用户名: 密码: 验证码:
钛坯天然气加热炉优化控制策略及其工业应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气加热炉加热过程是钛坯生产的重要工序之一,其加热效果直接影响着钛材的轧制质量。由于钛的加热特性特殊,在加热过程中对加热炉的炉温以及炉内气氛的控制要求十分严格,传统的加热炉控制方法应用在钛坯加热过程中往往难以满足控制要求。
     本文以天然气为燃料的钛坯加热炉为研究对象,充分分析钛坯天然气加热过程存在不确定、非线性、大滞后等控制难点,结合实际天然气加热炉加热过程中的钛坯加热特性,对加热过程中的温度和气氛等方面的控制进行了深入研究,建立了钛坯天然气加热炉优化控制系统。论文的主要研究工作和创新点如下:
     (1)给出基于加热炉炉温预测模型的钛坯天然气加热炉优化控制结构
     针对钛坯天然气加热炉钛坯加热过程的复杂特性,提出一种基于加热炉炉温预测的模糊自组织优化控制系统的基本框架,从控制思想、过程建模方法和集成控制形式三方面,给出钛坯加热过程优化控制系统的结构描述、设计原则和设计步骤,为钛坯加热过程的优化控制提供一种新思路。
     (2)提出基于神经网络和改进粒子群优化算法的加热炉炉温预测模型建模方法
     钛坯加热炉加热过程具有不确定和大滞后的特点,预测模型的精度直接影响优化控制的性能。本文提出一种基于改进粒子群优化算法的神经网络炉温预测模型。该模型采用改进的粒子群算法对神经网络的权值进行初始化,在传统的自适应粒子群算法基础上,增加了位置状态的跳变因子和跳变策略,有效提高了粒子群算法的全局搜索能力。基于粒子群算法优化得到的神经网络初始化权值,建立BP神经网络炉温预测模型,描述加热过程的动态变化特性。
     (3)提出钛坯加热炉自组织模糊优化控制方法
     针对钛坯加热炉加热过程中的炉温控制问题,由于加热炉炉温影响参数众多,包括炉膛温度、空燃比、炉膛负压、辊道速度等,并且这些参数之间存在复杂的耦合关系,本文采用自组织方法设计了炉温模糊控制器。该控制器能够根据当前的输出情况自主生成和修正模糊控制规则表,克服了传统模糊控制中模糊规则表固定不变的缺陷。另外,引入变论域思想对模糊控制器的论域进行伸缩,并采用一种自适应变异差分进化算法应用于伸缩因子的优化求解,以克服变论域控制中伸缩因子难以确定的缺点。
     针对加热炉使用的脉冲式加热燃烧方式,本文分析了其与连续式加热燃烧方式在原理上和操作上的不同之处,设计了合理的烧嘴设定模块,结合炉温变论域自组织模糊控制器,使炉温能够有效跟随设定值。同时,采用模糊控制方法平衡炉内气氛,保证钛坯在微氧化的环境下充分加热。
     (4)钛坯天然气加热炉优化控制系统实现及应用
     以所提出的天然气加热炉钛坯加热过程优化控制系统结构为基础,结合现场的钛坯加热炉工艺及生产条件,采用模块化和集成化思想,建立了钛坯天然气加热炉智能优化控制系统,实现了钛坯天然气加热炉炉温优化控制。
     通过应用天然气加热炉钛坯加热过程优化控制技术,减小了炉温波动情况,降低了能源消耗,获得了显著的经济效益与环境效益,实际工业应用效果证明了该系统的工业有效性。
The reheating process of gas furnace, which directly affects the rolling quality of the titanium billet, is an important procedure in the production of titanium billet. Because of the special heating characteristics of the titanium, the furnace temperature and atmosphere are strictly limited. The traditional control metheds applied in the reheating process of steel billet furnace can't be directly used in the titanium billet reheating process.
     Focusing on the natural gas reheating furnace of titanium, this dissertation deeply analyses the natural gas reheating process control difficulties, which affect the control performance, such as is uncertainty, nonlinearity and strong time-delay etc. Combining with the titanium billet heating characteristic in the reheating process, an intensive study focusing on the control of the furnace temperature has been made in this dissertation. Then, an intelligent optimization control system is build for the natural gas reheating furnace of titanium. The main contents are as follows:
     (1) An optimization control architecture for the natural gas reheating furnace of titanium
     To deal with the complex characteristics and control features in the reheating process of the titanium billet gas furnace, a basic architecture of fuzzy-self-organizing optimization control system is proposed based on the reheating furnace model. From three aspects consisting of control idea, process modeling and optimization control, this dissertation presents structure description, design principles and design steps for the optimization control system in the heating process of the natural gas reheating furnace of titanium. A new ideal was provided for optimal control of the Iron-titanium billet heating process.
