用户名: 密码: 验证码:
硅锰铁合金埋弧炉供电系统建模分析与工艺指标预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅锰铁合金埋弧炉将高压电能通过供电系统转换为熔池电弧热能和炉料电阻热能,以满足铁合金熔炼需要的热量。供电系统由电炉变压器、短网、三相电极、熔池电弧和炉料电阻等组成。由于电弧与炉料电阻呈现非线性和时变性,三相电极位置调整、电极消耗和负载耦合引起电弧和炉料电阻变化,使供电系统模型具有非线性、时变性、强耦合和不确定性的特点,导致供电系统精确建模非常困难。
     论文首先建立了硅锰铁合金埋弧炉供电系统主回路计算模型,分析了不同电极控制策略下电炉的不对称负载特性和三相熔池有功功率不平衡的原因,提出了基于电源中心点和熔池中心点的三相电极有功功率在线估计算法。然后,通过对铁合金埋弧炉熔炼工艺机理的分析,研究了基于最小二乘支持向量机的工艺指标预测方法,并以12500KVA硅锰铁合金埋弧炉为对象进行了实验验证。论文主要研究工作及创新性成果如下:
     (1)针对埋弧炉三相负载不对称、采用恒电流控制策略无法保证三相电极有功功率平衡的问题,提出了基于电极电流比的三相电极有功功率平衡控制策略。首先通过对硅锰铁合金埋弧炉供电系统主回路参数计算,建立了硅锰铁合金埋弧炉供电系统等效电路模型,采用牛顿法求解非线性方程组得到了埋弧炉等效电路参数,通过调节电极电流比实现了三相电极有功功率平衡控制。实验结果表明,该方法保证三相电极功率平衡精度达到±3%以内。
     (2)针对埋弧炉三相电极有功功率不可测、难以实现三相熔池有功功率平衡的问题,提出了基于电源中心点和熔池中心点的三相电极功率在线估计方法。通过人造电源中心点,实现了电炉变压器高压侧各相电压、电流和相有功功率的在线测量。通过人造熔池中心点,实现了变压器低压侧三相熔池电压的在线测量,并基于能量守恒原理建立了硅锰铁合金埋弧炉电极有功功率机理模型。考虑到建模过程中各种假设引起的估计误差较大,采用改进BP神经网络对机理模型的误差进行在线修正。仿真结果表明,基于改进BP神经网络修正的电极功率机理模型相对误差为±5.71%,具有较高的精度。
     (3)针对硅锰铁合金埋弧炉熔炼环境恶劣、合金成分难以实时检测的问题,提出了基于自适应递推最小二乘支持向量机的硅锰合金成分预测方法,建立了硅锰合金成分预测模型,采用增长记忆递推算法、限定记忆递推算法和缩减记忆递推算法对模型进行在线训练,以最小化LSSVM目标损失函数为准则自适应调整预测模型的输出,动态调整模型的结构和参数,提高了模型的训练速度和预测精度。仿真结果表明该预测方法是有效的。
     (4)针对硅锰铁合金埋弧炉熔炼过程中炉渣成分检测滞后大、难以根据冶炼工况优化操作参数的问题,提出了基于最小二乘支持向量机的炉渣成分预测方法。首先基于物料平衡原理建立了理想工况和特定化学反应条件下硅锰铁合金炉渣成分机理模型,反映了炉渣成分的变化规律。由于机理建模是对熔炼工况进行了一定简化和假设,模型预测精度不能完全满足工业现场对炉渣成分的检测要求。然后,基于数据驱动的思想建立了约简最小二乘支持向量机炉渣成分预测模型和核主元分析与最小二乘支持向量机相结合的炉渣碱度预测模型。约简最小二乘支持向量机合金成分预测模型通过施密特正交变换获得高维特征空间核矩阵的基,用自适应差分进化算法优化最小二乘支持向量机核函数参数,提高模型的鲁棒性和预测精度。核主元分析与最小二乘支持向量机相结合的炉渣碱度预测模型利用核主元分析对输入样本数据进行降噪处理和特征提取,提高模型的抗噪性能和训练速度。仿真结果表明,模型的预测精度可以满足生产现场对炉渣成分检测的要求。
The submerged arc furnace (SAF) is used to convert the high-voltage electric energy to arc heat and charge resistance heat to meet the heat needs of silicon-manganese ferroalloy smelting. The power supply system model consists of a transformer, short network, three-phase electrode, electric-arc, charge resistors and so on. Because of the position adjustment and the corrosion of three-phase electrode, as well as the load coupling, the power supply system model has the characteristics of nonlinearity, timevayring and uncertainty, which make it difficult to establish its precise mathematical model. Moreover, the silicon-manganese smelting process is a process with physical and chemical reactions of hign temperature and multi-composition, which has such characteristics as complex mechanism, multivariable and large delay. The process indexes are extremely difficult to be measured and the operating parameters can't be optimized, which leads to fluctuant product quality, poor productivity and high power consumption.
