoparticle Thin Films with Nonmetallic Optical and Electronic Properties”, Langmuir, 1998, 14, 5425-5429.
    [116] T. Baum, D. Bethell, M. Brust, D. J. Schiffrin, “Electrochemical Charge Injection into Immobilized Nanosized Gold Particle Ensembles: PotentialModulated Transmission and Reflectance Spectroscopy”, Langmuir, 1999, 15, 866-871.
    [117] S. Joly, R. Kane, L. Radzilowski, T. Wang, A. Wu, R. E. Cohen, E. L. Thomas, M. F. Rubner, “Multilayer Nanoreactors for Metallic and Semiconducting Particles”, Langmuir, 2000, 16, 1354-1359.
    [118] T. C. Wang, M. F. Rubner, R. E. Cohen, “Polyelectrolyte Multilayer Nanoreactors for Preparing Silver Nanoparticle Composites: Controlling Metal Concentration and Nanoparticle Size”, Langmuir, 2002, 18, 3370-3375.
    [119] J. Dai, M. L.Bruening, “Catalytic Nanoparticles Formed by Reduction of Metal Ions in Multilayered Polyelectrolyte Films”, Nano Lett., 2002, 2, 497-501.
    [120] S. Dante, Z. Hou, S. Risbud, P. Stroeve, “Nucleation of Iron Oxy-Hydroxide Nanoparticles by Layer-by-Layer Polyionic Assemblies”, Langmuir, 1999, 15, 2176-2182.
    [121] L. Zhang, A. K. Dutta, G. Jarero, P. Stroeve, “Nucleation and Growth of Cobalt Hydroxide Crystallites in Organized Polymeric Multilayers”, Langmuir, 2000, 16, 7095-7100.
    [122] A. K. Dutta, G. Jarero, L. Zhang, P. Stroeve, “In-Situ Nucleation and Growth of -FeOOH Nanocrystallites in Polymeric Supramolecular Assemblies”, Chem. Mater., 2000, 12, 176-181.
    [123] A. K. Dutta, T. Ho, L. Zhang, P. Stroeve, “Nucleation and Growth of Lead Sulfide Nano- and Microcrystallites in Supramolecular Polymer Assemblies”, Chem. Mater., 2000, 12, 1042-1048.
    [124] A. N. Shipway , I. Willner, “Nanoparticles as structural and functional units in surface-confined architectures”, Chem. Commun., 2001, 2035-2045.
    [125] A. N. Shipway, M. Lahav, R. Blonder, I. Willner, “Bis-Bipyridinium Cyclophane Receptor-Au Nanoparticle Superstructures for Electrochemical Sensing Applications”, Chem. Mater., 1999, 11, 13-15.
    [126] M. Lahav, R. Gabai, A. N. Shipway, I. Willner, “Au-colloid–‘molecular square’ superstructures: novel electrochemical sensing interfaces”, Chem. Commun., 1999, 1937-1938.
    [127] P. Mulvaney, “Surface Plasmon Spectroscopy of Nanosized Metal Particles”, Langmuir, 1996, 12, 788-800.
    [128] R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates”, Science, 1995, 267, 1629-1632.
    [129] L. A. Lyon, M. D. Musick, M. J. Natan, “Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing”, Anal. Chem., 1998, 70, 5177-5183.
    [130] M. Fleischmann, P. J. Hendra, A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode”, Chem. Phys. Lett., 1974, 26, 163-166.
    [131] D. L. Jeanmaire, R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode”, J. Electroanal. Chem., 1977, 84, 1-20.
    [132] M. G. Albrecht, J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode”, J. Am. Chem. Soc., 1977, 99, 5215-5217.
    [133] R. P. Vau Duyne, “Laser exciation of raman scattering from adsorbed molecules electrode surfaces, in Chemical and Biochemical Applications of Lasers(ed. Moore, C. B.)”, New York: Academic Press, 1979, 4, 101-105.
    [134] M. Moskovits, “Surface-enhanced spectroscopy”, Rev. Mod. Phys., 1985, 57, 783-826.
    [135] T. E. Furtak, G. Trott and B. H. Loo, “Enhanced light scattering from the metal/solution interface: Chemical origins”, Surf. Sci., 1981, 101, 374-380.
    [136] X. Jiang, A. Campion, “Chemical effects in surface-enhanced raman scattering: pyridine chemisorbed on silver adatoms on Rh (100)”, Chem. Phys. Lett., 1987, 140, 95-100.
    [137] M. Udagawa, C. Chou, J. Hemminger, S. Ushioda, “Raman scattering cross section of adsorbed pyridine molecules on a smooth silver surface”, Phys. Rev. B, 1981, 23, 6843-6846.
    [138] G. Chumanov, K. Sokolov, B. W. Gregory, T. M. Cotton, “Colloidal Metal Films as a Substrate for Surface-Enhanced Spectroscopy”, J. Phys. Chem., 1995, 99, 9466-9471.
