用户名: 密码: 验证码:
富芳烃油品的超声氧化脱硫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何高效脱除石油产品中的硫化物一直是众多学者研究的重点。随着对化石燃料中硫含量的限制日趋严格,传统加氢脱硫成本进一步提高,从经济、环保角度已经很难满足社会发展要求。近些年来出现了包括吸附脱硫,烷基化脱硫,离子液体萃取脱硫以及氧化脱硫等许多非加氢脱硫方式。其中氧化脱硫以其低能耗、并能脱除加氢过程难以脱除的有机硫化物而得到广泛的关注。但是目前氧化脱硫的研究只局限于低芳烃含量的油品,对于高芳烃含量油品的氧化脱硫效果不够理想,加之反应时间过长导致反应试剂消耗严重,从而加大了脱硫的成本。本文以高芳烃含量油品为研究对象,采用超声强化氧化脱硫过程,达到深度脱硫的目的。
     乙烯裂解C9燃料油是一种芳烃含量高达70%的油品,可广泛用于树脂的生产以及高辛烷值汽油的添加剂。目前针对此类C9油品的加氢脱硫效果不能满足日益严格的硫含量要求,并且加氢过程中伴随烯烃的饱和而使得产品的辛烷值有所下降。本文在对不同氧化脱硫体系进行实验研究的基础上,优选出甲酸- H2O2为催化体系进行超声强化脱硫,并对实验条件进行了优化。本文的研究将为乙烯裂解C9油品超声氧化脱硫的放大实验提供基础数据。
     为了减少高芳烃含量油品氧化脱硫过程液体酸性催化剂的用量,提高超声空化效果,本文研究了活性炭颗粒的加入对氧化脱硫以及超声空化过程的影响。分析了活性炭加入对空化效果的影响以及活性炭的存在及其表面化学对超声氧化脱硫过程的影响。在以上研究的基础上,对活性炭用于超声氧化脱硫过程的可行性进行了分析和总结。
Ultra-deep desulfurization of petroleum products has drawn much attention these years. Increasingly stricter regulations demand much less the sulfur content in fossil fuels, which imposes technical and operational challenges on traditional hydrodesulfurization environmentally and economically. In the past decades, alternative non-hydrodesulfurization techniques have been investigated extensively, including reactive adsorption, alkylation, ionic liquid and oxidative desulfurization, among which oxidative desulfurization (ODS) has drawn wide attention due to its low energy cost and high ODS ratios for sulfur compounds difficult hydrogenated. But by far aromatics-rich oils faces low ODS and unnecessary lost of reagent due to long reaction time.
     C9 oils, with aromatics content up to 70%, have been widely used in resin production and ON additives. In the process of hydrogenation of C9 accompanies alkene saturated, leading to decrease in ON. Comparing ODS ratios of different catalysis systems, the author applied formic-H2O2 in desulfurization of C9 oils under irradiation of ultrasound as the process intensification method. On the basis of batch experiment, a schematic flow sheet is proposed for pilot of ODS for C9 oils.
     In order to minimize the amount of liquid acids and enhance the yield of sonochemistry, a series of experiments of the addition of activated carbon (AC) has been conducted to investigate the effect of AC and surface chemistry on cavitation processs and oxidative reaction.
