用户名: 密码: 验证码:
磁弹性无线微生物传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了磁弹性无线微生物传感器在生化分析中的应用。在外加交变磁场中,磁性膜片受磁场激发产生磁矩,将磁能转换为机械能,并产生沿长度方向伸缩振动,即磁致伸缩magnetostrictive)。当交变磁场频率与磁性膜片机械振动频率相等时,膜片产生共振,此时具有最大振幅,对应的振动频率为磁性膜片共振频率。当磁性膜片传感器的质量负载和所浸入的检测溶液性质(粘度、密度等))发生变化时,其共振频率随之发生改变。由于磁性膜片本身是磁性的,其伸缩振动产生磁通,产生的磁通可由检测线圈检测。磁弹性传感器中信号的激发与传送是通过磁场进行的,传感器与检测仪器之间没有任何物理连接,属于无线无源(wireless, passive)传感器,磁弹性传感器这一特点使得它在活体、在体及无损检测等领域分析中具有广泛的应用前景。利用这一原理,本文主要做了以下三个方面的应用研究工作:
     (1)磁弹性大肠杆菌无线传感器的研制:研制了微生物磁弹性无线传感器;首先在这种传感器表面修饰一层聚亚胺酯,然后再用涂膜法均匀地涂上羧基化的甘露聚糖。伴刀豆蛋白(Con A)能够与传感器上的甘露聚糖结合,而Con A由于与大肠杆菌表面的0-抗原发生免疫反应而紧密联结,这样大肠杆菌就能够紧密地连接到传感器表面,造成传感器表面负载质量增加,从而导致共振频率下降,因此可以通过共振频率下降情况测量大肠杆菌的浓度。该传感器可以测定大肠杆菌浓度的线性范围是6 .0×101-6.1×109 cells/mL,其检测下限为60 cells/mL。由于甘露糖和Con A的特异性结合,该传感器不仅能用来检测大肠杆菌还能检测其它的革兰阴性细菌。由于测量时不需要培养细菌,因此实验耗时短,大约不超过3 h就可以完成实验。同时该方法的无线无源特征、快速和对细菌的灵敏响应,所开发的仪器具有活体无损测定的前景。
     (2)磁弹性传感器应用于检测血液凝固动力学和探讨微生物感染血液的机理的研究:该实验的原理是基于细菌感染血液时,在生长和增殖的同时产生了大量的内毒素、脂磷壁酸和肽聚糖触发机体对入侵细菌的阻抑反应,产生IL-1、IL-6、IL-8和INFr等细胞活化因子,促使白细胞数目减少,血小板聚集和释放,进而促进血液的凝固。而血液在凝固的过程中会使传感器表面的负载质量和检测液黏度的发生改变,引起传感器的振幅发生变化,因而可以通过测量传感器振幅的改变量来间接地分析血液中微生物的种类和浓度;深入研究了Ca2+浓度和细菌培养时间对血液的影响,进一步了解了细菌感染血液的机理,细菌主要是影响血液的白细胞和血小板等成分,白细胞由于免疫作用会吞噬细菌而死亡,数目会变少,而血小板的数目反而会增加,据此该方法可用于血液病的检测。同时该方法的无线无源特征、快速和对细菌的灵敏响应,所开发的仪器具有临床检测的前景。
     (3)溶液中细菌的运动情况研究:应用微生物磁弹性无线传感器深入地研究了细菌在溶液中的运动情况。首先利用溶液中的Ca2+与传感器表面修饰的海藻酸钠膜反应形成凝胶和孔洞结构,细菌在运动过程中就很容易黏附或者直接进入孔洞,从而造成传感器负载质量增加,进而引起传感器共振频率下降。不同种类的细菌的运动情况是有差别的,运动能力比较强的细菌的响应灵敏度比较高,可以根据频率的下降的情况初步了解细菌的种类和浓度;深入地研究了溶液的pH、相同浓度的Zn2+、Ca2+等离子和不同浓度的Ca2+等因素对测量的影响,得到一个比较优化的测量条件(pH5.6、11.3 mM Ca2+),在该条件下测得大肠杆菌的检测范围为9.0×101-9.1×109 cells/mL,检测下限为90 cells/mL。此该方法不仅可用来检测浓度,还能检测细菌的种类。同时该传感器的特异性比较好,可以用来检测大多数溶液微生物的浓度。
This dissertation focuses on the magnetoealstic biosensor and its applications in biochemical analysis. In response to a time varying magnetic field, the magnetoelastic sensor efficiently couples and translates magnetic energy to mechanical energy. The elastic energy mechanically deforms the sensor, causing it mechanically vibrate along to its length. If the frequency of the ac field is equal to the mechanical resonance frequency of the sensor, the vibration amplitude is maximum, and the sensor vibrates at its characteristic resonance frequency that shifts in response to mass loading. Since the sensor material is also magnetostrictive, the mechanical oscillation in turn generates a magnetic flux that can be remotely detected using a pick-up coil. The sensor is totally passive. Neither physical connections between the sensor and the detection system are required, nor is any internal power required. The wireless nature of the magnetoelastic sensor makes it a powerful candidate for in situ and in vivo analysis.