     (2) Process modeling based on neural network for the titanium billet heating process.
     Because of the uncertainty and strong time-delay characteristics of the titanium billet reheating process, the accuracy of the processing model affects the performance of the optimization control directly. Based on improved particle swarm optimization (PSO) algorithm, this dissertation builds a neural network temperature prediction model, in which the neural network weight is initialized using the PSO algorithm. Compared with conventional PSO, the improved algorithm effectively improved the global search capability by adding jump factors and jump strategies of the location state. With the initialized neural network weights gained from the improved PSO optimal algorithm, a BP neural network prediction model for furnace temperature has been established to describe the dynamic characteristic of the reheating process.
     (3) A self-organizing fuzzy optimal control method for Titanium billet heating furnace.
     In the process of the temperature control for titanium billet reheating furnace, furnace temperature is affected by many factors coupling with each other, such as wall temperature, air-fuel ratio, furnace pressure and roller speed etc. A fuzzy controller is designed based on the self-organizing method, which can autonomously generate and correct the fuzzy control rule according to the current output, and can overcome the shortcoming of a fixed fuzzy control rule table in traditional fuzzy controller. In addition, with the variable universe theory, the universe of fuzzy controller is stretched or contracted, and the adaptive mutation differential evolution algorithm is used to find optimal stretch factors in variable universe.
     According to the analysis of the differences in principle and operation between the pulse combustion method applied in this paper and the traditional continuous heating method, a flame burner setting method has been designed, with which the errors between the measured valued of furnace temperature and the goal value can be well controlled. Meanwhile, fuzzy control method is applied to control furnace atmosphere, so that titanium billet is fully burning at a low oxygen atmosphere.
     (4) Optimal control for the natural gas reheating furnace of titanium.
     Combining with the practical mechenism and production conditions of the titanium billet furnace, an intelligent optimization control system, which applies the ideal of modular and integration, is proposed to achieve the optimal control for natural gas reheating furnace of titanium.
     The application of the optimal control technology in the heating process of natural gas reheating furnace has reduced furnace temperature fluctuations as well as energy consumption, which brings significant economic and environmental. The running results proved its industrial effectiveness.
引文
[1]李成功,傅恒志,于翘.航空航天材料[M].北京:国防工业出版社,2002.
    [2]赵永庆.国内外钛合金研究的发展现状及趋势[J].中国材料进展,2010,29(5):1-8.
    [3]张绪虎,单群,陈永来,等.钛合金在航天飞行器上的应用和发展[J].中国材料进展,2011,30(6):28-33.
    [4]黄伯云.我国有色金属材料现状及发展战略[J].有色金属学报,2004,14(S1):122-127.
    [5]C. Leyens, M. Peters著,陈振华译.钛与钛合金[M].2005,北京:化工出版社.
    [6]Anon. Titanium alloys for aerospace [J]. Advanced Materials and Process,1999, 155 (3):39-42.
    [7]张绪虎,单群,陈永来,等.钛合金在航天飞行器上的应用和发展[J].2011,30(6):28-33.
    [8]赵永庆.国内外钛合金研究的发展现状及趋势[J].中国材料进展.2010,29(5):1-8.
    [9]王秉铨.机械工厂工业炉的现状与发展[J].机械工人(热加工).2002,9:16-18.
    [10]张先棹,尹丹模.工业炉的节能技术及计算[J].工业炉,1999,21(1):19-26.
    [11]樊东黎.美国热处理技术发展路线概述[J].金属热处理,2006,31(1):1-3.
    [12]朱祖昌.热处理技术的新近进展及其发展趋势[J].热处理,2009,24(4):11-24.
    [13]崔民选,霍小龙.经济危机下的中国能源对策.http://www.china.com.cn/ news/zhuanti/09ny/2009-09/09/content_18494384.htm
    [14]郭韵,曹伟武.天然气加热炉的发展现状与改进探索[J].天然气工业,2009,29(12):97-102.
