用户名: 密码: 验证码:
含OPV链段和卟啉化合物的聚芴衍生物的合成与光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文系统介绍了聚合物电致发光材料和器件的研究进展,其中着重讨论了聚芴类电致发光材料。聚芴及其衍生物由于具有易修饰、稳定性好以及高效率等优点,被认为是最具有应用前景的发光聚合物之一。同时,由于聚芴类聚合物具有液晶性这一特性,使其在偏振发光领域也具有潜在的应用价值。
     本论文设计并合成了主链含OPV和LOPV链段的聚芴共聚物PF-OPVX (X=005,05,1)和PF-LOPV05,获得了具有液晶性的绿光聚合物材料。为了制备白光器件,我们将均聚物PF和PF-LOPV05共混,即BPPL5-1。此外,我们还将MOPV链段通过接枝反应,引入到聚芴的侧链上,得到了黄绿光聚合物材料。为了获得具有液晶性的单一聚合物白光材料,我们将适量的客体单元低聚对苯撑乙烯链段OPV(绿光发射单元)和卟啉化合物Por(红光发射单元)同时引入到聚芴主链上去,并详细研究了客体的含量对于聚合物体系的液晶性、能量转移效应以及光致、电致发光性能的变化规律的影响。论文获得的结果如下:
     1.通过Suzuki聚合,将少量端基为溴的绿光链段OPV或黄光LOPV掺杂到聚芴的蓝光主体材料中,制备了一系列电致发光聚合物材料。所得到的聚合物均有较好的热稳定性,热失重温度(5%)均高于370 oC,共聚物的Tg和Td均比均聚物PF要高。偏光显微镜(附热台)测试表明,该系列的聚合物均表现出了典型的向列型液晶的织态结构。以共聚物PF-OPVX和PF-LOPV05为发光层的单层器件分别发射出蓝绿光和黄绿光。为了实现白光发射,我们以PF和PF-LOPV05的共混体系BPPL5-1为发光层制备了电致发光的单层器件,结果成功获得了白光发射,在8 V电压下,其色坐标为(0.30,0.35),与纯白光等量点(0.33,0.33)非常接近。
     2.通过Wittig-Horner反应,将少量端基为磷脂的黄光链段MOPV接枝到含有醛基单体的聚芴侧链上去,合成了一种新型的接枝聚芴衍生物PF-G-MOPV。接枝后所得到聚合物的Tg和Td均比接枝前的高,说明MOPV的引入使得聚合物热稳定性有所提高。此外,聚芴主链向侧链MOPV进行了明显的能量转移,有效地调节了EL光谱,但是并没有实现白光发射。以共聚物PF-G-MOPV为发光层的单层器件发射出黄绿光,其色坐标为(0.30,0.57),发光亮度达到1550 cd/m2。
     3.为了获得具有白光发射的液晶聚合物,我们通过Suzuki聚合,将少量端基为溴的具有绿光发射的链段OPV和具有红光发射的卟啉化合物Por掺杂到聚芴的蓝光主体材料中,成功地得到了两种白光聚合物。POM测试表明,共聚物在较宽的温度范围(130至280oC)内均表现出了典型的向列型液晶的织构。分别以聚合物PF-3OPV-3Por、PF-9OPV-4Por为发光层的单层器件发射出蓝白光以及纯白光,在驱动电压为9V下测得其色坐标分别为(0.24, 0.29)、(0.29, 0.30)。为了考察这些具有白光发射的单一聚合物在不同电压下的色稳定性,我们分别在7,8,9和10 V的驱动电压下对聚合物PF-9OPV-4Por进行了电致发光性能的测试,结果表明,EL光谱基本保持不变,其色坐标分别为(0.29, 0.33),(0.29, 0.32),(0.29, 0.30),(0.29, 0.29),这表明在不同电压下该聚合物具有良好的色稳定性,这一点对于白光材料的应用是非常重要的。
The research progress of light-emitting polymers and the devices have been reviewed systematically in this dissertation. In special, polyfluorene (PF) derivatives were discussed in detail. As is known to all, polyfluorenes are a novel class of semiconductors with many advantages such as easy chemical modification, good stability and high efficiency etc., which are one of the most promising materials in the application of luminescence polymers. Moreover, the liquid crystalline properties enable PF to have the potential application in polarized light emitting fields.