引文
[1] Eri Ito, J.A. Rob van Veen. On novel processes for removing sulphur from refinery streams. Catalysis Today, 2006, 116, 446–460
    [2] N.K. Nag, A.V. Sapre, D.H. Broderick, B.C. Gates. Hydrodesulfurization of polycyclic aromatics catalyzed by sulfided CoO---MoO3/γ-Al2O3: The relative reactivities. Journal of Catalysis. 1979, 57, 509-512
    [3] M. Houalla, D.H. Broderick, A.V. Sapre, N.K. Nag, V.H.J. de Beer, B.C.?Gates, H. Kwart. Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by sulfided Co-Mo/γ-Al2O3. Journal of Catalysis. 1980, 61, 523~527
    [4] M.J. Girgis, B.C. Gates. Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing. Industrial & Engingeering Chemistry Research. 1991, 30, 2021~2058
    [5] M. Houalla, D.H. Broderick, A.V. Sapre, N.K. Nag, V.H.J. de Beer, B.C.?Gates, H. Kwart. Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by sulfided Co-Mo/γ-Al2O3. Journal of Catalysis. 1980, 61, 523~527
    [6] M.J. Girgis, B.C. Gates. Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing. Industrial & Engingeering Chemistry Research. 1991, 30, 2021~2058
    [7] T. Koltai, M.Macaud, A. Guevara, et al. Comparative inhibiting effect of polycondensed aromatics and nitrogen compounds on the hydrodesulfurization of alkyldibenzothiophenes. Applied Catalysis A: General. 2002, 231, 253~261
    [8] Shyamal K. Bej, Samir K. Maity, Uday T. Turaga. Search for an Efficient 4,6-DMDBT Hydrodesulfurization Catalyst: A Review of Recent Studies. Energy & Fuels. 2004, 18, 1227~1237
    [9] Jae Hyung Kim, Xiaoliang Ma, Chunshan Song, et al. Kinetics of Two Pathways for 4,6-Dimethyldibenzothiophene Hydrodesulfurization over NiMo, CoMo Sulfide, and Nickel Phosphide Catalysts. Energy & Fuels. 2005, 19, 353~364
    [10] John N. Armor. Do you really have a better catalyst? Applied Catalysis. 2005, 282, 1~4
    [11]王豪,直馏柴油催化氧化脱硫技术研究:[硕士学位论文],西南石油大学,2003年
    [12] I.V. Babich, J.A. Moulijn. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel. 2003, 82, 607~631
    [13] Kinya Tawara, Takeshi Nishimura, Hikoichi Iwanami et al. New Hydrodesulfurization Catalyst for Petroleum-Fed Fuel Cell Vehicles andCogenerations. Industrial & Engingeering Chemistry Research. 2001,40, 2367~2370
    [14] P. Slater, Johnson, D. Kidd, Phillips’s S-Zorb Diesel sulphur removal technology
    [15] F. Diehl, L. Magna, B.H. Olivier, D. Uzio. French patent, FR 2840916
    [16] X. Zhao, G. Krishnaiah, T. Cartwright,‘S-BraneTM Technology Brings Flexibility to Refiners’Clean Fuel Solutions’, NPRA paper, 2004
    [17]高红帅,李望良,邢建民,李玉光,熊小超,刘会洲,离子液体用于燃料油深度脱硫的研究进展,石油化工,2007,36,966~970
    [18]张进,朴香兰,朱慎林,离子液体对燃油含硫化合物的萃取性能研究,化学试剂,2006,28,385~387
    [19] Bosmann A, Datsevich A, Luter A, et al. Deep desulfurization of diesel fuel by extraction with ionic liquids. Chemical Communications. 2001, 23, 2494~2495
    [20] Shuguang Zhang, Qinglin Zhang, Z. Conrad Zhang. Extractive Desulfurization and Denitrogenation of Fuels Using Ionic Liquids. Industrial & Engingeering Chemistry Research. 2004, 43, 614~622
    [21]张锁江,一种基于离子液体的油品氧化-萃取脱硫技术,中国专利,CN 101153225A
    [22] Saul Patai and Zvi Rappoport. The chemistry of sulphones and sulphoxides. 1988. John Wiley & Sons