    [15]郭韵,曹伟武.天然气加热炉结构与传热特性研究[J].上海理工大学学报,2009,31(3):251-254.
    [16]张彬,杨为民,钱锋,等.乙苯催化脱氢制苯乙烯生产过程的机理建模及优化[J].控制理论与应用,2010,27(7):903-910.
    [17]L. Fortuna, P. Giannone, S. Graziani, et al. Virtual instruments based on stacked neural networks to improve product quality monitoring in a refinery [J]. IEEE Transactions on Instrumentation and Measurement,2005,56 (1):95-101.
    [18]D. Wang, J. Liu, R. Srinvasan. Data-driven softsensor approach for quality prediction in a refining process [J]. IEEE Transactiononlndustrial Informatics, 2010,6(1),11-17.
    [19]M. Wu, Q. Lei, W. H. Cao, et al. Integrated soft sensing of coke-oven temperature [J]. Control Engineering Practice,2011,19 (10):1116-1125.
    [20]张彬,杨为民,钱锋,等.乙苯催化脱氢制苯乙烯生产过程的机理建模及优化[J].控制理论与应用,2010,27(7):903-908.
    [21]龚瑞昆,王玉兵,张冰,等.集气管压力控制系统建模与解耦[J].化工自动化及仪表,2008,35(4):19-22.
    [22]P. Georgieva, M. J. Merireles, S. Feyo. Knowledge-based hybrid modeling of a batch crystallization when accounting for nucleation, growth and agglomeration phenonmena [J]. Chemical Engineering Science,2003,58 (16):3699-3713.
    [23]D. Wild, T. Meurer, A. Kugi. Modelling and experimental model validation for a pusher-type reheating furnace [J]. Mathematical and Computer Modelling of Dynamical Systems,2009,15 (3):209-232.
    [24]T. A. Veslocki. Application of a dynamic mathematical model of a slab reheating furnace [C]. Proceding of 3rd Process Technology Conference, Ontario, Canada 1982,3:134-141.
    [25]张卫军,吴雪琦.基于机理模型的加热炉在线炉温模糊决策[J].东北大学学报,2005,26(9):878-881.
    [26]林涛,段文泽,李昌春,等.轧钢加热炉建模方法的比较研究[J].计算机仿真,2008,25(3):95-99.
    [27]商桂梅,焦吉成,张世建,等.板坯加热炉三维温度场数学模型系统的开发及应用[J].冶金自动化,2009,33(2):38-42.
    [28]侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650-667.
    [29]Y. Toru, T. Kenji, Y. Takaaki. Design of a data-driven PID controller [J]. IEEE Transactions on Control Systems Technology,2009,17 (1):29-39.
    [30]张晶涛,钱晓龙,王伟,等.步进式加热炉燃烧控制的新方法[J].控制与决策,2001,16(3):269-272.
    [31]J. F. MacGregor, C. Jackle, C. Kiparissides. Process monitoring and diagnosis by multiblock PLS methods [J]. AICHE Journal,1994,40 (5):826-838.
    [32]王中杰,柴天佑,邵诚.基于RBF神经网络的加热炉钢温预报模型[J].系统 仿真学报,1999,11(3):181-183.
    [33]左文香.基于神经网络的加热炉系统模型[J].电气自动化,2004,26(1):27-31.
    [34]Z. Ming, Y. Datai. A new strip temperature control method for the heating section of continuous annealing line [C]. IEEE Conference on Cybernetics and Intelligent Systems,2008:861-864.
    [35]S. J. Zheng, Z. Q. Li, H. T. Wang. A genetic fuzzy radial basis function neural network for structural health monitoring of composite laminated beams [J]. Expert Systems with Applications,2011,38 (9):11837-11842.
    [36]W. Dai, Q. Lin, Q. Lu. Application of virtual instrument & neutral network in heat treatment furnace verification. International Conference on Electronic Measurement and Instruments [C],2007 (4):741-746.
    [37]Z. H. Liu, L. Z. Wang, G. X. He. Study on optimal control of furnace temperature uniformity [J]. International Conference on Intelligent Computation Technology and Automation,2011 (1):512-514.
    [38]李玉云,王永骥,刘烨.用于非线性加热炉的神经网络预测控制器[J].中国机械工程,2001,12(2):216-223.