    [139] M. D. Musick, D. J. Pe?a, S. L. Botsko, T. M. McEvoy, J. N. Richardson, M. J. Natan, “Electrochemical Properties of Colloidal Au-Based Surfaces: Multilayer Assemblies and Seeded Colloid Films”, Langmuir, 1999, 15, 844-850.
    [140] E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire”, Nature,1998, 391, 775-778.
    [141] M. Lahav, T. Gabriel, A. N. Shipway, I. Willner, “Assembly of a Zn(II)-Porphyrin-Bipyridinium Dyad and Au-Nanoparticle Superstructures on Conductive Surfaces”, J. Am. Chem. Soc., 1999, 121, 258-259.
    [142] J. H. Fendler, “Membrane Mimetic Chemistry”, New York: Uilay, 1982.
    [143] R. A. Hann, “Molecular structure and monolayer properties”, New York: Langmuir-Blodgett films. ed. G. Roberts. Plenum, 1990.
    [144] J. N. Israelachvili, “Intermolecular and surface forces”, London: Academic Press, 1985.
    [145] S. De, V. K. Aswal, P. S. Goyal, et al., “Role of Spacer Chain Length in Dimeric Micellar Organization. Small Angle Neutron Scateringand Fluorescence Studies”, J Phys. Chem., 1996, 100(8), 11664-11671.
    [146] (a) J. H. Fendler, “Membrane Mimetic Chemistry”, New York: Uilay, 1982. (b) P. C. Hiemenz, “Principles of colloid and surface chemistry”, New York: Marcel Dekker, 1986.
    [147] N. Nakashima, R. Ando, T. Kunitake, Chem. Lett., 1983, 1577-1580.
    [148] Y. Okahata, A. Shimizu, “Preparation of bilayer-intercalated clay films and permeation control responding to temperature, electric field, and ambient pH changes”, Langmuir, 1989, 5, 954-959.
    [149] Y. Okahata, G. Enna, K. Taguchi, T. Seku, “Electrochemical permeability control through a redox bilayer film”, J. Am. Chem. Soc., 1985, 107, 5300-5301.
    [150] Y. Okahata, H. Ebato, “Absorption behaviors of surfactant molecules on a lipid-coated quartz-crystal microbalance. An alternative to eye-irritanttests”, Anal. Chem., 1991, 63, 203-207.
    [151] J. F. Rusling, H. Zhang, “Multilayer films of cationic surfactants on electrodes. Control of charge transport by phase”, Langmuir, 1991, 7, 1791-1796.
    [152] N. Hu, J. F. Rusling, “Surfactant-intercalated clay films for electrochemical catalysis. Reduction of trichloroacetic acid”, Anal. Chem., 1991, 63, 2163-2168.
    [153] J. F. Rusling, “Liquid crystal surfactant films for electrochemical catalysis”, Microporous Materials, 1994, 3, 1-16.
    [154] N. Nakashima, K. Masuyama, M. Mochide, M. Kunitake, O. Manabe, “Regulation of an electron transfer reaction of a flavin incorporated into synthetic lipid films on electrodes based on phase transition of molecular bilayers”, J. Electroanal. Chem., 1991, 319, 355-359.
    [155] N. Nakashima, S. Wake, T. Nishino, M. Kunitake, O. Manabe, “Phase-transition dependent electron transfer of electrodes coated with multi-bilayer films of a ferrocene-carrying synthetic lipid characterized by cyclic voltammetry and chronocoulometry”, J. Electroanal. Chem., 1991, 333, 345-351.
    [156] J. F. Rusling, A-E. F. Nassar, “Enhanced electron transfer for myoglobin in surfactant films on electrodes”, J. Am. Chem. Soc., 1993, 115, 11891-11897.
    [157] A-E. F. Nassar, W. S. Willis, J. F. Rusling, “Electron Transfer from Electrodes to Myoglobin: Facilitated in Surfactant Films and Blocked by Adsorbed Biomacromolecules”, Anal. Chem., 1995, 67, 2386-2392.
    [158] Q. Huang, Z. Lu, J. F. Rusling, “Composite Films of Surfactants, Nafion, and Proteins with Electrochemical and Enzyme Activity”, Langmuir, 1996, 12, 5472-5480.
    [159] A-E. F. Nassar, J. M. Bobbitt, J. O. Stuart, J. F. Rusting, “Catalytic Reduction of Organohalide Pollutants by Myoglobin in a Biomembrane-like Surfactant Film”, J. Am. Chem. Soc., 1995, 117, 10986-10993.
    [160] P. Bianco, J. Haladjian, “Electrochemistry of cytochrome c3 at a lipid-modified graphite electrode”, J. Electroanal. Chem., 1994, 367, 79-84.
    [161] P. Bianco, J. Haladjian, “Control of the electron transfer reactions between c-type cytochromes and lipid-modified electrodes”, Electrochim. Acta, 1994, 39, 911-916.