     In this paper, a calculation model for the power supply system of the SAF was developed and the properties of three-phased asymmetric loads and the reasons of unbalanced three phase electrode effective power for different electrode control strategies were analyzed. An on-line calculation method of three phase electrode effective power was proposed by designing an electrical zero in the primary circuit and a neutral point in the bottom of the bath. Then, on the basis of the process mechanism analysis of the SAF, the process indexes prediction models based on least squares support vector machine were proposed. The proposed methods were validated by using the production data of a12500KVA submerged arc silicomanganese furnace. Main research work and innovation achievements are as follows:
     (1) Aiming at the unbalanced effective power of three-phase electrode caused by three-phased asymmetric loads of the SAF under constant current control strategy, an effective power balanced control strategy based on electrode current ratio was proposed. The equivalent circuit equations for the the power supply system were first established. Then, the equivalent electrical parameters were calculated by solving the nonlinear circuit equations using Newton method. At last, a three phase electrode effective power balanced control strategy based on electrode current ratio was obtained. The tests results show that the unbalanced degree of three-phase electrode effective power was restrained within±3%by using the proposed method.
     (2) Considering the difficulties in the measurement of three-phase electrode effective power and the problems in balance of three phase electrode effective power, an on-line calculation method of three phase electrode effective power was proposed. An electrical zero in the primary circuit and a neutral point in the bath bottom were designed, where the phase voltage, phase current, phase active power in the primary side of transformer as well as the electrode voltage in the secondary side can be measured. Then a mechanism model based on Energy Conservation Method of three-phase electrode effective power was proposed and an improved BP neural network was presented to compensate the estimated error. The simulation results show that the proposed method has good performance and its relative error is only±5.71%.
     (3) Aiming at the problem that the silicon-manganese alloy composition is difficult to be measured, an on-line prediction model for silicon-manganese alloy composition based on adaptive recursive least squares support vector machine was proposed. Three recursive including methods increased memory algorithm, fixed memory algorithm and decreased memory algorithm, are employed to train the prediction model. To improve the solution speed and prediction precision of the proposed model, an error minimizing function was set to adjust the structure and parameters of the prediction model adaptively. The simulation results show its effectiveness.
     (4) Aimed at the large-lag of manual examination in the submerged arc smelting process, an on-line prediction method for silicon-manganese slag composition based on simplified least squares support vector machine was proposed. Firstly, a slag composition mechanism model and a slag basity mechanism model based on mass balance were constructed from special chemical reactions under ideal production state, which reflects the change tendency of slag composition. However, for the simplification of the process reactions and condition hypothesis in the process modeling, the accuracy of the mechanism model could not completely meet the technical requirement of industrial production process. Then, a simplified least square support vector machines (SLS-SVM) based slag composition prediction model and a least square support vector machines with kernel principal component analysis (KPCA-LSSVM) based slag basity prediction model are implented. In the SLS-SVM prediction model, the sample data are mapped to the high dimensional feature space using Schmitt orthogonalized to obtain the kernel matrix of the space. Then, the regression parameters were identified by Direct Kernel PLS, and the kernel function parameters in the SLS-SVM were optimized by adaptive differential evolution algorithm. In the KPCA-LSSVM prediction model, the kernel principal component analysis is used to denoise the input data and capture the high-ordered nonlinear principal components among the input data space to improve the model's performace. The experiment results show that the accuracy of the proposed method can meet the requirement of slag composition determination in the industrial process.
引文
[1]B M斯特斯隆基.矿热熔炼炉[M],《矿热熔炼炉》翻译组.北京:冶金工业出版社,1972.274-394.
    [2]安月明,李洪元,金永新.我国矿热电炉能耗现状及节能潜力分析[J].中国有色冶金,2008,6:49-54.
    [3]赵乃成,张启轩.铁合金实用技术手册[M].北京:冶金工业出版社,1998.286-335.
    [4]Shu L, Dai W. Industrial Trials on Basic Fluxes in SiMn smelting [C], Proceedings of the 12th International Ferroalloys Congress, Beijing, China:1998. 232-236.
    [5]GB 21341~2008,中华人民共和国国家标准—铁合金单位产品能源消耗限额[S].北京:中国标准出版社,2008.
    [6]刘华.埋弧矿热电炉电位零点的定位、转移和控制技术[J].铁合金,2011,219(4):28-30.
