用户名: 密码: 验证码:
风电接入带来的不确定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能的大规模开发有助于解决目前面临的能源枯竭和环境污染等问题。受风力资源随机变化的影响,风电存在不确定性。对于电力系统,风电始终是一种不可控电源,其并网运行问题已成为制约其发展的最重要因素。风电接入带来的不确定性,对电力系统的安全性与充裕性都构成挑战。随着气候、环境因素与系统安全性和充裕性的关联程度增大,如何扩展时空停电防御框架的功能与应用来应对风电的不确定性,就成为一个迫切需要解决的重要问题。
     风电系统除负荷和故障等外部不确定因素外,还存在内部不确定性。内部不确定性既包括风自身的不确定性(波动性、间歇性以及两者所具有的高度随机性),还包括风力发电过程中带入的不确定性。本文对比分析波动性和间歇性的成因、特性以及短时间风功率不确定性的描述方法。分析风电不确定性对系统功角、电压、频率、充裕性等的影响及其机理。
     从发电侧、电网侧及需求侧分别讨论其应对措施,策略的优化及协调;强调量化和风险分析方法在研究大规模风电接入对电力系统的影响中的重要性。发电侧加强超短期预测、风电场有功/无功综合控制及与其他电源互补等。电网侧优化电网结构、合理调度及增强电网的抗扰动能力,强化电网连接发电侧和需求侧的纽带作用,共同应对风电不确定性。需求侧利用需求侧管理、分布式发电及电动汽车等措施对电力负荷削峰填谷。风电不确定性不是某一层面或某一措施可以单独解决的,需要从发输用三方面对风电不确定性带来的运行风险进行预警与综合防御。
     安全性方面,需要考虑电网运行与风电场的交互影响:一方面要在三道防线中综合考虑风电接入影响;另一方面要分析电网故障对风电场稳定性的影响。分析风电接入后系统的暂态电压稳定和暂态功角稳定,并评估其风险。首先比较感应发电机和感应电动机的暂态电压稳定特性;对应于感应电动机的暂态电压稳定判据,提出感应发电机的暂态电压稳定判据及相应的稳定裕度定义。其中综合考虑了节点电压和转子转速的影响,合理设计了多判据的执行流程,以保证远离临界条件时的快速性及接近临界条件时的准确性。用反复仿真试探到的暂态电压稳定的故障临界切除时间作为标准,考核基于上述稳定裕度的灵敏度分析算法。其次,基于暂态电压稳定量化分析技术,计算暂态电压稳定域,并评估暂态电压失稳风险。
     充裕性方面,需要定量的评估控制场景的概率水平,实现风电的动态概率预报;扩展不同风险水平的控制手段,如冷、热、旋转备用,实现多时间尺度的控制协调。只有这样,才可能将风电的不确定性导致的备用成本降低到合理水平,真正实现节能减排。本文分析充裕控制中风功率预测信息的时空信息的挖掘。指出依赖单一备用手段和短时间优化旋转备用都存在很大的局限性,并分析多等级备用(含弃风控制)协调优化的重要性和优越性。在此基础上,基于风险观点,从多时间尺度实现多等级备用的协调优化,实现自适应充裕性控制;在开放的市场环境下,分析备用容量和备用价格对充裕控制的影响。
     本课题受国家自然科学基金重点项目(91024028),863项目(2011AA05A105),国家电网公司科技项目(SG10&SG11),香港RGC Grant (5151/10E)和澳大利亚ARC (DP120101345)资助,是广域监测分析保护控制系统(WARMAP)的进一步研究。通过在工程应用中不断完善,扩展WARMAP功能和应用,必将为风电系统的可靠性研究提供实用的分析工具。
The large-scale development of wind energy will contribute to solve the current problems about energy depletion and environmental pollution. Due to the random variation of wind resources, wind power is uncertain and performs uncontroliability in a power system. Thus, the issues caused by grid-connected wind farms become the biggest constraints. Uncertainty caused by wind power integration into power system, poses a challenge to security and adequacy of the power system. With the increase of the relevance of between climate, environmental factors and security and adequacy of power system, how to extend the function and application of space-time blackout defense framework to deal with the uncertainty of wind power has become an important and urgent problem.
     In addition to the external uncertainties such as load and failure, internal uncertainties also exist in a wind power system. Internal uncertainties are composed of the ones caused by wind itself such as fluctuation, intermittence, and randomness and by wind power generation process. The factors and features of fluctuation and intermittence, and descriptions of uncertaintyies of the short time wind power, are analyzed comparatively. The impacts of wind power uncertainty on frequency, voltage, angle and adequacy etc., and their mechanism, are also analysed.