    [39]韩俊峰,李玉惠.模糊控制技术[M].重庆:重庆大学出版社,2003.
    [40]K. K. Ahn, D. Q. Truong. Online tuning fuzzy PID controller using robust extended Kalman filter [J]. Journal of Process Control,2009,19 (6):1011-1023.
    [41]C. Wakabayashi, M. Embirucu, C. Fontes, et al. Fuzzy control of a nylon polymerization semi-batch reactor [J]. Fuzzy Sets and Systems,2009,160 (4): 537-553
    [42]I. Eker, Y. Torun. Fuzzy logic control to be conventional method [J]. Energy Conversion & Management,2006,47 (4):377-394
    [43]C. C. Lee. Fuzzy logic in control systems:fuzzy logic controller [J]. IEEE Transactions on Systems, Man and Cybernetics,1990,20 (2):404-434
    [44]R. Marino, P. Tomei. Adaptive output feedback tracking with almost disturbance decoupling for a class of nonlinear systems [J]. Automatica,2000,36 (12):31-32.
    [45]M. K. Chang, J. J. Liou, M. L. Chen. T-S fuzzy model-based tracking control of a one-dimensional manipulator actuated by pneumatic artificial muscles [J]. Control Engineering Practice,2011,19(12):1442-1449
    [46]B. Chen, S. C. Tong, X. P. Liu. Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping approach [J]. Fuzzy Sets and Systems, 2007,158(10):1097-1125
    [47]T. Takagi, M. Sugeno. Fuzzy identification of systems and its application to modeling and control [J]. IEEE Transactions on Systems, Man and Cybernetics, 1985,15(1):116-132.
    [48]邵克勇,范欣,张永华,等.一种基于数据驱动的模糊系统建模方法[J].化工自动化及仪表,2009,36(5):25-28.
    [49]樊绍胜,王耀南.基于模糊建模的冷凝器污脏软测量[J].控制理论与应用,2005,22(3):434-439.
    [50]Y. Hao. A general technique for deriving analytical structure of fuzzy controllers using arbitrary trapezoidal input fuzzy sets and Zadeh AND operator [J]. Automatica,2003,1 (7):1171-1184
    [51]赵俊,陈建军.非线性系统模糊神经网络控制的改进策略[J].控制理论与应用,2010,27(4):466-472.
    [52]C. F. Juang, T. C. Chen, W. Y. Cheng. Speedup of implementing fuzzy neural networks with high-dimensional inputs through parallel processing on graphic processing units [J]. IEEE Transactions on Fuzzy Systems,2011,19(4):717-28.
    [53]陈杰,朱琳.基于混合最小二乘支向量机网络模型的非线性系统辨识[J].控制理论与应用,2010,27(3):303-309.
    [54]J. A. K. Suykens, J. Vandewalle. Least squares support vector machine classifiers [J]. Neural Processing Letters,1999,9 (3):293-300
    [55]H. Esen, F. Ozgen, M. Esen, et al. Modeling of a new solar air heater through least-squares support vector machines [J]. Expert Systems with Applications, 2009,36(7):10673-10682.
    [56]M. M. Adankon, M. Cheriet, A. Biem. Semisupervised learning using bayesian interpretation:application to LS-SVM [J]. IEEE Transactions on Neural Networks,2011,22 (4):514-524.
    [57]L. J. Li, H. Y. Su, J. Chu. Generalized predictive controls with online least squares support vector machines[J]. Acta Automatica Sinica,2007,33 (11): 1182-1188.
    [58]王锡淮,李柠.步进式加热炉建模和炉温优化设定策略[J].上海交通大学学报,2001,35(9):1306-1401.
    [59]建明,谢磊,苏成利,等.焦化加热炉先进控制系统[J].华东理工大学学报,2006,32(7):814-817.
    [60]朱肖强,陈三宝.电加热炉炉温控制系统设计与仿真[J].自动化与仪器仪表. 2006,3(17):17-20.
    [61]杨英华,杨劭伟,刘晓志,等.基于独立分量回归的加热炉钢温预报模型[J].系统仿真学报.2008,20(10):2523-2525.
    [62]A. Aminian. Prediction of temperature elevation for seawater in multi-stage flash desalination plants using radial basis function neural network [J]. Chemical Engineering Journal,2010,162 (2):552-556.