    [7]戴维.埋弧电炉冶炼中的功率不平衡现象[J].铁合金,1996,1:1-7.
    [8]张素超,朱子宗,秦玉廷,等.硅锰合金生产节能研究[J].过程工程学报,2009,9(S 1):453-458.
    [9]麻林伟,赵小明,贾磊,等.12.5 MVA矿热炉能耗高的原因分析及对策[J].铁合金,2010,211(2):20-23.
    [10]唐春霞,阳春华,桂卫华,等.基于KPCA-LSSVM的硅锰合金熔炼过程炉渣碱度预测研究[J].仪器仪表学报,2010,31(3):689-693.
    [11]Olsen S E, Tangstad M. Silicomanganese production process understanding [C], Proceedings of the 10th International Ferroalloys Congress. Cape Town, South Africa:2004.231-238.
    [12]Zhao B, Jak E, Hayes P. Phase equilibria in high MgO ferro-and silicomanganese smelting slags [C]. Proceedings of the 10th International Ferroalloys Congress. Cape Town, South Africa:2004.184-193.
    [13]Roghani G, Jak E, Hayes P. Phase equilibrium data and liquidus for the system "MnO-CaO-(Al2O3-SiO2) at Al2O3/SiO2 of 0.55 and 0.65" [J]. Metallurgical and Materials Transactions,2003,34(2):173-182.
    [14]Hauksdottir A S, Vesteinsson A, Gestsson A. Current control of a three-phase submerged arc ferrosilicon furnace [J]. Control Engineering Practice,2002, 10(4):457-463.
    [15]Hauksdottir A S, Ingason H T. On the system identification of a ferrosilicon submerged-arc furnace[C]. Proceedings of the 1991 American Control Conference, Boston, USA:1991.1061-1062.
    [16]Mulholland A C, Brereton S P J, Hockaday C J. The effectiveness of current control of submerged arc furnace electrode Penetration in selected scenarios [J]. Journal of the South African Institute of Mining and Metallurgy,2009,109(10): 601-607.
    [17]Yang Y, Xiao Y, Reuter M A. Analysis of transport phenomena in submerged arc furnace for ferrochrome production [C]. Proceedings of the 10th International Ferroalloys Congress. Cape Town, South Africa:2004.15-25.
    [18]Radu B, Olimpiu H, Sergiu S, et al. Modeling and adaptive control of an electric Arc furnace [C]. Proceedings of the 10th International Conference on Electronic Power Quality and Utilization, Barcelona, Spanish:2007.1-6.
    [19]Mohebi M M, Seyedein S H, Aboutalebi M R. Fluid flow and heat transfer modeling of AC arc in ferrosilicon submerged arc furnace [J]. International Journal of Iron and Steel Research,2010,17(9):14-18.
    [20]Wang Y, Mao Z Z, Tian H X, et al. Modeling of electrode system for three-phase electric arc furnace [J]. Journal of Central South Univerty Technology.2010, 17(3):560-565.
    [21]Nicholson H, Roebuck R. Simulation and control of electrode position controllers for electric arc furnaces [J]. Automatica,1972,8(6):683-693.
    [22]Jose M M F, Valeriano A C, Vicente R M, et al. Online estimation of electric arc furnace tap temperature by using fuzzy neural networks [J]. Engineering Applications of Artificial Intelligence,2008,21(3):1001-1012.
    [23]Sridhar E, Lahiri A K. Steady state model for current and temperature distributions in an electric smelting furnace [J]. Steel Research,1994,65(10): 433-437.
    [24]Bellings S A, Boland F M, Nicholson H. Electric arc furnace modeling and control [J]. Automatic.1979,15(2):137-184.
    [25]Wasowski A. Modified solution of arc furnace electrical circuit in terms of arc voltage [J], Ironmaking and steelmaking,1991,18(5):354-358.
    [26]Lavers J D, Bringer P P. Real time measurement of electrical arc furnace disturbances and parameter variations [J]. IEEE Transactions on Industry Applications,1986,22(4):568-576.
    [27]李媛,王建,王艳秋.三相电极调节器的建模及其仿真研究[J].电工技术学报,1999,14(1):23-26.
    [28]Kielce M W. A linearized mathematical model of a three-phase arc furnace circuit [J]. Archiv fur Elektrotechnik,1985,68(3):273-278.
    [29]Ryff P F. Calculation of arc-circuit asymmetry in electric-arc furnaces [C]. Proceedings of IEE B:Electric Power Applications.1983,130(3):213-217.
    [30]Acha E, Semlyen A, Rajakovic N. A harmonic domain computational package for nonlinear problems and its application to electric arcs [J]. IEEE Transactions on Power Delivery,1990,5(3):1390-1397.