     In this dissertation, three kinds of magnetoelastic biosensors were developed:
     (1) A wireless magnetoelastic sensor for determination of Escherichia coli O157:H7 (E. coli O157:H7) is developed. The magnetoelastic E. coli sensor was fabricated by coating a layer of functionalized mannose on a magnetostrictive ribbon, which pre-coated with a layer of polyurethane film. The multivalent binding of lectin concanavalin A (Con A) to the E. coli surface O-antigen and mannose favors the strong adhesion of E. coli to the mannose-modified magnetoelastic sensor; E. coli is rigidly and strongly attached on the mannose-modified sensor through Con A, which works as a bridge to bind E. coli to the mannose-modified sensor surface. As E. coli is bound to the sensor, its resonance frequency shifts due to the increasing of the loading mass of sensors, enabling quantification of E. coli concentration with a limit of detection of 60 cells/mL and a linear logarithmic response range of 6.0×101 to 6.1×109 cells/mL. Because of the special recognization between the lectin and bacteria, the sensor can also is used to detecting others gram negative bacteria. The analysis can be directly conducted without incubation and completed in 3 h or less. The proposed magnetoelastic sensor platform offers a great opportunity for developing a useful in vivo and in situ bacteria measurement technology.
     (2) The coagulation speed of blood was studied applying a wireless magnetoelastic sensor. The effect of microorganisms (E. coli O157:H7, Pseudomonas
引文
[1]刘雨潇,刘士敏,王民,等.分子生物学方法在食品微生物检测中的应用.生物技术通讯,2009,20(3):451-454
    [2]Kerdahi K F, Istafanos P F. Rapid determination of listeria monoeytogenes by automated enzyme-linked immunoassay and nonradioaetive DNA probe. JAOAC Intharrogate,2000,83(1):86-88
    [3]陈倩,程伯琨.基因探针检测食品中具有HPI毒力岛的ESIEC大肠杆菌.食品科学,2000,21(7):35
    [4]舒黛廉,王珏.乳及乳制品中抗生素残留微生物检测法研究进展及其控制措施.中国畜牧兽医,2008,35(1):74-79
    [5]del Moral A, Algarabel P A, Arnaudas J I, et al. Magnetostriction effects. Journal of Magnetism and Magnetic Materials,2002,245(2):788-796
    [6]田民波.磁性材料.北京:清华大学出版社,2001,4-5
    [7]王博文.超磁致伸缩材料制备与器件设计.北京:冶金工业出版社,2003,1-32
    [8]钟文定.铁磁学.北京:科学出版社,2000,360-361
    [9]宛德福,马兴隆.磁性物理学.成都:电子科技大学出版社,1994,377-378
    [10]陈艾.敏感材料与传感器.北京:化学工业出版社,2004,279-339
    [11]高庆坤.振动法测冰技术的研究及应用:[哈尔滨工程大学硕士学位论文].哈尔滨:哈尔滨工程大学通信与信息系统,2005,1-5
    [12]Mwafy A M, Elnashai A S. Static pushover versus dynamic collapse analysis of buildings. Engineering Structures,2001,23(5):407-424
    [13]Kleinke D K, Uras H M. A noncontact magnetostrictive strain sensor. Review of Scientific Instrument,1993,64(8):2361-2367
    [14]Cai Q Y, Cammers-Goodwin A, Grimes C A. A wireless, remote query magnetoelastic CO2 sensor. Journal of Environmental Monitoring,2000,2(6): 556-560
    [15]Cai Q Y, Jain M K, Grimes C A. A wireless, remote query ammonia sensor. Sensors and Actuators B:Chemical,2001,77(3):614-619
    [16]Zorn M E, Rahne K A, Tejedor-Tejedor M I, et al. Characterization of gas-phase adsorption on metal oxide thin films using a magnetoelastic. resonance microbalance. Analytical Chemistry,2003,75(22):6223-6230
    [17]Zhang R, Tejedor M I, Anderson M A, et al. Ethylene detection using nanoporous PtTiO2 coatings applied to magnetoelastic thick films. Sensors, 2002,2(8):331-338