    [162] J. Hanzlik, P. Bianco, J. Haladjian, “Voltammetric behavior of positively charged species at a pyrolytic graphite electrode modified with lauric acid”, J. Electroanal. Chem., 1995, 380, 287-290.
    [163] Z. G. Zhao, G. Tollin, Photochem. Photobiol., 1991, 54, 113.
    [164] Z. Salamon, G. Tollin, “Reduction of cytochrome c at a lipid bilayer modified electrode”, BioelectrochemBioenerg., 1991, 25, 447-454.
    [165] Z. Salamon, G. Tollin, “Interfacial electrochemistry of cytochrome c at a lipid bilayer modified electrode: Effect of incorporation of negative charges into the bilayer on cyclic voltammetric parameters”, BioelectrochemBioenerg., 1991, 26, 321-334.
    [166] Z. Salamon, G. Tollin, “Cyclic voltammetric behavior of [2Fe-2S] ferredoxins at a lipid bilayer modified electrode”, BioelectrochemBioenerg., 1992, 27, 381-391.
    [167] T. Oda, T. Akaike, K. Sato, A. Ishimatsu, S. Takeshita, T. Muramatsu and H. Maeda, “Hydroxyl radical generation by red tide algae”, ArchivesBiochem. Biophys., 1992, 294, 38-43.
    [168] J. Yang, N. Hu, “Direct electron transfer for hemoglobin in biomembrane-like dimyristoyl phosphatidylcholine films on pyrolytic graphite electrodes”, Bioelectrochem.Bioenerg., 1999, 48, 117-127.
    [169] I. Ichinose, T. Asai, S. Yoshimura, N. Kimizuka, T. Kunitake, Chem. Lett., 1994, 1837.
    [170] Y. Fu, T. Zhang, C. Sun, “Multilayer films of cationic surfactants incorporating polyoxometalate on electrodes”, J. Solid State Electrochem., 2002, 7, 25-29.
    [171] X. L. Wang, Y. H. Wang, C. W. Hu, E. B. Wang, “Fabrication of photoluminescent multibilayer composite films consisting of a rare-earth-containing polyoxometalate Na9[EuW10O36] and dimethyldioctadecylammonium chloride”, Mater. Lett., 2002, 56, 305-311.
    [172] J. F. Rusling, C. N. Shi, D. K. Gosser, S. S. Shukla, “Electrocatalytic reactions in organized assemblies: Part I. Reduction of 4-bromobiphenyl in cationic and non-ionic micelles”, J. Electroanal. Chem., 1988, 240, 201-216.
    [1] T. R. Camp, “Water and Its Impurities”, New York: Reinhold Publishing Corp., 1963, 94.
    [2] D. E. Metzler, “Biochemistry: The Chemical Reactions of Living Cells”, New York: Academic Press, 1977, 980.
    [3] N. Sp?taru, T. N. Rao, D. A. Tryk, A. Fujishima, J. Electrochem. Soc., 2001, 148, 112.
    [4] A. Alonso, B. Etxaniz, M. D. Martinez, Food Addit. Contam., 1992, 9, 111.
    [5] M. Jimidar, C. Hartmann, N. Cousement, D. L. Massart, “Determination of nitrate and nitrite in vegetables by capillary electrophoresis with indirect detection”, J. Chromatogr. A, 1995, 706, 479-492.
    [6] A. Termin, M. Hoffmann, R. J. Bing, “A simplified method for the determination of nitric oxide in biological solutions”, Life Sci., 1992, 51, 1621-1629.
    [7] T. P. Misko, R. J. Schilling, D. Salvemini, W. M. Moore, M. G. Currie, Anal. Biochem., 1993, 214, 11.
    [8] J. P. Griess, B. Deutsch, Chem. Ges., 1879, 12, 426.
    [9] R. Iyengar, D. J. Stuehr, M. A. Marletta, Proc. Natl. Acad. Sci. USA, 1987, 84, 6369.
    [10] D. A. Wagner, V. R. Young, S. R. Tannenbaum, Proc. Natl. Acad. Sci. USA, 1983, 4518.
    [11] L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, S. R. Tannenbaum, Anal. Biochem., 1982, 126, 131.
    [12] V. D. Matteo, E. Esposito, “Methods for the determination of nitrite by high-performance liquid chromatography with electrochemical detection”, J.Chromatogr. A, 1997, 789, 213-219.
    [13] R. Rajagopalan, A. Aoki, A. Heller, “Effect of Quaternization of the Glucose Oxidase "Wiring" Redox Polymer on the Maximum Current Densities of Glucose Electrodes”, J. Phys. Chem., 1996, 100, 3719-3727.
    [14] R. J. Forster, J. G. Vos, “Synthesis, characterization, and properties of a series of osmium- and ruthenium-containing metallopolymers”, Macromolecules, 1990, 23, 4372-4377.