    [63]王锡淮,李少远,席裕庚.加热炉钢坯温度软测量模型研究[J].自动化学报,2004,30(6):928-1025.
    [64]高国丽,陈洪军.基于RBF神经网络的钢坯温度预报软测量模型研究[J].工业控制计算机.2010,23(5):73-75.
    [65]X. Y. Liao, M. Wu, J. H. She. Modeling of reheating-furnace dynamics using neural network based on improved sequential-learning algorithm [J]. Proceedings of the IEEE International Conference on Control Applications, 2007:3175-3181.
    [66]P. Areekul, T. Senjyu, H. Toyama, A. Yona. A hybrid ARIMA and neural network model for short-term price forecasting in deregulated market [J]. IEEE Transactions on Power Systems,2010,25 (1),524-530.
    [67]X. F. Wang, J. Chen, C. Liu, et al. Hybrid modeling of penicillin fermentation process based on least square support vector machine [J]. Chemical Engineering Research and Design,2010,88 (4):415-420.
    [68]郭前建,杨建国,李永祥,等.聚类回归分析在滚齿机热误差建模中的应用[J].上海交通大学学报,2008,42(7):1055-1059.
    [69]曹卫华,陈泰任,吴敏,等.基于误差预测的焦炉火道温度软测量模型[J].信息与控制,2009,38(2):206-210.
    [70]刘振焘,吴敏,曹卫华,等.一种基于信息融合的高炉料面温度场建模方法[C].2008年中国控制会议论文集,2008:285-289
    [71]Q. Wu. Hybrid model based on wavelet support vector machine and modified genetic algorithm penalizing Gaussian noises for power load forecasts [J]. Expert Systems with Applications,2011,38 (1):379-385.
    [72]V. Ditzhuijzen, G. Slaalman, D. Koorn. Identification and model predictive control of a slab reheating furnace [C]. Proceedings of the 2002 IEEE International on conference on control applications, Glasgow, Scotland,2002 (1):361-366.
    [73]A. Steinboeck, K. Graichen, D. Wild, et al. Model-based trajectory planning, optimization, and open-loop control of a continuous slab reheating furnace [J]. Journal of Process Control,2011, (21) 2:279-292.
    [74]陈才发,吴志林,沈汉刚.加热炉PID专家控制器设计[J].江苏冶金,1997,25(3):35-37.
    [75]F. Shenvar. Walking beam furnace supervisory control at Tnlands'80-in hot strip mill [J]. Iron and Steel Engineer,1994 (6):25-34.
    [76]刘明哲.加热炉燃烧模糊控制系统及其应用[J].轧钢,2003,20(2):12-15.
    [77]王中杰,关守平,柴天佑.加热炉自适应钢坯温度预报模型的开发[J].钢铁研究学报,1999,11(2):70-74.
    [78]朱宏祥,温治.空气燃烧比寻优技术在加热炉中的应用[J].北京科技大学学报,2003,25(2):139-144.
    [79]N. Yoshitani. Optimal Slab Heating Control with Temperature Trajectory Optimization [C]. International Conference on Industrial Electronics, Control and Instrumentation,1994,3:1567-1572.
    [80]C. F. Juang, Y. C. Chang. Evolutionary-group-based particle-swarm-optimized fuzzy controller with application to mobile-robot navigation in unknown environments [J]. IEEE Transactions on Fuzzy Systems,2011,19 (2):379-392. 2011.
    [81]M. Zekri, S. Sadri, F. Sheikholeslam. Adaptive fuzzy wavelet network control design for nonlinear systems [J]. Fuzzy Sets and Systems,2008,159 (20): 2668-2695.
    [82]胡鹏,曹广益,朱新坚.质子交换膜燃料电池温度模型与模糊控制[J].控制理论与应用,2011,28(10):1371-1376.
    [83]K. Zdenko(著),B. Stjepan(著),胡玉玲(译),张立权(译).模糊控制器设计理论与应用[M].北京:机械工业出版社,2010.
    [84]T. J. Procky, E. H. Mamdani. A linguistic self-organizing process controller [J]. Automatica.1979,15 (1):15-30.
    [85]H. Haken(著),郭志安(译).信息与自组织[M].四川:四川教育出版社,2010.
    [86]G. Leng, T. M. McGinnity, G. Prasad. Design for self-organizing fuzzy neural networks based on genetic algorithms [J]. IEEE Transactions on Fuzzy Systems, 2006,14 (6):755-765.