     Response measures, strategy optimization and coordination are discussed from the generation side, grid and demand side, respectively. The importance of quantitative and risk analysis methods in the large-scale wind power integration into power system, is stressed. The ultra-short-term forecast, the wind farm active/reactive power control and complementary with other power are strengthened in the generation side. In the grid side, optimization of the grid structure, rational electric power dispatch management, and enhancement of anti-disturbance ability of the grid, strengthen the link role of generation side and demand-side to jointly cope with the uncertainty of wind power. Demand side management, distributed generation, electric vehicles and other measures are used for peak load shifting. The issues of the wind power uncertainties can not be solved in a level or a measure alone. Early warning and comprehensive defense against operational risks due to uncertainty of wind power need to be jointly coped with from generation side, grid side and demand side.
     In terms of security, the interaction of grid operation and wind farms need to be considered for security. On the one hand, the impacts caused by wind power integration are considered in the three lines of defense. On the other hand, the impacts of power network failures on the stability of the wind farm are analysed. Transient voltage stability and transient angle stability of wind power system are analysed, and their risks are assessed. First, the similarities and differences of induction generator and induction motor in transient voltage stability are compared. Transient voltage stability criterions and stability margin definition of induction generators are proposed, corresponding to transient voltage stability criterions of induction motors. The impacts on transient voltage stability of both node voltage and rotor speed are comprehensively considered. A multi-criteria assessment process is designed to speed up the evaluation for cases far away from the critical condition, and to ensure the accuracy for the cases close to the critical condition. Sensitivity analysis is performed based on the fault critical clearing time obtained through trial-and-error based on full scale time domain simulations. Second, transient voltage stability domains are calculated based on quantitative analysis techniques of transient voltage stability. Then transient voltage instability risks are assessed.
     The research on adequacy includes quantitative assessment of the probability level of control scene, achievement of dynamic probabilistic forecasts of wind power, expansion of the different levels of risk control measures(such as cold, heat, spinning reserve), coordinated control of multiple time scales and development of different control methods to achieve the coordination of control before and after the wind power disturbance events. Only in this way, reserve costs caused by the uncertainty of wind power may be reduced to a reasonable level, and energy conservation can be truly achieved. Temporal and spatial information mining for wind power prediction data are analysed. There are significant limitations about optimizating the spinning reserve on a single reserve mode or in short term. The importance and superiority of coordination and optimization of multi-grade reserves (including abandoned wind power control) are emphasized. From a risk point of view, multi-grade reserves are coordinated and optimizated in multiple time scales for adaptive adequacy control. The impacts of reserve capacity and reserve prices on adequacy control in the open market environment are analysed.
     This work is jointly supported by National Science Foundation of China (No.91024028), State863Project (No.2011AA05A105),. State Grid Corporation of China (No. SG10&SG11), Hong Kong RGC Grant (5151/10E), and Australia ARC (DP120101345).
引文
[1]薛禹胜.运动稳定性量化理论—非自治非线性多刚体系统的稳定性分析.南京:江苏科学技术出版社,1999.
    [2]张鋆,陈怡,薛禹胜.电力系统暂态摇摆曲线的分群.电力系统自动化,1997,21(8):1-3.
    [3]戴晨松,薛峰,薛禹胜.受扰轨迹分群研究.电力系统自动化,2000,24(1):13-16.
    [4]Xue Y. Extended equal area criterion:foundations and applications (invited paper). Fourth Symposium of Specialists in Electric Operational and Expansion Planning, Brazil:1994.
    [5]Xue Y. Practically negative effects of emergency controls. IFAC/CIGRE Symposium on Control of Power Systems and Power Plants, Beijing:1997.
    [6]Rovnyak S M. Discussion of "a unified approach to transient stability contingency filtering, ranking, and assessment". IEEE Transactions on Power Systems,2002,17(2):527.
    [7]王锡凡,方万良,杜正春.现代电力系统分析.北京:科学出版社,2003.
    [8]徐泰山,薛禹胜.暂态频率偏移可接受性的定量分析.电力系统自动化,2002,26(19):7-11.
    [9]Xue Y, Xu T, Liu B, et al. Quantitative assessments for transient voltage security. IEEE Transactions on Power Systems,2000, PWRS 15 (3):1077-1083.