    [23] J. M. Campos-Martin, M. C. Capel-Sanchez and J. L. G. Fierro. Highly efficient deep desulfurization of fuels by chemical oxidation. Green Chemistry. 2004, 6, 557~ 562
    [24] Shiraishi Y., Tachibana K., Hirai T. et al. Desulfurization and Denirtrogenation Process for Light Oils Based on Chemical Oxidation followed by Liquid-Liquid Extraction. Industrial & Engingeering Chemistry Research. 2002, 41, 4362~4375
    [25] Yasuhiro Shiraishi and Takayuki Hirai. Desulfurization of Vacuum Gas Oil Based on Chemical Oxidation Followed by Liquid-Liquid Extraction. Energy & Fuel. 2004, 18, 37~40
    [26] Eika W. Qian. Development of Novel Nonhydrogenation Desulfurization Process: Oxidative Desulfurization of Distillate. Journal of the Japan Petroleum Institute. 2008, 51, 14~31
    [27] Henry Gilman and Donald L. Esmay. The Oxidation of Dibenzothiophene and Phenoxathiin with Hydrogen Peroxide. Journal of the American Chemical Society 1952, 74, 2021~2024
    [28] Herman S. Schultz, Harlan B. Freyermuth and Saul R. Buc. New Catalysts for the Oxidation of Sulfides to Sulfones with Hydrogen Peroxide. Journal of Organic Chemistry. 1963, 28,1140~1142
    [29] Herman S. Schultz, et al. New Catalysts for the Oxidation of Sulfides to Sulfones with Hydrogen Peroxide. Journal of Organic Chemistry. 1963, 28, 1140~1142
    [30] Gerard V. Smith, Ferenc Notheisz. Heterogeneous Catalysis in Organic Chemistry. Academic Press. 1999. 229~231
    [31] Shujiro Otsuki, Takeshi Nonaka, Noriko Takashima et al. Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction. Energy & Fuels. 2000, 14, 1232~1239
    [32] Paolo De Filippis and Marco Scarsella. Oxidative Desulfurization: Oxdation Reactivity of Sulfur Compounds in Different Organic Matrixes. Energy & Fuels. 2003, 17, 1452~1455
    [33]凌昊,沈本贤,陈巨星等,甲酸/双氧水体系氧化脱除焦化蜡油中的含硫化合物,华东理工大学学报(自然科学版),2003,29,456~459
    [34]姚秀清,王少军,凌凤香等,模拟轻质油品的氧化脱硫,燃料化学学报,2004,32,318~322
    [35] Danhong Wang, Eika Weihua Qian, Hiroshi Amano et al. Oxidative desulfurization of fuel oil Part I. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide. Applied Catalysis A: General. 2003, 253, 91~99
    [36] Atsushi Ishihara, Danhong Wang, Franck Dumeignil et al. Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continous flow process. Applied Catalysis A: General. 2005, 279, 279~287
    [37]赵地顺,马四国,刘翠微,任红威,相转移催化剂应用于催化裂化汽油氧化脱硫的研究,高等学校化学学报,2006,27,144~146
    [38] Dishun Zhao, Hongwei Ren, Jianlong Wang et al. Kinetics and Mechanism of Quaternary Ammonium Salts as Phase-Transfer Catalysts in the Liquid-Liquid Phase for Oxidation of Thiophene. Energy & Fuels. 2007, 21, 2543~2547
    [39]赵地顺,任红威,周二鹏,李乐,季铵盐相转移催化氧化噻吩的研究,燃料化学学报,2007,35,47~50
    [40]赵地顺,相转移催化原理及应用,北京:化学工业出版社,2007
    [41] E.L. Cole, R.F. Wilson, S. Herbstman, Texaco, US patent 3551328, 1970
    [42]范钦臻,赵德智,戴咏川,超声作用下有机体系柴油深度氧化脱硫,辽宁石油化工大学学报,2006,26,31~33
    [43] Yongchuan Dai, Yutai Qi, Dezhi Zhao et al. An oxidative desulfurization method using ultrasound/Fenton’s Reagent for obtaining low and/or ultra-low sulfur diesel fuel. Fuel Processing Technology. 2008, 89, 927~932
    [44]金万勤,陆小华,徐南平,材料化学工程进展,北京:化学工业出版社,2006