    [18]Giannakopoulos I G, Kouzoudis D, Grimes C A, et al. Synthesis and characterization of a composite zeolite-metglas carbon dioxide sensor. Advanced Functional Materials,2005,15(7):1165-1170
    [19]Xu X W, Wang J, Long Y C. Zeolite-based materials for gas sensors. Sensors, 2006,6(12):1751-1764
    [20]Cai Q Y, Grimes C A. A remote query magnetoelastic pH sensor. Sensors and Actuators B:Chemical,2000,71(1-2):112-117
    [21]Cai Q Y, Grimes C A. A salt-independent pH sensor. Sensors and Actuators B: Chemical,2001,79(2-3):144-149
    [22]Ruan C M, Zeng K F, Grimes C A. A mass-sensitive pH sensor based on a stimuli-responsive polymer. Analytica Chimica Acta,2003,497(1-2):123-131
    [23]Ruan C M, Ong K G, Mungle C, et al. A wireless pH sensor based on the use of salt-independent micro-scale polymer spheres. Sensors and Actuators B: Chemical,2003,96(1-2):61-69
    [24]Cai Q Y, Zeng K F, Ruan C M, et al. A wireless, remote query glucose biosensor based on a pH-sensitive polymer. Analytical Chemistry,2004,76(14): 4038-4043
    [25]Gao X J, Yang W Y, Pang P F, et al. A wireless magnetoelastic biosensor for rapid detection of glucose concentrations in urine samples. Sensors and Actuators B:Chemical,2007,128(1):161-167
    [26]Yang W Y, Pang P F, Gao X J, et al. Detection of lactose in milk samples using a wireless multi-enzyme biosensor. Sensor Letters,2007,5(2):419-424
    [27]Zourob M, Ong K G, Zeng K F, et al. A wireless magnetoelastic biosensor for the direct detection of organophosphorus pesticides. Analyst,2007,132(4): 338-343
    [28]Grimes C A, Stoyanov P G, Liu Y C, et al. A magnetostatic-coupling based remote query sensor for environmental monitoring. Journal of Physics D: Applied Physics,1999,32(12):1329-1335
    [29]Ong K G, Paulose M, Jain M K, et al. Magnetism-based remote query glucose sensors. Sensors,2001,1(5):138-147
    [30]Ruan C M, Zeng K F, Varghese O K, et al. A magnetoelastic bioaffinity-based sensor for avidin. Biosensors and Bioelectronics,2004,19(12):1695-1701
    [31]Ong K G, Leland J M, Zeng K F, et al. A rapid highly-sensitive endotoxin detection system. Biosensors and Bioelectronics,2006,21(12):2270-2274
    [32]Cai Q Y, Zeng K F, Ruan C M, et al. A wireless, remote query glucose biosensor based on a pH-sensitive polymer. Analytical Chemistry,2004,76(14): 4038-4043
    [33]Ruan C M, Zeng K F, Varghese O, et al. A staphylococcal enterotoxin B magnetoelastic immunosensor. Biosensors and Bioelectronics,2004,20(3): 585-591
    [34]Ruan C M, Zeng K F, Varghese O K, et al. Magnetoelastic immunosensors: amplified mass immunosorbent assay for detection of Escherichia coli O157:H7. Analytical Chemistry,2003,75(23):6494-6498
    [35]Puckett L G, Barrett G, Kouzoudis D, et al. Monitoring blood coagulation with magnetoelastic sensors. Biosensors and Bioelectronics,2003,18(5-6):675-681
    [36]Grimes C A, Kouzoudis D. Remote query measurement of pressure, fluid-flow velocity, and humidity using magnetoelastic thick-film sensors. Sensors and Actuators A:Physical,2000,84(3):205-212
    [37]Jain M K, Grimes C A. A wireless magnetoelastic micro-sensor array for simultaneous measurement of temperature and pressure. IEEE Transactions on Magnetics,2001,37(4):2022-2024