    [15] C. P. Andrienx, C. Blocman, J. M. Dumas-Bouchiat, F. M’Halla, J. M. Saveant, “Homogeneous redox catalysis of electrochemical reactions: Part V. Cyclic voltammetry”, J. Electroanal. Chem., 1980, 113, 19-40.
    [16] J. Q. Sun, Y. P. Sun, S. J. Cong, C. Q. Sun, Y. Wang, J. C. Shen, “Layer-by-layer assemblies of polycation bearing Os complex with electroactive and electroinactive polyanions and their electrocatalytic reduction of nitrite”, Macromol. Chem. Phys., 1999, 200, 840-844.
    [1] M. T. Pope, A. Muller, “Polyoxometalate chemistry; an old field with new dimension in several disciplines”, Angrew. Chem. Int. Ed. Engl., 1991, 30, 34-38.
    [2] L. Ouahab, “Organic/Inorganic supramolecular assemblies and synergy between physical properties”, Chem. Mater., 1997, 9, 1909-1926.
    [3] P. J. Kulesza, B. Karwowska, B. G.rzybowska, A. Wieckowski, “Solid-state electrochemical generation and characterization of catalytic Pt microcenters within single crystal of heteropoly phospho-12-tungstic acid”, Electrochim. Acta, 1998, 44, 1295-1300.
    [4] F. Caruso, D. G. Kurth, D. Vollmer, M. J. Koop, A. Muller, “Ultrathin molybdenum polyoxometalate-polyelectrolyte multilayer films”, Langmuir, 1998, 14, 3462-3465.
    [5] C. L. Hill, R. B. Bown, “Sustained epoxidation of olefins by oxygen donors catalyzed by transition metal-substituted polyoxometalates, oxidatively resistant inorganic analogs of metalloporphyrins”, J. Am. Chem. Soc., 1986, 108, 536-538.
    [6] A. Watzenberger, G. Emig, D. T. Lynch, “Oxydehydrogenation of isobutyric acid with heteropolyacid catalysts: experimental observations of deactivation”, J. Catal., 1990, 124, 247-258.
    [7] M. T. Pope, “Heteropoly and Isopoly Oxometalates”, Berlin: Springer, 1983, 36.
    [8] M. Sadakane and E. Steckhan, “Electrochemical properties of polyoxometalates as electrocatalysts”, Chem. Rev., 1998, 98, 219-237.
    [9] B. Keita, L. Nadjo, “Surface modifications with heteropoly andisopolyoxometalates ? part I. qualitative aspects of the activation of electrode surfaces towards the hydrogen evolution reaction”, J. Electroanal. Chem., 1988, 243, 87-103.
    [10] B. Keita, L. Nadjo, J. F. Muller, “Activation of electrode surfaces by isopolytungstates”, J. Electroanal. Chem., 1987, 223, 287-294.
    [11] S. Dong, B. Wang, “Electrochemical study of isopoly-and heteropolyoxometallates films modified microelectrodes ? I. Pretreatment and modification of the Mo8O264- modified carbon fiber microelectrodes”, Electrochim. Acta, 1992, 37, 11-16.
    [12] C. Rong, F. C. Anson, “Unusually strong adsorption of highly charged heteropolytungstate anions on mercury electrode surfaces”, Anal. Chem., 1994, 66, 3124-3130.
    [13] B. Wang, S. Dong, “Electrochemical study of isopoly and heteropolyoxometallate film modified microelectrodes ? part 5. Preparation and electrochemical behavior of a 2:18- molybdodiphosphate anion monolayer modified electrode”, J. Electroanal. Chem., 1992, 328, 245-247.
    [14] J. Liu, L. Cheng, B. Liu, S. Dong, “Covalent modification of a glassy carbon surface by 4-Aminobenzoic acid and its application in fabrication of a polyoxometalates-consisting monolayer and multilayer films”, Langmuir, 2000, 16, 7471-7476.
    [15] S. Dong, M. Liu, “Electrochemical and electrocatalytic properties of iron (III) – substituted dawson – type tungstophosphate anion”, J. Electroanal. Chem., 1994, 372, 95-100.
    [16] Nomiya k, et al., “An improved preparation and characterization of tetrahedral CoII and CoIII complexs with dodecatungstate as the tetrahedralligand”, Bull Chem. Soc. Jpn, 1983, 56, 2272-2275.
    [17] G. Y. Huo, “Synthesis and characterization of tungstocobalt heteropoly salts having keggin structure”, Chinese Journal of He bei University, 1996, 16(1), 42-47.
    [18] U. P. Strass, B. L. Williams, “The transition form typical polyelectrolyte to Polysoap. III. Light scattering and viscosity studies of poly-4-vinylpyridine derivatives”, J. Phys. Chem., 1961, 65, 1390-1395.
    [19] M. P. Pope, G. M. Varga, “Heteropoly blues. I. reduction stoichiometries and reduction potentials of some 12-tungstates”, Inorg. Chem., 1966, 5, 1249-1254.