    [45]王恩波,胡长文,许林,多酸化学导论,北京:化学工业出版社,1998
    [46] Hai Mei, B.W. Mei, Teh Fu Yen. A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization. Fuel. 2003, 82, 405~414
    [47] Meng-Wei Wan, Teh-Fu Yen. Enhance efficiency of tetraoctylammonium fluoride applied to ultrasound-assisited oxidative desulfurization (UAOD) process. Applied Catalysis A: General. 2007, 319, 237~245
    [48] Omid Etemadi, Teh Fu Yen. Surface characterization of adsorbents in ultrasound-assisted oxidative desulfurization process of fossil fuels. Journal of Colloid and Interface Science. 2007, 313, 18~25
    [49] Meng-Wei Wan and Teh-Fu Yen. Portable Continuous Ultrasound-Assisted Oxidative Desulfurization Unit for Marine Gas Oil. Energy & Fuels. 2008, 22, 1130~1135
    [50] Paul R. Story, Bunge Lee, Clyde E. Bishop et al. Macrocyclic Synthhesis. II. Cyclohexanone Peroxides. Journal of Organic Chemistry. 1970, 35, 3059~3062
    [51] Xinrui Zhou, Caixia Zhao, Jinzong Yang et al. Catalytic Oxidation of Dibenzothiophene Using Cyclohexanone Peroxide. Energy & Fuels. 2007, 21, 7~10
    [52] L.R. Pizzio, C.V. Caceres and M.N. Blanco. Acid catalysts prepared by impregnation of tungstophosphoric acid solutions on different supports. Applied Catalysis A: General. 1998, 167, 283~294
    [53] Yusuke Izumi and Kazuo Urabe. Cataysis of heteropoly acids entrapped in activated carbon. Chemistry Letters. 1981, 663~666
    [54] B. Sulikowski, J. Haber, A. Kubacka et al. Olejniczak a and J. Ptaszyfiski. Novel "ship-in-the-bottle" type catalyst: evidence for encapsulation of 12-tungstophosphoric acid in the supercage of synthetic faujasite. Catalysis Letters. 1996, 39, 27~31
    [55] Shin R. Mukai, Takao Masuda, Isao Ogino et al. Preparation of encaged heteropoly acid catalyst by synthesizing 12-molybdophosphoric acid in the supercages of Y-type zeolite. Applied Catalysis A: General. 1997, 165, 219~226
    [56] K. Pamin, A. Kubacka, Z. Olejniczak et al. Immobilization of dodecatungstophosphoric acid on dealuminated zeolite Y: a physicochemical study. Applied Catalysis A: General. 2000, 194–195, 137~146
    [57] P. Madhusudhan Rao, A. Wolfson, S. Kababya et al. Immobilization of molecular H3PW12O40 heteropolyacid catalyst in alumina-grafted silica-gel and mesostructured SBA-15 silica matrices. Journal of Catalysis. 2005, 232, 210~225
    [58] Yan Xuemin, Lei Jiaheng, Liu Dan et al.Oxidation Reactivities of Organic Sulfur Compounds in Fuel Oil Using Immobilized Heteropoly Acid as Catalyst. Journal of Wuhan University of Technology Materials Science Edition. 2007, 22, 320~324
    [59] Yan Xuemin, Yan Jiabao, Mei Ping et al. Synthesis, Characterization and Catalytic Properties of Mesoporous HPMo/SiO2 Composite. Journal of Wuhan University of Technology Materials Science Edition. 2008, 23, 834~838
    [60] Kazumasa Yazu, Takeshi Furuya and Keiji Miki. Immobilized Tungstophosphoric Acid-catalyzed Oxidative Desulfurization of Diesel Oil with Hydrogen Peroxide. Journal of the Japan Petroleum Institute. 2003, 46, 379~382
    [61] L. I. Kuznetsova, L. G. Detusheva, N. I. Kuznetsov et al. Liquid-Phase Oxidation of Benzothiophene and Dibenzothiophene by Cumyl Hydroperoxide in the Presence of Catalysts Based on Supported Metal Oxides. Kinetics and Catalysis. 2008, 49, 644~652