    [38]Ong K G, Zeng K F, Yang X P, et al. Quantification of multiple bioagents with wireless, remote-query magnetoelastic microsensors. IEEE Sensors Journal, 2006,6(3):514-522
    [39]Jain M K, Cai Q Y, Grimes C A. A wireless micro-sensor for simultaneous measurement of pH, temperature and pressure. Smart Materials and Structures, 2001,10(2):347-353
    [40]Jain M K, Schmidt S, Ong K G, et al. Magnetoacoustic remote query temperature and humidity sensors. Smart Materials and Structures,2000,9(4): 502-510
    [41]Stoyanov P G, Grimes C A. A remote query magnetostrictive viscosity sensor. Sensors and Actuators A,2000,84(1):8-14
    [42]Loiselle K, Grimes C A. Remote query measurement of viscosity in viscous liquids using magnetostrictive thick-films. Review of Scientific Instrument, 2000,71(3):1141-1446
    [43]Puckett L G, Barrett G, Kouzoudis D, et al. Monitoring blood coagulation with magnetoelastic sensors. Biosensors and Bioelectronics,2003,18(5-6):675-681
    [44]Puckett L G, Lewis J K, Urbas A, et al. Magnetoelastic transducers for monitoring coagulation, clot inhibition, and fibrinolysis. Biosensors and Bioelectronics,2005,20(9):1737-1743
    [45]陆德源.医学微生物学.北京:人民卫生出版社,1996,298-300
    [46]马文漪,杨柳燕.环境微生物工程.南京:南京大学出版社,1998,128-130
    [47]Ibrahim S A, Hong Y, Seo C W. Antimicrobial activity of lactic acid and copper on growth of Salmonella and Escherichia coli O157:H7 in laboratory medium and carrot juice. Food Chemistry,2008,109(1):137-143
    [48]Avery L M, Williams A P, Killham K, et al. Survival of Escherichia coli O157:H7 in waters from lakes, rivers, puddles and animal-drinking troughs. Science of The Total Environment,2008,389(2-3):378-385
    [49]侯美英,周振荣.大肠杆菌0157:H7检测方法的研究进展.预防医学文献信息,2002,8(1):53-55
    [50]Lee J Y, Deininger R A. A rapid screening method for the detection of viable spores in powder using bioluminescence. Luminescence,2004,19(4):209-211
    [51]Garcia-Armisen T, Servais P. Enumeration of viable E. coli in rivers and wastewaters by fluorescent in situ hybridization. Journal of Microbiological Methods,2004,58(2):269-279
    [52]Ericsson M, Hanstorp D, Hagberg P, et al. Sorting out bacterial viability with optical tweezers. Journal of Bacteriology,2000,182(19):5551-5555
    [53]Simpkins S A, Chan A B, Hays J, et al. An RNA transcription-based amplification technique (NASBA) for the detection of viable Salmonella enterica. Letters in Applied Microbiology,2000,31(2):186
    [54]Mo X T, Zhou Y P, Lei H, et al. Microbalance-DNA probe method for the detection of specific bacteria in water. Enzyme and Microbial Technology,2002, 30(5):583-589
    [55]Wang R F, Cao W W, Johnson M G.16S rRNA-based probes and polymerase chain reaction method to detect Listeria monocytogenes cells added to foods. Applied and Environmental Microbiology,1992,58(9):2827-2831
    [56]Su X D, Low S, Kwang J, et al. Piezoelectric quartz crystal based veterinary diagnosis for Salmonella entritidis infection in chicken and egg. Sensors and Actuators B,2001,75(1-2):29-35
    [57]Uchida H, Fujitani K, Kawai Y, et al. A new assay using surface plasmon resonance (SPR) to determine binding of the Lactobacillus acidophilus group to human colonic mucin. Bioscience, Biotechnology, and Biochemistry,2004, 68(5):1004-1010