     In this dissertation, we have designed and synthesized a series of liquid-crystalline polyfluorene derivatives PF-OPVX (X=005, 05, 1) and PF-LOPV05 containing OPV or LOPV segments in the polymer backbone. The single-layer polymer light emitting diodes (PLEDs) devices based on these liquid-crystalline copolymers emitted green light. To realize white emission, we fabricated PLED device based on the mixture BPPL5-1 with the ratio of PF : PF-LOPV05 (5:1). Moreover, we grafted MOPV segments into the side chain of PFs, and yellowish green light was obtained. With the aim to prepare a single liquid-crystalline polymer for white light emission, we incoporated oligo(phenylenevinylene) (OPV) and porphyrin compound (Por) as green- and red-emitting guests, into the host polyfluorene backbone. The liquid crystalline properties, energy transfer effect and the photo- and electroluminescent properties of the resulting copolymers dependent on the contents of the guest species were investigated in detail. The results obtained are as follows:
     1. A series of light-emitting polymers have been synthesized by incorporating a small amount of OPV (green emitter) or LOPV (yellow emitter) into host PF backbone according to Suzuki method. The copolymers exhibited good thermal stability with the 5% weight loss temperature above 370 oC, and the copolymers exhibited higher Tg and Td than homopolyfluorene PF. All of these polymers exhibited liquid crystalline properties with characteristic nematic textures by using polarized optical microscope (POM). The WPLED devices based on PF-OPVX and PF-LOPV05 emitted bluish and yellowish green light, respectively. To realize white emission, we fabricated a single-layer polymer light emitting device based on the blend of PF and PF-LOPV05 (BPPL5-1), and the CIE coordinates are (0.30, 0.35) at 8 V, which is located in the white light region and very close to the CIE coordinates for pure white light point (0.33, 0.33).
     2. A novel graft polyfluorene derivative (PF-G-MOPV) has been synthesized by grafting a small amount of MOPV (yellow emitter) into host PF side chain according to Wittig-Horner method. The graft copolymer exhibited higher Tg and Td than those of pre-graft polylmer PF, which indicates that the incorporation of MOPV can improve the thermal stability. Energy transfer between polyfluorene backbone and side chain MOPV was efficient, and thus the EL spectrum was well tuned. However,we haven’t obtained white emission from the graft polymer. The PLED device based on PF-G-MOPV emitted yellowish green light with the CIE coordinates of (0.30, 0.57) and maximum brightness of 1550 cd/m2.
     3. Two novel white-light-emitting polymers have been synthesized by incorporating a small amount of OPV (green emitter) or Por (red emitter) into host PF backbone according to Suzuki method. According to POM results, both of the copolymers exhibited liquid crystalline properties with characteristic nematic textures in a wide temperature range(about 130~280 oC). The WPLED device based on PF-3OPV-3Por and PF-9OPV-4Por emitted bluish white and pure white light with the CIE coordinates of (0.24, 0.29) and (0.29, 0.30) at 9 V, respectively. In order to test the color stability of white light emission from these single polymers, the EL spectra and performances of the copolymers-based devices were monitored at different driving voltages. In the case of PF-9OPV-4Por, the EL spectra remained unchanged when a driving voltage from 7 to 10 V was applied. The CIE coordinates under different voltages were (0.29, 0.33), (0.29, 0.32), (0.29, 0.30), and (0.29, 0.29) corresponding to driving voltages of 7, 8, 9, and 10 V, respectively. These results indicate that white light emission from the copolymer is quite stable, which is desirable for display application.
引文
[1] Pope M,Kallmann H P,Magnante P. Electroluminescence in Organic Crystals [J]. J Chem Phys, 1963, 38, 2042-2043.
    [2] Tang C W, Vanslyke S A. Organic electro-luminescentmaterials and devices[J]. Appl Phys Lett, 1987, 51, 913-915.
    [3] Burroughes J H,Bradley D D C,Brown A R,Marks R N,Mackay K,Friend R H,Burn P L,Ho1mes A B. Light-emitting diodes based on conjugated polymers. Nature. 1990, 347, 539-549.
    [4] Kido J, Matsumoto T. Bright organic electroluminescent devices having a metal-doped electron-injecting layer. Appl Phys Lett, 1998, 73, 2866-2889.