    [31]Dugan R C. Simulation of arc furnace power systems [J]. IEEE Transaction on Industry Applications,1980,16(6):813-818.
    [32]Montanari G C, Loggini M, Cavallini A, et al. Flicker and distortion compensation in electrical plants supplying arc-furnaces [C]. Proceedings of IEEE Conference Record on Industry Applications Society Annual Meeting. Denver, USA:1994.2249-2255.
    [33]Janabi S F, Jorjani G. An adaptive system for modelling and simulation of electrical arc furnaces [J]. Control Engineering Practice,2009,17(10): 1202-1219.
    [34]Zheng T X, Makram E B. An adaptive arc furnace model [J]. IEEE Transactions on Power Delivery,2000,15(3):931-939.
    [35]Staib W E, Staib R B. The intelligent arc furnace controller-a neural network electrode position optimization system for the electric arc furnace [J]. Proceeding of IEEE International Jaint Conference on Neural Network. Chicago:IEEE, 1992,3:1-9.
    [36]Hocine L, Yacine D, Kamel B, et al. Improvement of electrical arc furnace operation with an appropriate model [J]. Energy,2009,34 (9):1207-1214.
    [37]Sadeghian A, Lavers J D. Dynamic reconstruction of nonlinearv-icharacteristic in electric arc furnaces using adaptive neuro-fuzzy rule-based networks [J]. Applied Soft Computing,2011,11(1):1448-1456.
    [38]Liu Y J, Gary C W, Hong R C. Curve-fitting-based method for modeling voltage-current characteristic of an ac electric arc furnace [J]. Electric Power Systems Research,2010,80 (5):572-581.
    [39]Golshan M E, Hamedani, Samet H. Updating stochastic model coefficients for prediction of arc furnace reactive power [J]. Electric Power Systems Research, 2009,79(7):1114-1120.
    [40]王丰华.电弧炉建模研究及其应用[D].上海:上海交通大学,2006.
    [41]Horton R, Haskew T A, Burch R F. A time-domain AC electric arc furnace model for flicker planning studies [J]. IEEE Transactions on Power Delivery.2009, 24(3):1450-1457.
    [42]Seungho P, Hao D N. Numerical modeling of multiphase plasma/soil flow and heat transfer in an electric arc furnace [J]. International Journal of Heat and Mass Transfer,1995,38 (7):1161-1171.
    [43]Unal C, Murat T, Ahmet K. Second law analysis of thermodynamics in the electric arc furnace at a steel producing company [J]. Energy Conversion and Management,2003,44(6):961-973.
    [44]刘小河.电弧炉电气系统的模型、谐波分析及电极调节系统自适应控制的研究[D].西安:西安理工大学,2000.
    [45]Mahmoud A A, Stahlhut R D. Modeling of a resistance regulated arc furnace [J]. IEEE Transaction on Power Apparatus and Systems,1985,104(1):58-66.
    [46]Chiappelli B A. Electric arc furnace nonitoring and data analysis techniques [J]. Ironmaking and Steelmaking,1998,25(2):163-167.
    [47]Chirattananon S, Gao Z. A model for the performance evaluation of the operation of electric arc furnace [J]. Energy Conversion and Management,1996,37(2): 161-166.
    [48]Johannes G B, Ian K C, Petrus C P. Modeling and simulation of an electric arc furnace process [J]. Iron Steel Institue Japanese International,1999,39(1):23-32.
    [49]Oosthuizen D J, Craig I K, Pistorius P C. Economic evaluation and design of an electric arc furnace controller based on economic objectives [J]. Control Engineering Practice,2004,12(3):253-265.
    [50]Gosiewski A, Wierzbicki A. Dynamic optimization of a steel-making process in electric arc furnace [J]. Automatica,1970,6(6):767-778.
    [51]Richard D M M, Christopher L E S. Dynamic optimization of electric arc furnace operation [J]. American Institute of Chemical Engineers.2007,53(3):640-653.
    [52]Rousu A, Mattila O. Electrical conductivity of the screening residuals of Coke production in context of ferrochromium production in a submerged arc furnace [J]. Steel Research International,2009,80(11):796-799.
    [53]Andreas B, Sigurd R. Optimisation of the electric arc furnace lancing strategy by physical and numerical simulation [J]. Steel research,2000,71(6):197-203.
    [54]戴维,舒莉.铁合金冶炼工程[M].北京:冶金工业出版社.1999.8-76.
    [55]Tathavadkar V, Singh V, Mishra P K, et al. Effect of manganese ore blends on performance of submerged arc furnace for ferromanganese production [J]. Ironmaking and Steelmaking,2010,37(2):103-111.