    [10]薛禹胜,徐泰山,刘兵,等.暂态电压稳定性及电压跌落可接受性.电力系统自动化,1999,23(14):4-8.
    [11]赖业宁,薛禹胜,汪德星,等.备用容量服务市场的风险决策.电力系统自动化,2006,30(16):1-5.
    [12]赖业宁,薛禹胜,高翔,等.发电容量充裕度的风险模型与分析.电力系统自动化,2006,30(17):1-6.
    [13]罗运虎,薛禹胜,Ledwich G,等.低电价与高赔偿2种可中断负荷的协调.电力系统自动化,2007,31(11):17-21.
    [14]罗运虎,薛禹胜,Dong Z Y,等.发电容量充裕性的混合优化.电力系统自动化,2007,31(12):30-35.
    [15]薛禹胜.电网分析及控制中的风险观点.全国高等学校电力系统及其自动化专业第二十二届学术年会,2006年10月12-14日,南京.
    [16]Ortega-vazquez M A, Kirschen D S. Estimating the spinning reserve requirements in systems with significant wind power generation penetration. IEEE Transactions on Power Systems, 2009,24(1):114-124.
    [17]赖业宁,薛禹胜.电力市场的风险管理.电力系统自动化,2003,27(12):18-24.
    [18]赵霞,周家启,胡小正,等.暂态稳定性分析中的确定性方法和概率性方法.电力系统自动化,2006,30(6):100-103.
    [19]鞠平,马大强.电力系统的概率稳定性分析.电力系统自动化,1990,14(3):18-23.
    [20]Burchett R C. Probabilistic methods in power system dynamic stability studies. Ph. D. Thesis, 1977, Purdue University, Indiana, USA.
    [21]Billinton R, Heydt G T. A probabilistic index for transient stability. IEEE PES Winter Meeting,1978.
    [22]Hsu Yuan-yih, Chang Chung-Hang. Probabilistic transient stability studies using the conditional probability approach. IEEE Transactions on Power Systems,1988,3(4):1565-1572.
    [23]Timko K J, Bose A, Anderson P M. Monte Carlo simulation of power system stability. IEEE Transactions on PAS,1983,102(10):3453-3459.
    [24]Xue Y, Li J. Probabilistic transient stability assessment with EEAC. International Power Engineering Conference, Singapore, May 1997.
    [25]薛禹胜.时空协调的大停电防御框架:(一)从孤立防线到综合防御.电力系统自动化,2006,30(1):8-16.
    [26]薛禹胜.时空协调的大停电防御框架:(二)广域信息、在线量化分析和自适应优化控制.电力系统自动化,2006,30(2):1-10.
    [27]薛禹胜.时空协调的大停电防御框架:(三)各道防线内部的优化和不同防线之间的协调.电力系统自动化,2006,30(3):1-10.
    [28]薛禹胜,费圣英,卜凡强.极端外部灾害中的停电防御系统构思:(一)、(二).电力系统自动化,2008,32(9,10).
    [29]薛禹胜,肖世杰.综合防御高风险的小概率事件:对日本相继天灾引发大停电及核泄漏事件的思考.电力系统自动化,2011,35(8):1-11.
    [30]Holttinen H, Meibom P, Orths A, et al. Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration. Wind Energy,2011,14 (2): 179-192.
    [31]林今,孙元章,S(?)rensen P,等.基于频域的风电场功率波动仿真:(二)变换算法及简化技术.电力系统自动化,2011,35(5):71-76.
    [32]王松岩,于继来.短时风速概率分布的混合威布尔逼近方法.电力系统自动化,2010,34(6):89-93.
    [33]王彩霞,鲁宗相.风电功率预测信息在日前机组组合中的应用.电力系统自动化,2011,35(7):13-18.
    [34]Tewari S, Geyer C J, Mohan N. A statistical model for wind power forecast error and its application to the estimation of penalties in liberalized markets. IEEE Transactions on Power Systems,2011,26(4):2031-2039.
    [35]Pinson P, Kariniotakis G. Conditional prediction intervals of wind power generation. IEEE Transactions on Power Systems,2010,25(4):1845-1856.
    [36]Wang Y, Xia Q, Kang C. Unit commitment with volatile node injections by using interval optimization. IEEE Transactions on Power Systems,2011,26(3):1705-1713.
    [37]Gautam D, Goel L, Ayyanar R, et al. Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems. IEEE Transactions on Power Systems,2011,26(1):214-224.