    [62]吴越,叶兴凯,杨向光,王新平,楚文玲,胡玉才.杂多酸的固载化——关于制备负载型酸催化剂的一般原理.分子催化,1996,10,299~313
    [63]陈霄榕,李永丹,康慧敏,张继炎,张鎏,SiO2与Keggin杂多酸相互作用的研究,分子催化,2002,16,60~64
    [64] Guoxian Yu, Shanxiang Lu, Hui Chen et al. Diesel fuel desulfurization with hydrogen peroxide promoted by formic acid and catalyzed by activated carbon. Carbon. 2005, 43, 2285~2294
    [65] Guoxian Yu, Shanxiang Lu, Hui Chen et al. Oxidative Desulfurization of Diesel Fuels with Hydrogen Peroxide in the Presence of Activated Carbon and Formic Acid. Energy & Fuels. 2005, 19, 447~452
    [66] Bhabendra K. Pradhan and N. K. Sandle. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon. 1999, 37, 1323~1332
    [67] P. Chingombe, B. Saha, R. J. Wakeman. Surface modification and characterization of a coal-based activated carbon. Carbon. 2005, 43, 3132~3143
    [68] Chang Yu, Jie Shan Qiu, Yu Feng Sun et al. Adsorption removal of thiophene and dibenzothiophene from oils with activated carbon as adsorbent: effect of surface chemistry. Journal of Porous Materials. 2007, 15, 1380~2224
    [69]余谟鑫,活性炭表面改性以及其结构和表面化学性质对吸附DBT的影响,[博士论文],华南理工大学,2007年
    [70] Donnet JB. The chemical reactivity of carbon. Carbon. 1968, 6, 161-76 Boehm HP. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon. 1994, 32, 759~769
    [71] Laine, N., Vastola, F., Walker, P. Importance of Active Surface Area in Carbon-Oxygen Reaction. Journal of Physical Chemistry. 1963, 67, 2030~2035
    [72] F. Zannikos, E. Lois, S. Stournas. Desulfurization of petroleum fractions by oxidation and solvent extraction. Fuel Processing Technology. 1995, 42, 35~45
    [73]李廷盛,尹其光,超声化学,北京:科学出版社,1995
    [74] Sravan Kumar S., A. Balasubrahmanyam, Shyam Sundar P, P. R. Gogate, V. D. Deshpande, S. R. Shukla and A. B. Pandit. Characterization of Sonochemical Reactor for Physicochemical Transformations. Industrial & Engingeering Chemistry Research. 2009. Article ASAP.
    [75] Qiuying Li, Xiliang Zhang, Guozhang Wu et al. Sonochemical preparation of carbon nanosheet from carbon black. Ultasonics Sonochemistry. 2007, 14, 225~228
    [76] Sravan Kumar S., A. Balasubrahmanyam, Shyam Sundar P et al. Characterization of Sonochemical Reactor for Physicochemical Transformations. Industrial & Engingeering Chemistry Research. Article ASAP, 2009
    [77] Nilsun H. Ince, Rana Belen. Aqueous Phase Disinfection with Power Ultrasound: Process Kinetics and Effect of Solid Catalysts. Environmental Science and Technology. 2001, 35, 1885~1888
    [78] T. Tuziuti, K. Yasui, Y. Iida et al. Effect of particle addition on sonochemical reaction. Ultrasonics. 2004, 42, 597~601
    [79] Toru Tuziuti, Kyuichi Yasui, Manickam Sivakumar et al. Correlation between Acoustic Cavitation Noise and Yield Enhancement of Sonochemical Reaction by Particle Addition. Journal of Physical Chemistry A. 2005. 109, 4869~4872
    [80] Professor Dominick Casadonte’s Research Page (Texas Tech University). http://www.depts.ttu.edu/chemistry/Faculty/casadonte/