    [56]Schei A, Larsen K A. Stoichiometric model of FeSi process [C]. Proceedings of the 29th Electric Furnace Conference, Toronto, New York,1981:301-309.
    [57]Halvorsen S A. An undimensional dynamic model for (Ferro) silicon process [C]. Proceedings of the 50th Electric Furnace Conference. Atlanta, USA:1992.45-62.
    [58]Irons G A. Mathematical modeling of submerged arc smelting [C]. Proceedings of 56th Electric Furnace Conference, New Orleans, Louisiana,1998:311-317.
    [59]Larsen H L, Savarsdottir G, Bakken J A. Simulation of AC arcs in the silicon metal furnace [C]. Porceedings of the 54th Electric Furnace Conference, Dallas, USA,1996:157-168.
    [60]Ranganathan S. Thermo chemical analysis of production of ferrochromium in submerged arc furnace [J]. Fuel and Energy,2000,41(4):234.
    [61]Douglas L J, Birnger P P, Ronald L Q. Mathematical modeling in the design of large electric smelting furnaces [J]. IEEE Transactions on Industry Applications, 1978,14(5):415-420.
    [62]冷劲松,宋福良,周继恩.铁合金矿热炉热平衡测试及能量损失分析[J].铁合金,2008,203(6):10-13.
    [63]王贺萍,史志鸿,赵虹等.110kV矿热炉供电系统高低压无功补偿分析[J].电力系统保护与控制,2011,39(5):84-89.
    [64]Hauksdottir A S, Thorfinnsson Y P, Gestsson A. System identification of a three-phase submerged-arc ferro silicon furnace [J]. IEEE Transactions on Control Systems Technology,1995,3(4):377-387.
    [65]Veerendra S, Vilas T, Rao S M, et al. Predicting the performance of submerged arc furnace with varied raw material combinations using artificial neural network [J]. Journal of Materials Processing Technology,2007,183(1):111-116.
    [66]Krishnaiah J, Kumar C S, Faruqi M A. Modelling and control of chaotic processes through their bifurcation diagrams generated with the help of recurrentneural network models [J]. Journal of Process Control,2006, 16(1):67-79.
    [67]Eksteen J J, Frank S J, Reuter M A. Dynamic structures in variance based data reconciliation adjustments for a chromite smelting furnace [J]. Minerals Engineering,2002,15(11):931-943.
    [68]林友.磷炉工艺参数系统建模及其优化[D].昆明:昆明理工大学,2005.
    [69]Zhang N N, W Z J, Zhang De J. The multi-scale forecast of submerged arc furnace Energy consumption Base on support vector machine [C]. Proceedings of 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering. Changchun, China:2010.108-111.
    [70]Sun Y, Yang H X. The forecasting method for the furnace bottom temperature and carbon content of submerged arc furnace based on improved BP neural network [C]. Proceedings of International Conference on Computer, Mechatronics, Control and Electronic Engineering. Changchun, China:2010.238-240.
    [71]Sun Y, Zhang N N, Lu X H, et al. Power consumption prediction of submerged arc furnace based on multi-input layer wavelet neural network [C]. Proceedings of 2010 international conference on Mechanic Atomation and Control Engineering (MACE), Wuhan, China:2010.3586-3589.
    [72]唐贤伦,庄陵,胡向东.铁水硅含量的混沌粒子群支持向量机预报方法[J].控制理论与应用,2009,26(8):838-842.
    [73]郜传厚,渐令,陈积明,等.复杂高炉炼铁过程的数据驱动建模及预测算法[J].自动化学报,2009,35(6):725-730.
    [74]崔桂梅,鄢常亮,关英辉.基于支持向量机的高炉向凉、向热炉况预测[J].钢铁研究学报,2011,23(7):18-22.
    [75]Danilov E V. Optimization of the operation of arc steelmaking furnaces [J]. Metallurgist,2003,47(7):286-289.
    [76]Scheepers E, Adema Y Y, Reuter M A. The development of a CFD model of a submerged arc furnace for phosphorus production [J]. Minerals Engineering, 2006,19(10):1115-1125.
    [77]Scheepers E, Adema Y Y, Reuter M A, et al. A dynamic-CFD hybrid model of a submerged arc furnace for phosphorus production [J]. Minerals Engineering, 2006,19(3):309-317.
    [78]Mario F A, Zelia M A P, Celso P G, et al. An integrated model for the study of flicker compensation in electrical networks [J]. Electric Power Systems Research, 2010,80(10):1299-1305.