    [5] Kim D., Cho H N, Kim CY. Blue light emitting polymers. Prog. In. Polym. Sci., 2000, 25(5), 1089-1139.
    [6] Alan C, Heeger J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew.Chem.Int.Ed.2001, 40(3): 2591-2611.
    [7] Kraft A, Andrew C, Holmes B. Electroluminescent conjugated polymers-seeing polymers in a new light. Angew. Chem. Int. Ed. 1998, 37(2): 402-428.
    [8] Friend R H, Gymer R W, Holmes A B, Burroughes J H, R.N. Marks, Taliani C, Bradley D.D.C ., Dos Santos D A, et al. Electroluminescence in conjugated polymers. Nature, 1999, 397(12): 121-128.
    [9] Segura J L. Thechemistry of electroluminescent organic materials. Acta. Polym. 1998, 49(6):319-344.
    [10] Adachi C, Tokito S, Tsutsui T, Saito S. Electroluminescence in Organic Films with Three-Layer Structure. Jpn J Appl Phys, part 2, 1988,27; L269-L271
    [11] Adachi C, Tokito S, Tsutsui T, Saito S. Organic Electroluminescent Device with a Three-Layer Structure. Jpn J Appl Phys, part 2, 1988,27;L713-L715.
    [12]汤顺清,《色度学》[M],北京理工大学出版社,1990, P152-183.
    [13]袁柱良,于宗强,夏安英,谭松庭,含联苯PPV和柔性间隔基液晶性共轭聚合物的合成与发光性能研究, 2006, 21, 91-96.
    [14] WudlF. ,Schwartz B .J. ,U S Patent 5 189 136,1990
    [15] Moratti S C ,Bradley D D C , Friend R H . Light-emitting polymer LEDs. Polym. Prepr.,1994, 35(1):214
    [16] Fumitomo H, Benjamin J. Schwartz M A, Díaz G, Heeger A J. Conjugated polymers as solid-state laser materials. Synth.Met, 1997,91:35-40
    [17] Hoger S.,McNamara J .J. ,et al. Novel Silicon-Substituted, Soluble Poly(phenylenevinylene)s: Enlargement of the Semiconductor Bandgap Chem.Mater.,1994,6:171-173.
    [18] M. R. Andersson, M. Berggren, G. Gustafsson, T. Hjertberg, O. Inganaès, O. Wennerstroèm. Synthesis of poly(alkylthiophenes) for light-emitting diodes [J]. Synth. Met., 1995, 71 (1-3): 2183-2184.
    [19] Wu S H, Shen C H, Chen J H, Hsu C C. Synthesis and characterization of new light-emitting copolymers in polymeric-light-emitting-diode device fabrications [J]. J. Polym. Sci. Part A: Polym. Chem., 2004, 42: 3954-3966.
    [20] Ohmori Y, uchida M, et al. Red Light-Emitting thiophene-Based Alternating Polymers. Appl Phys, 1995, 34:182
    [21] Yu W L, Pei J, Cao Y, Huang W, Heeger A J. New efficient blue light emitting polymer for light emitting diodes. Chem. Commun., 1999, 1837–1838
    [22] Chen R F, Fan Q L, Liu S J, Zhu R , Pu K Y, Huang W. Fluorene and silafluorene conjugated copolymer: A new blue light-emitting polymer. Synthetic Metals 2006,156, 1161–1167
    [23] Tang D F, Wen G A, Qi X Y, Wang H Y, Peng B, Wei W, Huang W. Spectrum-stable hyperbranched polyfluorene with photocrosslinkable group. Polymer, 2007, 48, 4412- 4418
    [24] Hou Q, Xu Y, Yang W, Yuan M, Peng J, Cao Y. Novel red-emitting fluorene-based copolymers. J. Mater. Chem., 2002, 12, 2887–2892
    [25] Cho N S, Park J H, Lee S K, et al. Saturated and Efficient Red Light-Emitting Fluorene-Based Alternating Polymers Containing Phenothiazine Derivatives Macromolecules 2006, 39, 177-183.