    [81] Michael A. Beckett and Inez Hua. Impact of Ultrasonic Frequency on Aqueous Sonoluminescence and Sonochemistry. Journal of Physical Chemistry A. 2001, 105, 3796~3802
    [82] Inez Hua and Michael R. Hoffmann. Optimization of Ultrasonic Irradiation as an Advanced Oxidation Technology. Environmental Science and Technology. 1997, 31, 2237~2243
    [83] O. Gizem Gunal, M. R. Islam. Alteration of asphaltic crude rheology with electromagnetic and ultrasonic irradiation. Journal of Petroleum Science and Engineering. 2000, 26, 263~272
    [84] Shedid A. Shedid. An ultrasonic irradiation technique for treatment of asphaltene deposition. Journal of Petroleum Science and Engineering. 2004, 42, 57~70
    [85] Kenneth S. Suslick, John J. Gawlenowski, Paul F. Schubert et al. Alkane Sonochemistry. Journal of Physical Chemistry. 1983, 87, 2299~2301
    [86] Namgoo Kang, Inez Hua and Changhe Xiao. Impacts of Sonochemical Process Variables on Number Average Molecular Weight Reduction of Asphaltene. Industrial & Engingeering Chemistry Research. 2006, 45, 5239~5245
    [87] Jiunn-Ren Lin and Teh Fu Yen. An Upgrading Process through Cavitation and Surfactant. Energy & Fuels. 1993, 7, 111~118
    [88] Kai Dunn and Teh Fu Yen. A plausible reaction pathway of asphaltene under ultrasound. Fuel Processing Technology. 2001, 73, 59~71
    [89] Yen, T. F., Erdman, J. G., Pollack, S. S. Investigation of the Structure of Petroleum Asphaltenes by X-Ray Diffraction. Analytical Chemistry. 1961, 33, 1587~1594
    [90] Pollock, S. S., Yen, T. F. Structural Studies of Asphalts by X-ray Small Angle Scattering. Analytical Chemistry. 1970, 42, 623~629
    [91] Kinya Sakanishi, Naomi Yamashita, D. Duayne Whitehurst et al. Depolymerization and demetallation treatments of asphaltene in vacuum residue. Catalysis Today. 1998, 43, 241~247
    [92] Kenneth A. Gould and Irwin A. Wiehe. Natural Hydrogen Donors in Petroleum Resids. Energy & Fuels. 2007, 21, 1199~1204
    [93] Kazem M. Sadeghi, Mohammad-Ali Sadeghi and Teh Fu Yen. Novel Extraction of Tar Sands by Sonication with the Aid of in Situ Surfactants. Energy & Fuels. 1990, 4, 604~608
    [94]汤立新,韩萍芳,吕效平,南京工业大学学报,2003,25,41~45
    [95]汤立新,韩萍芳,吕效平,高校化学工程学报,2003,17,243~247
    [96] Sulphco公司主页http://www.sulphco.com/
    [97] U.S. patent No. 7275440, No. 7300566, No. 6402939, No. 6500219, No. 6827844
    [98]景晓燕,亢世杰,何周,超声波条件下催化氧化柴油脱硫的研究,应用科技,2006,33,57~59
    [99] Carl L. Yaws, Chemical Properties Handbook : Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals. Bdijing World Publishing Corporation. 1999
    [100]梅海,生产超低硫柴油的超声-催化-氧化脱硫方法,中国专利,CN 1412280A,2003-04-23
    [101]赵进才,马万红,陈春城等,石油产品的一种催化氧化脱硫方法,中国专利,CN 1834207A,2006-09-20
    [102]陆善祥,余国贤,陈辉等,石油馏分油催化氧化脱硫法,中国专利,CN1563284A,2005-01-12
    [103]刘丽艳,金鑫,李鑫钢,高效脱除C9油品中硫化物的研究,现代化工,2008,28,56-58
    [104]刘丽艳,李鑫钢,金鑫等,高芳烃含量油品中脱除硫化物的方法,中国专利,200810152507.3
    [105]刘丽艳,李鑫钢,金鑫等,油品氧化脱硫连续反应装置及操作方法,中国专利,200810152340.0
    [106]许长春,金鑫,李鑫钢等,用于油品氧化脱硫的催化剂的制备方法,中国专利,200810152404.7
    [107]关润伶,朱红,胜利油田稠油组分的光谱法研究,光谱学与光谱分析,2007,27,2270-2274
    [108]崔树宝,紫外分光光度法测定石油产品中芳烃含量,天津化工,2006,20,51-52
    [109]齐邦峰,曹祖宾,陈立仁,张会成,王丽君,阙国和,紫外吸收光谱研究胜利渣油胶质、沥青质结构特性,石油化工高等学校学报,2001,14,14-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700