    [79]Godiwalla K M, Ranganathan S. Modeling of thermal profile in submerged arc furnace and the influence of composition of ore on the thermal profile [C]. Proceedings of the 11th International Ferroalloys Congress, New Delhi, India: 2007.891-896.
    [80]Ranganathan S, Godiwalla K M. Effect of preheat, bed porosity, and charge control on thermal response of submerged arc furnace producing ferrochromium [J]. Ironmaking and Steelmaking,2001,28(3):273-278.
    [81]Soavarsdottir G A, Bakken J A, Sevastyanenko V G, et al. Modelling of AC arcs in submerged-arc furnaces for production of silicon and ferrosilicon [J]. Iron and Steelmaker,2001,28(10):51-57.
    [82]储少军,郭映波,王玉刚,等.硅钙合金生产过程的一维动态模型[J].铁合金,2003,170(3):1-6.
    [83]翟丹,储少军,李忠思,等.锰硅铁合金冶炼电弧炉中焦炭层电流分配行为的模拟[J].过程工程学报,2008,8(3):449~452.
    [84]王玉莲,储少军.硅(铁)冶炼过程的一维动态模型[J].铁合金,2005,36(3):1-6.
    [85]刘建强.锰硅合金电耗和产量模型及其优化[J].铁合金,1995,2:15-18.
    [86]Wang J, Erik B Y. Modeling and control of the silicon production process system using robust inventory control strategy [C]. Proceedings of 2005 American Control Conference, Portland, USA:2005.214-219.
    [87]田景,刘孝跃.穷举法求解非线性函数在锰硅生产配料中的应用[J].铁合金,2007,195(4):14-23.
    [88]王庆刚.锰硅合金生产中入炉锰矿的优化搭配[J].铁合金,1999,30(3):1-7.
    [89]翟丹,储少军,张志敏.炉料级配对硅锰合金生产的影响[J].过程工程学报,2008,8(S1):298-301.
    [90]Farina J, Rodriguez J J, Bullon J, et al. Measurement and analysis of the impedance of electrodes in arc furnaces for silicon production [C]. Proceedings of the 29th Annual Conference of the IEEE, New Jersey, USA:2003.2255-2260.
    [91]Barker I J, Stewart A B. Inductive reactance, and the operation of large submerged-arc furnaces [J]. Journal of the South African Institute of Mining and Metallurgy,1980,3:123-128.
    [92]Khoshkhoo H, Sadeghi S H H, Moini R, et al. An efficient power control scheme for electric arc furnaces using online estimation of flexible cable inductance [J]. Computers and Mathematics with Applications,2011,62(12):4391-4401.
    [93]Shbib G, Hassan K. Fuzzy logic control of three phase submerged arc ferrosilicon [C]. Proceeding of the 14th International Middle East Power System Conference, Cairo, Egypt:2010.231-236.
    [94]DeWaal A, Barker I J, Rennie M S, et al. Electrical factors affecting the economic optimization of submerged-arc furnaces [J]. Proceedings of the sixth International ferro-alloys congress, Cape Town, South Africa:INFACON 6,1992.247-252.
    [95]Soavarsdottir G, Jonsson M T, Bakken J A. Arc electrode interactions in silicon and ferrosilicon furnaces [J]. Proceedings of the 10th International Ferroalloys Congress, Cape Town, South Africa:2004.1-4.
    [96]金继光,龚祝平.矿热炉电量采集系统的研究与实践[J].铁合金,2008,203(6):16-19.
    [97]Trageser J J. Power usage and electrical circuit analysis for electric arc furnaces [J], IEEE Transactions on Industry Applications,1980,16(2):277-284.
    [98]Mendis S R, Bishop M T, Day T R, et al. Evaluation of supplementary series reactors to optimize electric arc furnace operations [C], Proceedings of IEEE Industry Application Society, Orlando Florida, USA:1995,3:2154-2161.
    [99]吴劲松,李力.二氧化硅在硅锰合金冶炼中的热力学行为[J].华东冶金学院学报,2000,17(4):300-304.
    [100]麻林伟,杨武,李建中,等.16.5 MVA铁合金电炉的电气设计[J].工业加热,2008,37(3):63-65.
    [101]康世民,陈殿忠,唐琳,等.计算机控制优化铁合金电炉生产的实践[J].铁合金,2001,156(1):43-46.
    [102]许传才.铁合金冶炼工艺学[M].北京:冶金工业出版社,2008.108-159.
    [103]Rojas M F, Sanchez M I R. Chemical assessment of the electric arc furnace slag as construction material:Expansive compounds [J]. Cement and Concrete Research,2004,34(10):1881-1888.