    [26] Panozzo S, Vial J C, Kervella Y, O. Ste′phan. Fluorene–fluorenone copolymer: Stable and efficient yellow-emitting material for electroluminescent devices. J Appl Phy 2002,92,3495-3502
    [27] Berggren M, Gustafsson G, Ingantls O, Andersson M R, Hjertberg T, Wennerstrm O. White light from an electroluminescent diode made from poly[3-(4-octylphenyl)-2,2-bithiophene] and anoxadiazole derivative [J]. J. Appl. Phys., 1994, 76: 7530-7536.
    [28] Jido J, Ikeda W, Kimura M, Nagi K. White-light-emiting organic electrolum-inescent device using lanthanide complexes [J]. J. Appl. Phys., 1996, 35: 394-396.
    [29] Deshpande R S, Bulovic V, Forrest S R. White-light-emiting organic electroluminescent devices based on interlayer sequential lenergy transfer [J]. Appl. Phys. Lett., 1999, 75:888-890.
    [30] Strukelj M, Jordan R H, Dodabalapur A. Organic multilayer white light emiting diodes [J]. J. Am. Chem. Soc., 1996, 118: 1213-1214.
    [31] Gong X, Moses D, Heeger A J, Xiao S. White Light Electrophosphorescence from Polyfluorene-Based Light-Emitting Diodes: Utilization of Fluorenone Defects. J. Phys. Chem. B 2004, 108, 8601-8605
    [32] Su H J, Wu F I, Shu C F, Tuning Wavelength: Synthesis and Characterization of Spiro-DPVF-Containing Polyfluorenes and Applications in Organic Light-Emitting Diodes. Macromolecules 2004, 37, 7197-7202.
    [33] Tu G L, Zhou Q G, Cheng Y C, Wang L X, Ma D G, Jing X B, Wang F S. White electroluminescence from polyfluorene chemically doped with 1,8-napthalimide moieties [J]. Appl. Phys. Lett., 2004, 85: 2172-2174.
    [34] Liu J, Gao B, Cheng Y, Xie Z Y, Geng Y, Wang L X, Jing X, Wang F S. Novel white electroluminescent single polymer derived from fluorene and quinacridone [J]. Macromolecules, 2008, 41: 1162-1167.
    [35] Liu J, Xie Z Y, Cheng Y X, Geng Y H, Wang L X, Jing X B, Wang F S. Molecular design on highly efficient white electroluminescence from a single-polymer system with simultaneous blue, green, and red emission [J]. Adv. Mater., 2007, 19: 531-535.
    [36] Liu J, Guo X, Bu L J, Xie Z Y, Cheng Y X, Geng Y H, Wang L X, Jing X B, Wang F S. White electroluminescence from a single-polymer system with simultaneous two-color emission: polyfluorene as blue host and 2,1,3-benzothiadiazole derivatives as orange dopants on the side chain [J]. Adv. Funct. Mater., 2007, 17: 1917–1925.
    [37] Mei C, Ding J, Yao B, Cheng Y X, Xie Z Y, Geng Y H, Wang L X. Synthesis and characterization of white-light-emitting polyfluorenes containing orange phosphorescent moieties in the side chain [J]. J. Polym. Sci. Part A: Polym. Chem., 2007, 45: 1746-1752.
    [38] Lee S K, Ahn T, Cho N S, Lee J I, Jung Y K, Lee J, Shim H K. Synthesis of new polyfluorene copolymers with a comonomer containing triphenylamine units and their applications in white-light-emitting diodes [J]. J. Polym. Sci. Part A: Polym. Chem., 2007, 45: 1199-1029.
    [39] Wu W C, LEE W Y, Chen W C. New fluorene-acceptor random copolymers: towards pure white light emission from a single polymer [J]. Macromol. Chem. and phys., 2006, 207: 1131-1138.
    [40] Kulkarni A P, Jenekhe S A. Blue-green, orange, and white organic light-emitting diodesbased on exciplex electroluminescence of an oligoquinoline acceptor and different hole-transport materials [J]. J. Phys. Chem. C., 2008, 112: 5174-5184.
    [41] Liu J, Zhou Q G, Cheng Y X, et al. The First Single polymer with simultaneous blue, green, and red emission for white electroluminescence [J]. Adv. Mater., 2005, 17: 2974-2978.