    [20] M. Clemente-leon, B. Agricole, C. Mingotand, C. J. Gomez-Garcia, E. Corronado and P. Delhaes, “Toward new organic/inorganic superlattices: Keggin polyoxometalates in langmuir and langmuir-blodgett films”, Langmuir, 1997, 13, 2340-2347.
    [21] P. Gomez-Romero, M. Lira-Cantu, “Hybrid organic- inorganic electrodes: the molecular material formed between polypyrrole and the phosphomolybdate anion”, Adv. Mater., 1997, 9, 144-147.
    [22] E. T. Urbansky, M. L. Magnuson, “Analyzing drinking water for disinfection byproducts”, Anal. Chem., 2002, 74, 260A-267A.
    [23] M. J. Kirisits, V. L. Snoeyink, H. Znan, J. C. Kruithof, “The reduction of bromate by granular activated carbon”, Wat. Res., 2000, 34, 4250-4260.
    [24] M. J. Kirisits, V. L. Snoeyink, H. Znan, J. C. Chee-Sanford, L. Raskin, J. C. Brown, “Water quality factors affecting bromate reduction in biologically active carbon filters”, Wat. Res., 2001, 35, 891-900.
    [25] E. S. Forzani, G. A. Rivas, V. M. Solis, “Amperometric determination ofdopamine on an enzymatically modified carbon paste electrode”, J. Electroanal. Chem., 1995, 382, 33-40.
    [26] J. Kulys, L. Gorton, E. Domingues, J. Emneus, H. Jarskog, “Electrochemical characterization of carbon pastes modified with proteins and polycations”, J. Electroanal. Chem., 1994, 372, 49-55.
    [27] J. Kulys, L. Wang, A. Maksimoviene, -Lactate, “Oxidase electrode based on methylene green and carbon paste”, Anal. Chim. Acta, 1993, 274, 53-58.
    [1] J. E. Packer, T. F. Slater, R. L. Willson, “Reactions of carbon tetrachloride-related peroxy free radical (CCl3O2) with amino acids: Pulse radiolysis evidence”, Life Sci., 1978, 23, 2617-2620.
    [2] W. F. Coleman, R. D. Lingg, R. G. Melton, F. C. Kopfler, “The occurrence of volatile organics in five drinking water supplies using gas chromatography/ mass spectroscopy, in: L. H. Keith (Ed.), In Identification and Analysis of Organic Pollutants of Water Ann Arbon Science Publ”, Ann. Arbor. MI., 1976, 305-327.
    [3] W. Dekant, R. Hang, D. Henschler, “Absorption, elimination and metabolism of tetrachloroethylene, Naunym-Schmiedeberg’s”, Naunym-Schmiedeberg’s Arch. Pharmacol (Suppl.), 1985, 24, 329.
    [4] P. C. Uden, J. W. Miller, “Chlorinated acids and chloral in drinking water”, J. Am. Water works Assoc., 1983, 75, 524-527.
    [5] T. A. Piggot, R. W. Norris, “The treatment of tattoos with trichloroacetic acid: Experience with 670 patients”, Br. J. Plast. Surg., 1988, 41, 112-117.
    [6] H. K. Bhat, M. F. Kanz, G. A. Campbell, G. A. S. Ansari, “Ninety day toxicity study of chloroacetic acids in rat”, Fund. Appl. Toxicol., 1991, 17, 240-253.
    [7] J. W. Miller, P. C. Uden, R. M. Rarnes, “Determination of trichloroacetic acid at the part-per-Billion level in water by precolumn trap enrichment gas chromatography with microwave plasma emission detection”, Anal. Chem., 1982, 54, 485-488.
    [8] R. F. Christman, D. L. Norwood, D. S. Millington, J. D. Johnson, A. A. Stevens, “Identity and yields of major halogenated products of aquatic fulvic acid chlorination”, Environ. Sci. Technol., 1983, 17, 625-628.
    [9] H. Itoh, “Determination of trichloroacetate in human serum and urine by ion chromatography”, Analyst, 1989, 114, 1637-1640.
    [10] V. Senft, “Simple determination of trichloroacetic acid in urine using head space gas chromatography: a suitable method for monitoring exposure to trichloroethylene”, J. Chromatogr., 1985, 337, 126-130.
    [11] H. Carrero, J. F. Rusling, “Analysis of haloacetic acid mixtures by HPLC using an electrochemical detector coated with a surfactant-nafion film”, Talanta, 1999, 48, 711-718.
    [12] Y. L. Zhou, N. F. Hu, Y. H. Zeng, J. F. Rusling, “Heme Protein-Clay Films: Direct Electrochemistry and Electrochemical Catalysis”, Langmuir, 2002, 18, 211-219.
    [13] H. Y. Ma, N. F. Hu, J. F. Rusling, “Electroactive Myoglobin Films Grown Layer-by-Layer with Poly(styrenesulfonate) on Pyrolytic Graphite Electrodes”, Langmuir, 2000, 16, 4969-4975.