    [104]刘惠鹏.电机学[M].北京:中国矿业大学出版社,1993.366-412.
    [105]《钢铁企业电力设计手册》编委会.钢铁企业电力设计手册[M].北京:冶金工业出版社,1996.1159-1272.
    [106]Westly J. Resistance and heat distribution in a submerged-arc furnace [J]. Proceedings of the 1st Ferro-Alloy Congress, Johannesburg, South Africa: 1974.121-127.
    [107]Wang Z, Wang N H, Li T. Computational analysis of a twin-electrode DC submerged arc furnace for MgO crystal production [J]. Journal of Materials Processing Technology,2011,211 (3):388-395.
    [108]赖旭芝.电路理论基础[M].长沙:中南大学出版社,2009.288-330.
    [109]黄象鼎,曾钟钢,马亚男.非线性数值分析的理论与方法[M].武汉:武汉大学出版社,2004.79-114.
    [110]Channon W P, Urquhart R C, Howat D D. Mode of current transfer between electrode and slag in the submerged arc furnace [J]. Journal of The South African Institute of Mining and Metallurgy,1974,8:4-7.
    [111]Hauksdottir A S, Gestsson A, Vesteinsson A. Submerged-arc ferrosilicon furnace simulator:Validation for different furnaces and operating ranges [J]. Control Engineering Practice,1998,6(8):1035-1042.
    [112]Yu S W, Zhu K J, Diao F Q. A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction [J]. Applied Mathematics and Computation,2008,195(1):66-75.
    [113]Wu W, Wang J, Cheng M S, et al. Convergence analysis of online gradient method for BP neural networks [J]. Neural Networks,2011,24(1):91-98.
    [114]蒋仁全Al2O3、MgO在锰硅炉渣中的作用探讨与提高Mn回收率的实践[J].铁合金,2006,186(1):1-4.
    [115]杨春梅,万柏坤,丁北生.数据预处理和初始化方法对K-均值聚类的影响[J].仪器仪表学报,2003,24(4):189-192.
    [116]Hampe F R, Ronchetti M, Rousseeuw P J, et al. Robust statistics:the approach based on influence functions [M]. Wiley, New York:1986.288-360.
    [117]Vapnik V N. An overview of statistical learning theory [J]. IEEE Transactions on Neural Networks,1999,10(5):988-999.
    [118]Kumar M, Kar I N. Non-linear HVAC computations using least square support vector machines [J]. Energy Conversion and Management,2009,50(3): 1411-1418.
    [119]Yuan P, Mao Z Z, Wang F L. Endpoint prediction of EAF based on multiple support vector machines [J]. Journal of International Iron and Steel Research, 2007,14(2):20-24.
    [120]Suykens J A K, Vanderwalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters,1999,9(3):293-300.
    [121]Suykens J A K. Nonlinear model and support vector machines [C]. Proceedings of IEEE Instrumentation and Measurement Technology Conference. Budapest, Hungary:2001.287-294.
    [122]Wang X F, Chen J D, Liu C B, et al. Hybrid modeling of penicillin fermentation process based on least square support vector machine [J]. Chemical Engineering Research and Design,2010,88(4):393-512.
    [123]Mu S J, Zeng Y Z, Liu R L. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process [J]. Journal of Process Control,2002,16(6):557-566.
    [124]Chi H M, Erosy O K. Recursive update algorithm for least squares support veetor machines [J]. Neural Proeessing Letters.2003,17(1):165-173.
    [125]张浩然,王晓东.回归最小二乘支持向量的增量式和在线学习算法[J].计算机学报,2006,29(3):400-406.
    [126]叶美盈,汪晓东,张浩然.基于在线最小二乘支持向量机回归的混沌时间序列预测[J].物理学报,2005,24(6):2568-2573.
    [127]Hoegaerts L, Suykens J A K, Vandewalle J, et al. Subset based least squares subspace regression in RKHS [J]. Neurocomputing,2005,63(4):293-323.
    [128]郭振凯,宋召青,毛剑琴.一种改进的在线最小二乘支持向量机回归算法[J].控制与决策,2009,24(1):145-148.
    [129]解应春.基于Kernel学习机的建模与分类的应用算法研究[D].杭州:浙江大学,2003.
    [130]Carl C C. Linear algebra for engineering and science [M]. West Lafayette: Indiana West Pickle Press,1996.154-255.
    [131]Gavin C C, Nicola L C T. Fast exact leave-one-out cross-validation of sparse least-square support vector machines [J]. Neural Networks,2004,17(10): 1467-1475.
    [132]侯凤春,纪世昌.冶炼硅锰合金炉渣渣型的选择[J].铁合金,1992,2:10-14.