    [42] Liu J, Cheng Y, Xie Z, Geng Y, Wang L, Jing X, Wang F. White Electroluminescence from a Star-like Polymer with an Orange Emissive Core and Four Blue Emissive Arms. Adv. Mater. 2008, 20, 1357–1362
    [43] Jiang J X, Xu Y H, Cao Y. High-Efficiency White-Light-Emitting Devices from a Single Polymer by Mixing Singlet and Triplet Emission[J], Advanced Materials, 2006, 18, 1769–1773.
    [44] Luo J, Li X Z, Hou Q, Peng J B, Yang W, Cao Y. High-Efficiency White-Light Emission from a Single Copolymer: Fluorescent Blue, Green, and Red Chromophores on a Conjugated Polymer Backbone. Adv. Mater. 2007, 19, 1113
    [45] Kulkarni A P, Kong X, Jenekhe S A. Polyfluorene terpolymers containing phenothiazine and fluorenone: effects of donor and acceptor moieties on energy and intrachain charge transfer processes in the photoluminescence and electroluminescence of multichromophore copolymers [J]. Macromolecules, 2006, 39: 8699-8711.
    [46] Chen R F, Zhu R, Fan Q L, Huang W. Synthesis, Structure, and Optoelectronic Properties of Phosphafluorene Copolymers. Organic Letters, 2008, 10(13), 2913-2916.
    [47] Chen X L, Bao Z, Lovinger A, et al. Polarized luminescence from liquid-crystalline poly(p-phenylene vinylene) derivatives [J]. Polym. Prep., 1999, 40: 1204-1205.
    [48]杨国波,田文晶.有机电致发光领域中的液晶材料[J].液晶与显示, 2003, 18 (4): 251-261.
    [49] Yu L P, Bao Z N. Conjugated polymers exhibiting liquid crystallinity [J]. Adv. Mater., 1994, 6 (2): 156-159.
    [50] Grell M, Bradley D D C. polarized luminescence from oriented molecular materials [J]. Adv. Mater., 1999, 11: 895-905.
    [51] Grell M, Bradley D D C, Inbasekaran M, Woo E P. A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications [J]. Adv. Mater., 1998, 9 (10): 798-802.
    [52] Knaapila M, Kisko K, Lyons B P, Stepanyan R, Foreman J P, et al. Influence of Molecular Weight on Self-Organization, Uniaxial Alignment, and Surface Morphology of Hairy-Rodlike Polyfluorene in Thin Films. J. Phys. Chem. B, 2004, 108, 10711-10720
    [53] Inganas O, Svensson M, Zhang F, et al. Low bandgap alternating polyfluorenecopolymers in plastic photodiodes and solar cells, Appl. Phys. A 79, 31–35 (2004)
    [54] Setayesh S, Marsitzky D, Mu1llen K. Bridging the Gap between Polyfluorene and Ladder-Poly-p-phenylene:Synthesis and Characterization of Poly-2,8-indenofluorene Macromolecules 2000, 33, 2016-2020
    [55] Niu Y H, Hou Q, Cao Y. Thermal annealing below the glass transition temperature: A general way to increase performance of light-emitting diodes based on copolyfluorenes. Appl. Phys. Lett., 2002, 81(4), 634-636
    [56] Yao Y H, Kung L R, Hsu C S. Polarized White Emission from Fluorene-Based Polymer Blends. Japan. J. Appl. Phys. 2005, 44(10), 7648-7653.
    [57] Pei Q, Yang Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene [J]. J. Am. Chem. Soc., 1996, 118:7416-7417.
    [58] Wong K T, Chien YY, Chen R T, Wang C F, et al. Ter(9,9-diaryl- fluorene)s: Highly Efficient Blue Emitter with Promising Electrochemical and Thermal Stability [J]. J. Am. Chem. Soc., 2002, 124: 11576-11577.
    [59] Ahn T, Song S Y, Shim H K. Highly photoluminescent and blue-green electrol- uminescent polymers: new silyl- and alkoxy-substituted poly(p-phenylenevinylene) related copolymers containing carbazole or fluorene groups [J]. Macromolecules, 2000, 33: 6764-6771.