    [87]刘辉.时滞热工系统规则自组织模糊控制方法[D].哈尔滨工业大学工学博士论文,2004.
    [88]N. Wang, M. J. Er, X. Y. Meng. A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks [J]. Neurocomputing,2009,72 (16-18):3818-3829.
    [89]S. J. Huang, J. S. Lee. A stable self-organizing fuzzy controller for robotic motion control [J]. IEEE Transaction on Industrial Electronics,2000,47 (2): 421-428.
    [90]C. S. Chen. Robust self-organizing neural-fuzzy control with uncertainty observer for MIMO nonlinear systems [J]. IEEE Transactions on Fuzzy Systems, 2011,19 (4):694-706.
    [91]戴学丰,张敬.自组织模糊控制的分类与进展[J].2005年中国智能自动化会议,2005,7.
    [92]J. Lin, R. J. Lian. Self-organizing fuzzy controller for gas-assisted injection molding combination systems [J]. IEEE Transaction on Control Systems Technology,2010,18 (6):1413-1421.
    [93]R. Jose De Jesus. Online self-organizing fuzzy modified least-squares network [J]. IEEE Transactions on Fuzzy Systems,2009,17 (6):1296-1309.
    [94]R. J. Oentaryo, M. Pasquier, C. Quek. GenSoFNN-Yager:A novel brain-inspired generic self-organizing neuro-fuzzy system realizing Yager inference [J]. Expert Systems with Applications,2008,35 (4):1825-1840.
    [95]Q. Lu, M. Mahfouf. A model-free self-organizing fuzzy logic control system using a dynamic performance index table [J]. Transactions of the Institute of Measurement and Control,2010,32 (1):51-72.
    [96]R. J. Lian, J. Lin, Jeen. Enhanced adaptive self-organizing fuzzy sliding-mode controller for robotic motion control [J]. International Journal of Innovative Computing, Information and Control,2011,7 (9):5459-5475.
    [97]C. S. Chen. Robust self-organizing neural-fuzzy control with uncertainty observer for MIMO nonlinear systems [J]. IEEE Transactions on Fuzzy Systems, 2011,19 (4):694-706.
    [98]李洪兴.变论域自适应模糊控制器[J].中国科学(E辑),1999,29(1):32-42.
    [99]李洪兴.非线性系统的变论域稳定自适应模糊制[J].中国科学(E辑),2002.32(2):211-223.
    [100]W. W. Shan, R. W. Newcomb, D. M. Jin. Analog circuit implementation of a variable universe adaptive fuzzy logic controller [J]. IEEE Transactions on Circuits and Systems,2008,55 (10):976-980.
    [101]L. F. Li, X. Y. Liu, W. F. Chen. A variable universe fuzzy control algorithm based on fuzzy neural network [C]. Proeeedings of the 7th World Congress on Intelligent Control and Automation, Chongqing,2008:4352-4356.
    [102]赵云涛,王京,谢新亮,等.基于多层蚁群算法的变论域模糊控制[J].模式识别与人工智能,2009,22(5):794-798.
    [103]J. H. Holland. Adaptation in natural and artificial systems. Cambridge, MA: MIT Press,1975.
    [104]B. Addad, S. Amari, J. J. Lesage. Genetic algorithms for delays evaluation in networked automation systems [J]. Engineering Applications of Artificial Intelligence,2011,24 (3):485-90.
    [105]O. Dahou, K. Medles, S. Touhami, et al. Application of genetic algorithms to the optimization of a roll-type electrostatic separation process [J]. IEEE Transactions on Industry Applications,2011,47 (5):2218-2223.
    [106]姚峰,杨卫东,张明,等.改进自适应变空间差分进化算法[J].控制理论与应用,2010,27(1):32-38.
    [107]B. Dorronsoro, P. Bouvry. Improving classical and decentralized differential evolution with new mutation operator and population topologies [J]. IEEE Transactions on Evolutionary Computation,2011,15 (1):67-98.
    [108]J. Kennedy, R. C. Eberhart. Particle swarm optimization[C]. IEEE Interational Conference on Neural Networks, Perth,1995.
    [109]T. Xiang, X. F. Liao, K. W. Wong. An improved particle swarm optimization algorithm combined with piecewise linear chaotic map[J]. Applied Mathematics and Computation,2007,190(2):1637-1645.