    [14] H. Sun, N. F. Hu, “Voltammetric studies of hemoglobin-coated polystyrene latex bead films on pyrolytic graphite electrodes”, Biophysical Chemistry, 2004, 110, 297-308.
    [15] L. Shen, R. Huang, N. F. Hu, “Myoglobin in polyacrylamide hydrogel films: direct electrochemistry and electrochemical catalysis”, Talanta, 2002, 56, 1131-1139.
    [16] Q. L. Wang, G. X. Lu, B. J. Yang, “Myoglobin/Sol-Gel Film Modified Electrode: Direct Electrochemistry and Electrochemical Catalysis”, Langmuir, 2004, 20, 1342-1347.
    [17] L. Stryer, Biochemistry, 3rd ed., New York: Freeman, 1988.
    [18] S. I. Rao, A. Wilks, M. Hamberg, P. R. Ortiz de Montellano, “The lipoxygenase activity of myoglobin”, J. Bio. Chem., 1994, 269, 7210-7216.
    [19] I. Hamachi, S. Noda, T. Kunitake, “Functional conversion of myoglobin bound to synthetic bilayer membranes: from dioxygen storage protein to redox enzyme”, J. Am. Chem. Soc., 1991, 113, 9625-9630.
    [20] I. Taniguchi, K. Watanabe, M. Tominaga, F. M. Hawkridge, “Direct electron transfer of horse heart myoglobin at an indium oxide electrode”, J. Electroanal. Chem., 1992, 333, 331-338.
    [21] B. C. King, F. M. Hawkridge, “A study of the electron transfer and oxygen binding reactions of myoglobin”, J. Electroanal. Chem., 1987, 237, 81-92.
    [22] J. F. Rusling, A–E. F. Nassar, “Enhanced electron transfer for myoglobin in surfactant films on electrodes”, J. Am. Chem. Soc., 1993, 115, 11891-11897.
    [23] A–E. F. Nassar, J. M. Bobbitt, J. D. Stuart, J. F. Rusling, “Catalytic Reduction of Organohalide Pollutants by Myoglobin in a Biomembrane-like Surfactant Film”, J. Am. Chem. Soc., 1995, 117, 10986-10993.
    [24] A–E. F. Nassar, Z. Zhang, N. Hu, J. F. Rusling, T. F. kumosinski, “Proton-Coupled Electron Transfer from Electrodes to Myoglobin in Ordered Biomembrane-like Films”, J. Phys. Chem. B, 1997, 101, 2224-2231.
    [25] A. A. Ordaz, F. Bedioui, “The electrocatalytic reduction of organohalides by myoglobin and hemoglobin in a biomembrane-like film and its application to the electrochemical detection of pollutants: new trends and discussion”, Sensors and Actuators B, 1999, 59, 128-133.
    [26] A. N. Diaz, M. C. R. Peinado, M. C. T. Minguez, “Sol-gel horseradish peroxidase biosensor for hydrogen peroxide detection by chemiluminescence ”, Anal. Chim. Acta, 1998, 363, 221-227
    [27] J. H. Yu, H. X. Ju, “Preparation of Porous Titania Sol-Gel Matrix for Immobilization of Horseradish Peroxidase by a Vapor Deposition Method”, Anal. Chem., 2002, 14, 3579-3583.
    [28] J. H. Yu, H. X. Ju, “Amperometric biosensor for hydrogen peroxide basedon hemoglobin entrapped in titania sol–gel film”, Analytica Chimica Acta, 2003, 486, 209-216.
    [29] K. R. Brown, A. P. Fox, M. J. Natan, “Morphology-Dependent Electrochemistry of Cytochrome c at Au Colloid-Modified SnO2 Electrodes”, J. Am. Chem. Soc., 1996, 118, 1154-1157.
    [30] H. X. Ju, S. Q. Liu, B. Ge, F. Lisdat, F. W. Scheiler, “Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity”, Electroanalysis, 2002, 14, 141-147.
    [31] K. R. Brown, D. G. Walter, M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape”, Chem. Mater., 2000, 12, 306-313.
    [32] P. George, G. Hanania, “A spectrophotometric study of ionizations in methaemoglobin”, Biochem. J, 1953, 55, 236-243.
    [33] H. Y. Gu, A. M. Yu, H. Y. Chen, “Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode”, J. Electroanal. Chem., 2001, 516, 119-126.
    [34] A. M. Bond, “Modern polarographic methods in analytical chemistry”, New York: Marcel Dekker, 1980, 29-30.
    [35] C. P. Andrieux, C. Blocman, J. M. Dumas-Bouchiant, J. M. Saveant, “Heterogeneous and homogeneous electron transfers to aromatic halides. An electrochemical redox catalysis study in the halobenzene and halopyridine series”, J. Am. Chem. Soc., 1979, 101, 3431-3441.