    [60] Shen P, Sang G Y, Lu J J, Zhao B, Wan M X, Zou Y P, Li Y F, Tan S T. Effect of 3Dπ?πStacking on Photovoltaic and Electroluminescent Properties in Triphenylamine-containing Poly(p-phenylenevinylene) Derivatives. Macromolecules. 2008, 41, 5716-5722.
    [61] Baker L C W, Glick D C. Present general status of understanding of heteropoly electrolytes and a tracing of some major highlights in the history of their elucidation [J]. Chem. Rev., 1998, 98: 3-49.
    [62] Carn F, Colin A, Achard M F, Deleuze H, Backov R. Rational design of macrocellular silica scaffolds obtained by a tunable sol-gel foaming process [J]. Adv. Mater., 2004, 16: 140-144.
    [63] Liu J, Zhou Q G, Cheng Y X, Geng Y H, Wang L X, Ma D G, Jing X B, Wang F S. White Electroluminescence from a Single-Polymer System with Simultaneous Two-Color Emission: Polyfluorene as the Blue Host and a 2,1,3-Benzothiadiazole Derivative as the Orange Dopant. Adv Funct Mater 2006, 16, 957-965.
    [64] Tang H, Cao H Q, Zhu Z G, Wan X H, Chen X F, Zhou Q F. Synthesis and mesophase behaviors of 2,5-disubstituted styrene-based random copolymers: Effect of difference in side-group length on liquid crystallinity. Polymer 2007, 48, 4252-4263.
    [65] Tu G L, Mei C Y, Zhou Q G, Cheng Y X, Wang L X, Ma D G, Jing X B, Wang F S. Highly efficient pure-white-light-emitting diodes from a single polymer: Polyfluorene with naphthalimide moieties. Adv. Funct. Mater. 2006, 16, 101-106.
    [66] Kuo C H, Cheng W K, Lin K R, Leung M K, Hsieh K H. High-efficiency poly(phenylenevinylene)-co-fluorene copolymers incorporating a triphenylamine as the end group for white-light-emitting diode applications. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 4504-4513.
    [67] Zhou X H, Zhang Y, Xie Y Q, Cao Y, Pei J. Effect of Fluorenone Units on the Property of Polyfluorene and Oligofluorene Derivatives: Synthesis, Structure?Properties Relationship, and Electroluminescence. Macromolecules 2006, 39, 3830-3840.
    [68] Chuang C Y, Shih P I, Chien C H, Wu F I, Shu C F. Bright-White Light-Emitting Devices Based on a Single Polymer Exhibiting Simultaneous Blue, Green, and Red Emissions Macromolecules 2007, 40, 247-252.
    [69] Littler B J, Miller M A, Hung C H, Wagner R W, O’Shea D F, Boyle P D, Lindsey J S. Refined Synthesis of 5-Substituted Dipyrromethanes. J. Org. Chem. 1999, 64, 1391-1396.
    [70] Tokito S, Tanaka H, Noda K, Okada A, Taga Y. Thermal stability in oligomeric triphenylamine/tris(8-quinolinolato)aluminum electroluminescent devices [J]. Appl. Phys. Lett., 1997, 70: 929-932.
    [71] Li M T, Li W L, Niu J H, Chu B, Li B, Sun X Y, Zhang Z Q, Hu Z Z. Efficient white organic light-emitting device based on a thin layer of hole-transporting host with rubrene dopant [J]. Solid state electronic, 2005, 49: 1956-1960.
    [72] Wu Y S, Hwang S W, Chen H H, Lee M T, Shen W J, Chen C. Efficient white organic light emitting devices with dual emitting layers [J]. Thin solid films, 2005, 488: 265-277.
    [73] Kim D, Han J W, Kim T W. Optical properties of white organic light emitting devices fabricated with three primary color emitters by using organic molecular-beam deposition [J]. Solid state communications, 2005, 135: 400-404.
    [74] Kim Y H, Shin D C, Kim S H, Ko C H, Yu H S, Chae Y S, Kwon S K. Novel blue emitting material with high color purity [J]. Adv. Mater., 2001, 13: 1690-1693.
    [75] Hou Q, Zhang Y, Li F, Peng J, Cao Y. Red Electrophosphorescence of Conjugated Organoplatinum(II) Polymers Prepared via Direct Metalation of Poly(fluorene-co-tetra phenylporphyrin) Copolymers. Organometallics 2005, 24, 4509-4518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700