    [58]Jindou S, Soda A, Karita S, et al. Cohesin-dockerin interactions within and between Clostridium josui and Clostridium thermocellum:binding selectivity between cognate dockerin and cohesin domains and species specificity. Journal of Biological Chemistry,2004,279(11):9867-9874
    [59]Hardegger D, Nadal D, Bossart W, et al. Rapid detection of Mycoplasma pneumoniae in clinical samples by real-time PCR. Journal of Microbiological Methods,2000,41(1):45-51
    [60]Ahmed N, Mohanty A K, Mukhopadhyay U, et al. PCR-based rapid detection of Mycobacterium tuberculosis in blood from immunocompetent patients with pulmonary tuberculosis. Journal of Clinical Microbiology,1998,36(10): 3094-3095
    [61]Gunasekera T S, Attfield P V, Veal D A. A flow cytometry method for rapid detection and enumeration of total bacteria in milk. Applied and Environmental Microbiology,2000,66(3):1228-1232
    [62]Yu H, Bruno J G. Immunomagnetic-electrochemiluminescent detection of Escherichia coli 0157 and Salmonella typhimurium in foods and environmental water samples. Applied and Environmental Microbiology,1996,62(2):587-592
    [63]Bukhari Z, McCuin R M, Fricker C R, et al. Immunomagnetic separation of Cryptosporidium parvum from source water samples of various turbidities. Applied and Environmental Microbiology,1998,64(11):4495-4499
    [64]Zhao J W, Zhu W J, He F J. Rapidly determining E. coli and P. aeruginosa by an eight channels bulk acoustic wave impedance physical biosensor. Sensors and Actuators B,2005,107(1):271-276
    [65]Gau J J, Lan E H, Dunn B, et al. A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosensors and Bioelectronics, 2001,16(9-12):745-755
    [66]Garcia-Armisen T, Servais P. Enumeration of viable E. coli in rivers and wastewaters by fluorescent in situ hybridization. Journal of Microbiological Methods,2004,58(2):269-279
    [67]Grimes C A, Kouzoudis D, Mungle C. Simultaneous measurement of liquid density and viscosity using remote query magnetoelastic sensors. Review of Scientific Instruments,2000,71(10):3822-3824
    [68]Lacheisserie E. Magnetostriction:Theory and applications of magnetoelasticity. Boca Raton:CRC Press,2000,218-213
    [69]O'Handley R C. Modern magnetic materials:principles and applications. New York:John Wiley and Sons Press,2000,3-6
    [70]Grimes C A, Ong K G, Loiselle K, et al. Magnetoelastic sensors for remote query environmental monitoring. Smart Materials and Structures,1999,8(5): 639-646
    [71]Landau L D, Lifshitz E M. Theory of elasticity,3rd Edition. Oxford:Pergamon Press,1986,100
    [72]Schmidt S, Grimes C A. Characterization of nano-dimensional thin-film elastic moduli using magnetoelastic sensor. Sensors and Actuators A,2001,94(3): 189-196
    [73]杨莉,成丽,魏于全,等.N-[2-(胆固醇氧羰基氨基)乙基]甲氨酰甲基化甘露聚糖的合成.四川:四川大学学报(医学版),2003,34(4):730-732
    [74]Shen Z H, Huang M C, Xiao C D, et al. Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Analytical Chemistry,2007,79(6):2312-2319
    [75]Huang S J, Pang P F, Xiao X L, et al. A remote-query sensor for predictive indication of milk spoilage. Sensors and Actuators B,2008,23(131):489-495
    [76]Mao X L, Yang L J, Su X L, et al. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosensors and Bioelectronics,2006,21(7):1178-1185.