    [110]耿志强,朱群雄,顾祥柏,等.基于多群竞争PSO-RBFNN的乙烯裂解深度智能优化控制[J].化工学报,2010,61(8):1942-1948.
    [111]M. H. Afshar. Partially constrained ant colony optimization algorithm for the solution of constrained optimization problems:Application to storm water network design [J]. Advances in Water Resources.2007,30 (4):954-965.
    [112]Z. L. Wu, N. Zhao, G. H. Ren, et al. Population declining ant colony optimization algorithm and its applications [J]. Expert Systems with Applications, 2009,36 (3):6276-6281.
    [113]S. Kumar, C. S. P. Rao. Application of ant colony, genetic algorithm and data mining-based techniques for scheduling [J]. Robotics and Computer-Integrated Manufacturing,2009,25 (6):901-908.
    [114]陈晓波,俞迪龙,秦树凯.基于遗传算法的加热炉炉内温刚软测量模型[J]. 仪器仪表学报,2007,28(2):308-314.
    [115]王毓栋,刘波,王京春.改进的预测控制算法用于加热炉支管温度控制[J].清华大学学报,2007,47(2):1766-1771.
    [116]廖迎新,吴敏,佘锦华,等.基于HPSO的钢坯加热过程炉温优化设定[J].控制理论与应用,2007,24(6):1010-1014.
    [117]屠乃威,罗小川,柴天佑.基于蚁群优化算法的步进式加热炉调度[J].东北大学学报,2011,32(1):1-5.
    [118]K. Serkan, I. Turker, Y. Alper, et al. Evolutionary artificial neural networks by multi-dimensional particle swarm optimization [J]. Neural Networks,2009, (22) 10:1448-1462.
    [119]朴海国,王志新,张华强.基于合作粒子群算法的PID神经网络非线性控制系统[J].2009,26(12):1317-1324.
    [120]连丽婷,肖昌汉,杨明明,等.基于粒子群改进神经网络的舰艇磁场推算模型[J].上海交通大学学报,2011,45(6):809-813.
    [121]刁鸣,高洪元,马杰,等.应用神经网络粒子群算法的多用户检测[J].电子科技大学学报,2008,37(2),178-180.
    [122]J. Kennedy, R. Eberhart. Particle swarm optimization [C]. IEEE International Conference on Neural Networks, WA, Australia,1995,4:1942-1948.
    [123]杨智,陈志堂,范正平,李晓东.基于改进粒子群优化算法的PID控制器整定[J].控制理论与应用,2010,27(10):1345-1352.
    [124]Y. Shi, R. C. Eberhart. Empirical study of particle swarm optimization. International Conference on Evolutionary Computation [C]. Washington, USA: IEEE,1999:1945-1950.
    [125]C. J. Lin, J. G. Wang, C. Y. Lee. Pattern recognition using neural-fuzzy networks based on improved particle swam optimization [J]. Expert Systems with Applications,2009,36 (3):5402-5410.
    [126]D. W. Gong, Y. Zhang. Particle swarm optimisation for multi-project location problems with interval profits [J]. International Journal of Modelling, Identification and Control,2009,8 (4):335-343.
    [127]Z. Y. Wang. A combined ANN and expert system tool for transformer fault diagnosi s[J]. IEEE Transaction on Power Delivery,1998,13 (10):12-24.
    [128]刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策.2007,22(7):721-729.
    [129]李庆良,雷虎民,邵雷,等.一种基于差分进化算法的多模型建模方法[J]. 控制与决策,2010,25(12):1866-1870.
    [130]A. Bhattacharya, P. K. Chattopadhyay. Hybrid differential evolution with biogeography-based optimization algorithm for solution of economic emission load dispatch problems [J]. Expert Systems with Applications,2011,38 (11): 14001-14010.
    [131]颜学峰,余娟,钱峰.自适应变异差分进化算法估计软测量参数[J].控制理论与应用,2006,23(5):74-78.
    [132]T. J. Harris. Assessment of control loop performance [J]. The Canadian Journal of Chemical Engineering,1989,67:856-861.
    [133]肖劲松,黄建荣.时序脉冲燃烧控制技术在回火炉上的应用[J].金属材料与冶金工程,2007,35(4):50-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700