    [36] C. P. Andrieux, C. Blocman, J. M. Dumas-Bouchiant, F. M’Halla, J. M. Saveant, “Homogeneous redox catalysis of electrochemical reactions”, J. Electroanal. Chem., 1980, 113, 19-40.
    [1] G. Schmid, “Clusters and Colloids”, New York: Wiley Interscience, 1994.
    [2] D. L. Feldheim, C. A. Jr. Foss, “Metal nanoparticles”, New York: Marcel Dekker, 2002.
    [3] G. Schmid, “Nanoparticles”, New York: Wiley Interscience, 2004.
    [4] T. Ogawa, K. Kobayashi, G. Masuda, T. Takase and S. Maeda, “Electronic conductive characteristics of devices fabricated with 1,10-decanedithiol and gold nanoparticles between 1-μm electrode gaps”, Thin solid films, 2001, 393, 374-378.
    [5] S. Chen, F. Deng, “Rectifying Nanoscale Electron Transfer by Viologen Moieties and Hydrophobic Electrolyte Ions+”, Langmuir, 2002, 18, 8942-8948.
    [6] Y. D. Jin, X. F. Kang, Y. H. Song, B. L. Zhang, G. J. Cheng, S. Dong, “Controlled Nucleation and Growth of Surface-Confined Gold Nanoparticles on a (3-aminopropyl)trimethoxysilane-Modified Glass Slide: A Strategy for SPR Substrates”, Anal. Chem., 2001, 73, 2843-2849.
    [7] Y. Lu, Y. D. Yin, Z. Y. Li, Y. N. Xia, “Synthesis and Self-Assembly of Au@SiO2 Core-Shell Colloids”, Nano lett., 2002, 2, 785-788.
    [8] A. Henglein,“Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition”, J. Phys. Chem., 1993, 97, 5457-5471.
    [9] H. Weller, “Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region Between Solid State and Molecules”, Angew. Chem. Int. Ed. Engl., 1993, 32, 41-53.
    [10] H. Fendler, F. C. Meldrum, Adv. Mater., 1995, 7, 607-632.
    [11] R. M. Crooks, M. Zhao, L. Sun, V. Chechik, L. K. Yeung, “Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis”, Acc. Chem. Res., 2001, 34, 181-190.
    [12] S. Nie, S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering”, Science, 1997, 275, 1102-1106.
    [13] A. N. Shipway, E. Katz, I. Willner, “Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications”, Chem. Phys. Chem., 2000, 1, 18-52.
    [14] A. N. Shipway, M. Lahav, I. Willner, “Nanostructured Gold Colloid Electrodes”, Adv. Mater., 2000, 12, 993-998.
    [15] P. M. Tessier, O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenhoff, E. W. Kaler, “Assembly of Gold Nanostructured Films Templated by Colloidal Crystals and Use in Surface-Enhanced Raman Spectroscopy”, J. Am. Chem. Soc., 2000, 122, 9554-9555.
    [16] J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, J. M. Calvert, “Metal nanoparticle/polymer superlattice films: Fabrication and control of layer structure”, Adv. Mater., 1997, 9, 61-65.
    [17] N. A. Kotov, I. Dékány, J. H. Fendler, “Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films”, J. Phys. Chem., 1995, 99, 13065-13069.
    [18] R. L. Whetten, M. N. Shafigwin, J. T. Khoury, T. G. Schaaff, I. Vexmar, M. M. Alvarez, A. Wilkinson, “Crystal Structures of Molecular Gold Nanocrystal Arrays”, Acc. Chem. Res., 1999, 32, 397-406.
    [19] D. R. Walt, “Nanomaterials: Top-to-bottom functional design”, NatureMater., 2002, 1, 17-18.
    [20] D. L. Feldheim, K. C. Grabar, M. J. Natan, T. E. Mallouk, “Electron Transfer in Self-Assembled Inorganic Polyelectrolyte/Metal Nanoparticle Heterostructures”, J. Am. Chem. Soc., 1996, 118, 7640-7641.
    [21] R. Blonder, L. Sheeney, I. Willner, “Three-dimensional redox-active layered composites of Au–Au, Ag–Ag and Au–Ag colloids”, Chem. Commun., 1998, 1393-1394.
    [22] T. Cassagneau, J. H. Fendler, “Preparation and Layer-by-Layer Self-Assembly of Silver Nanoparticles Capped by Graphite Oxide Nanosheets”, J. Phys. Chem. B, 1999, 103, 1789-1793.
    [23] M. Brust, D. Bethell, D. J. Schiffrin, C. J. Kiely, Adv. Mater., 1995, 7, 795-797.
    [24] M. Brust, R. Etchenique, E. J. Calvo, G. J. Gordillo, Chem. Commun., 1996, 1949-1950.
    [25] C. J. Brinker, Y. Lu, A. Sellinger and H. Fan, “Evaporation-Induced Self-Assembly: Nanostructures Made Easy”, Adv. Mater., 1999, 11, 579-585.