    [77]萨仁格日乐.血液感染性安全问题的现状与展望.实用医技杂志,2007,14(27):3818-3820
    [78]Dhingra N, Hoyds S, Fonlhmn J, et al. Challenges in global blood safety. World Hospital Health Service,2004,40(1):45
    [79]MooreA, Herrera G, Nyamongo J, et al. Estimated risk of HIV transmission by blood transfusion in Kenya. Lancet,2001,358(9282):657
    [80]Liu C Z, Huang H Y, Tsai P J, et al. Blockade of glycoprotein Ⅱb/Ⅲa by crotavirin, a member of disintegrins, prevents platelet from activation and aggregation by Staphylococcus aureus bacteria. Thrombosis Research,2005, 116(2):145-155
    [81]Salat A, Murabito M, Boehm D, et al. Endotoxin enhances in vitro platelet aggregability in whole blood. Thrombosis Research,1999,93(3):145-148
    [82]Yeaman M R, Bayer A S. Antimicrobial peptides versus invasive infections. Current Topics in Microbiology and Immunology.2006,306(5):111-152
    [83]Puckett L G, Barrett G, Kouzoudis D, et al. Monitoring blood coagulation with magnetoelastic sensors. Biosensors and Bioelectronics,2003,18 (5-6):675-681
    [84]Chang H C, Cheng T J, Wu T H, et al. Determination of coagulation time in whole blood containing anticoagulant by piezoelectric quartz crystal sensor. Sensors and Actuators B,2000,66(1-3):296-298
    [85]Cheng T J, Chang H C, Lin T M. A piezoelectric quartz crystal sensor for the determination of coagulation time in plasma and whole blood. Biosensors and Bioelectronics,1998,13(2):147-156
    [86]Muramatsu H, Kimura K, Ataka T, et al. A quartz crystal viscosity sensor for monitoring coagulation reaction and its application to a multichannel coagulation detector. Biosensors and Bioelectronics,1991,6(4):353-358
    [87]Vikinge T P, Hansson K M, Sandstrom P, et al. Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation. Biosensors and Bioelectronics,2000,15(11-12):605-613
    [88]Hansson K M, Vikinge T P, Ranby M, et al. Surface plasmon resonance (SPR) analysis of coagulation in whole blood with application in prothrombin time assay. Biosensors and Bioelectronics,1999,14(8):671-682
    [89]Vikinge T P, Hansson K M, Benesch J, et al. Blood plasma coagulation studied by surface plasmon resonance. Journal for Biomedical Optics,2000,5(1):51-55
    [90]刘清,徐伟昌,张宇.重金属离子对氧化亚铁硫杆菌活性的影响.铀矿冶,2004,23(3):155-157
    [91]杨鹏,夏延致,姜丽萍,等.新型海藻酸铜纤维的制备和性能研究.化工新型材料,2008,36(9):34-36
    [92]Kerchove A, Elimelech M. Calcium and magnesium cations enhance the adhesion of motile and nonmotile Pseudomonas aeruginosa on alginate films. Langmuir,2008,24(7):3392-3399
    [93]卢晓黎,雷鸣,陈正纲,等.溶液粘度影响的研究.食品科学,2000,21(12):15-21
    [94]李志勇,倪才华,熊诚.共价交联海藻酸钠凝胶的制备和性能研究.光谱实验室,2008,25(5):977-980
    [95]Camesano T A, Logan B E. Influence of fluid velocity and cell concentration on the transport of motile and non-motile bacteria in porous media. Environmental Science and Technology,1998,32(11):1699-1708

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700