    [133]史江涛,马跃庆,蒋仁全.硅锰冶炼提高Mn、Si回收率的研究与实践[J].铁合金,2006,188(3):1-4.
    [134]张玉驰,王悦华.硅锰合金实现低渣比冶炼的条件与操作要点[J].铁合金,2004,179(6):14-17.
    [135]张惠棠,刘英杰,朱志伟,等.硅锰合金炉渣成分研究[J].铁合金,1994,5:19-22.
    [136]舒莉.锰硅合金炉渣中碱性氧化物的作用[J].铁合金,1997,4:1-8.
    [137]朱志伟,王健,李力.硅锰合金生产中适宜炉渣碱度的选择[J].铁合金,1987,1:15-17.
    [138]荣东明,王宝军,催传海.密闭式锰硅炉炉渣组元结构的确定[J].铁合金,1997,28(2):19-21.
    [139]李聪贤.小型电炉冶炼锰硅合金的工艺改进[J].铁合金,1999,146(3):13-17.
    [140]Suykens J A K, Brabanter J D, Lukas L, et al. Weighted least squares support vector machines:robustness and sparse approximation [J]. Neurocomputing, 2002,48(1-4):85-105.
    [141]Chua K S. Efficient computations for large least square support vector machine classifiers [J]. Pattern Recognition Letters,2003,24(1-3):75-80.
    [142]Polat K, Gunes S. A new feature selection method on classification of medical datasets:Kernel F-score feature selection [J]. Expert Systems with Applications,2009,36(7):10367-10373.
    [143]Li Y G, Lin C, Zhang W D. Improved sparse least-squares support vector machine classifiers [J]. Neurocomputing,2006,69(13-15):1655-1658.
    [144]甘良志,孙宗海,孙优贤.稀疏最小二乘支持向量机[J].浙江大学学报,2007,47(2):245-248.
    [145]Heisterkamp D, Peng J, Dai H. An adaptive quasiconformal kernel metric for image retrieval [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA:IEEE Computer Society,2001. 388-393.
    [146]Bennett K P, Embrechts M J, An optimization perspective on kernel partial least squares regression.Advances in Learning Theory:Method, Models and Application [M]. Amsterdam, Holand:IOS Press,2003.227-250.
    [147]尚万峰,赵升吨,申亚京.遗传优化的最小二乘支持向量机在开关磁阻电机建模中的应用[J].中国电机工程学报,2009,29(12):65-69.
    [148]霍明,罗滇生,何井龙.短期负荷预测中SVM参数选取的混沌优化方法[J].电力系统及自动化学报,2009,21(5):124-128.
    [149]Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization,1997,11(4):341-359.
    [150]Musrrat A, Patrick S, Millie P. An efficient differential evolution based algorithm for solving multi-objective optimization problems [J]. European Journal of Operational Research,2012,217 (2):404-416.
    [151]刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729.
    [152]Gong W Y, FialhoA, Cai Z H, et al. Adaptive strategy selection in differential evolution for numerical optimization:An empirical study [J]. Information Sciences,2011,181 (24):5364-5386.
    [153]Tvrdk J. Adaptation in differential evolution:A numerical comparison [J]. Applied Soft Computing,2009,9(3):1149-1155.
    [154]Bradley P S, Mangasarian O L. Feature selection via concave minimization and support vector machines [C]. Proceedings of the 15th Intenational conrerence on Machine Learning, Madison, USA:1998.82-90.
    [155]Choi H, Yeo D W, Kwon S H, et al. Gene selection and prediction for cancer classification using support vector machines with a reject option [J]. Computational Statistics and Data Analysis,2011,55(5):1897-1908.
    [156]Tay F E H, CaO L J. Salieney analysis of support vector maehines for feature selection [J]. Neural Network World,2001,2(1):153-166.
    [157]Fortuna J, Capson D. Improved support vector classification using PCA and ICA feature space modification [J]. Pattern Recognition,2004,37(6): 1117-1129.
    [158]Pourbasheer E, Riahi S, Ganjali M R, et al. Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity [J]. European Journal of Medicinal Chemistry,2009,44(12): 5023-5028.
    [159]Uguz H. A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm [J]. Knowledge-Based Systems,2011,24(7):1024-1032.
    [160]郭明,王树青.基于独立分量分析的系统性能监控方法研究[J].浙江大学学报(工学版),2004,38(6):665-669.
    [161]Krier C, Rossi F, Francois D, et al. A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis [J]. Chemometrics and Intelligent Laboratory Systems,2008,91(1): 43-53.
    [162]Zhang Y W, Ma C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS [J]. Chemical Engineering Science,2011,66 (1): 64-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700