    [26] V. L. Colvin, A. N. Goldstein, A. P. Alivisatos, “Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers”, J. Am. Chem. Soc., 1992, 114, 5221-5230.
    [27] K. V. Sarathy, J. P. Thomas, G. U. Kulkarni, C. N. R. Rao, “Superlattices of Metal and Metal-Semiconductor Quantum Dots Obtained by Layer-by-Layer Deposition of Nanoparticle Arrays”, J. Phys. Chem. B, 1999, 103, 399-401.
    [28] G. G. Warr, R. Sen, D. F. Evans, J. E. Trend, “Microemulsion formationand phase behavior of dialkydimethylammonium bromide surfactants”, J. Phys. Chem., 1988, 92, 774-783.
    [29] M. Dubois, T. Zemb, “Phase behavior and scattering of double-chain surfactants in diluted aqueous solutions”, Langmuir, 1991, 7, 1352-1360.
    [30] L. D. Burke, V. J. Cunnane, “Possible importance of adions in both the binding of Lewis bases and the electrocatalytic oxidation of dissolved organics at gold electrodes in aqueous media”, J. Electroanal. Chem., 1986, 210, 69-94.
    [31] L. D. Burke, P. E. Nugent, Gold Bull., 1998, 31, 39-50.
    [32] P. Hidebrandt, M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver”, J. Phys. Chem., 1984, 88, 5935-5944.
    [33] K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, “Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering”, Phys. Rev. Lett., 1996, 76, 2444-2447.
    [34] R. Gupta, W. A. Weimer, “High enhancement factor gold films for surface enhanced Raman spectroscopy”, Chem. Phys. Lett., 2003, 374, 302-306.and phase behavior of dialkydimethylammonium bromide surfactants”, J. Phys. Chem., 1988, 92, 774-783.
    [29] M. Dubois, T. Zemb, “Phase behavior and scattering of double-chain surfactants in diluted aqueous solutions”, Langmuir, 1991, 7, 1352-1360.
    [30] L. D. Burke, V. J. Cunnane, “Possible importance of adions in both the binding of Lewis bases and the electrocatalytic oxidation of dissolved organics at gold electrodes in aqueous media”, J. Electroanal. Chem., 1986, 210, 69-94.
    [31] L. D. Burke, P. E. Nugent, Gold Bull., 1998, 31, 39-50.
    [32] P. Hidebrandt, M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver”, J. Phys. Chem., 1984, 88, 5935-5944.
    [33] K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, “Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering”, Phys. Rev. Lett., 1996, 76, 2444-2447.
    [34] R. Gupta, W. A. Weimer, “High enhancement factor gold films for surface enhanced Raman spectroscopy”, Chem. Phys. Lett., 2003, 374, 302-306.
    [11] N. F. Hu, R. Huang, J. Yang, Chem. J. Chinese Universities, 1999, 20, 1200-1204.
    [12] T. Kunitake, M. Shimomura, T. Kajiyama, A. Harada, K. Okuyama, M. Takayanagi, “Ordered cast films of an azobenzene-containing molecular membrane”, Thin Solid Films, 1984, 121, L89-L91.
    [13] I. Hamachi, S. Noda, T. Kunitake, “Functional conversion of myoglobin bound to synthetic bilayer membranes: from dioxygen storage protein to redox enzyme”, J. Am. Chem. Soc., 1991, 113, 9625-9630.
    [14] J. F. Rusling, A-E. F. Nassar, “Enhanced electron transfer for myoglobin in surfactant films on electrodes”, J. Am. Chem. Soc., 1993, 115, 11891-11897.
    [15] Y. X. Lu, Q. F. Wang, J. Q. Sun, J. C. Shen, “Selective Dissolution of the Silver Component in Colloidal Au and Ag Multilayers: A Facile Way to Prepare Nanoporous Gold Film Materials”, Langmuir, 2005, 21, 5179-5184.
    [16] N. Balachander, C. N. Sukenik, “Monolayer transformation by nucleophilic substitution: Applications to the creation of new monolayer assemblies”, Langmuir, 1990, 6, 1621-1627.
    [17] G. G. Warr, R. Sen, D. F. Evans, J. E. Trend, “Microemulsion formation and phase behavior of dialkydimethylammonium bromide surfactants”, J. Phys. Chem., 1988, 92, 774-783.
    [18] J. A. Baldwin, N. Schühler, I. S. Butler, M. P. Andrews, “Integrated Optics Evanescent Wave Surface Enhanced Raman Scattering (IO-EWSERS) of Mercaptopyridines on a Planar Optical Chemical Bench: Binding of Hydrogen and Copper Ion”, Langmuir, 1996, 12, 6389-6398.
    [19] F. R. Dollish, W. G. Fateley, F. F. Bentley, Eds. “Characteristic Raman Frequencies of Organic Compounds”, New York: Wiley, 1974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700