    [38]Meegahapola L, Fox B, Flynn D. Flicker mitigation strategy for DFIGs during variable wind conditions. IEEE Power and Energy Society General Meeting, July 25-29,2010, Minneapolis, USA:1-8.
    [39]Barahona B, S(?)rensen P, Christensen L, et al. Validation of the standard method for assessing flicker from wind turbines. IEEE Transactions on Energy Conversion,2011,26(1):373-378.
    [40]Jimichi T, Fujita H, Akagi H. A dynamic voltage restorer equipped with a high-frequency isolated DC-DC converter. IEEE Transactions on Industry Applications,2011,47(1): 169-175.
    [41]Martinez J, Kjar P C, Rodriguez P, et al. Comparison of two voltage control strategies for a wind power plant. IEEE PES Power Systems Conference and Exposition, March 20-23,2011, Phoenix, USA:1-9.
    [42]Engelhardt S, Erlich I, Feltes C, et al. Reactive power capability of wind turbines based on doubly fed induction generators. IEEE Transactions on Energy Conversion,2011,26(1): 364-372.
    [43]Akhmatov V. Induction generators for wind power. London, U.K.:Multi-Science Publishing Company,2005.
    [44]Naser I S, Garba A, Anaya-Lara O, et al. Voltage stability of transmission network with different penetration levels of wind generation.45th International Universities Power Engineering Conference, August 31-September 3,2010, Cardiff, U.K.:1-5.
    [45]Yu Chen, Xue Yusheng, James G, et al. Impacts of large scale wind power on power system transient stability. Fourth International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, July 6-9,2011, Weihai, China:1-7.
    [46]Hagstr(?)m E, Norheim I, Uhlen K. Large-scale wind power integration in Norway and impact on damping in the Nordic grid. Wind Energy,2005,8(3):375-384.
    [47]Yang L, XU Z,(?)stergaard J, et al. Oscillatory stability and eigenvalue sensitivity analysis of a DFIG wind turbine system. IEEE Transactions on Energy Conversion,2011,26(1): 328-339.
    [48]Gautam D, Vittal V, Ayyanar R, et al. Supplementary control for damping power oscillations due to increased penetration of doubly fed induction generators in large power systems. IEEE PES Power Systems Conference and Exposition, March 20-23,2011, Phoenix, USA:1-6.
    [49]Wang C, Shi L, Yao L, et al. Modelling analysis in power system small signal stability considering uncertainty of wind generation. IEEE Power and Energy Society General Meeting, July 25-29,2010, Minneapolis, USA:1-7.
    [50]ZHANG Y, Chowdhury A A, Koval D O. Probabilistic wind energy modeling in electric generation system reliability assessment. IEEE Transactions on Industry Applications,2011, 47(3):1507-1514.
    [51]GAO Y, Billinton R, Karki R. Composite generation and transmission system adequacy assessment considering wind energy seasonal characteristics. IEEE Power & Energy Society General Meeting, July 26-30,2009, Calgary, Canada:1-7.
    [52]Vallee F, Brunieau G, Pirlot M, et al. Optimal wind clustering methodology for adequacy evaluation in system generation studies using nonsequential Monte Carlo simulation. IEEE Transactions on Power Systems,2011,26(4):2173-2184.
    [53]Bassiouny E, El-Ela A A A, Othman S A. Adequacy assessment of bulk electric power systems incorporating wind energy. IEEE GCC Conference and Exhibition, February 19-22, 2011, Dubai, U.A.E.:279-282.
    [54]Nishida K, Ahmed T, Nakaoka M. A cost-effective high-efficiency power conditioner with simple MPPT control algorithm for wind-power grid integration. IEEE Transactions on Industry Applications,2011,47(2):893-900.
    [55]Liu Q, Yu L, Wu G. Comparison of control strategy for double-fed induction generator (DFIG). Third IEEE International Conference on Measuring Technology and Mechatronics Automation, Jan 6-7,2011, Shanghai, China:741-744.
    [56]刘军,何玉林,李俊,等.变速变桨距风力发电机组控制策略改进与仿真.电力系统自动化,2011,35(5):82-86.
    [57]Choudhary P, Blumsack S, Young G. Comparing decision rules for siting interconnected wind farms.44th Hawaii International Conference on System Sciences, January 4-7,2011, Hawaii, USA:1-10.
    [58]Maisonneuve N, Gross G. A production simulation tool for systems with integrated wind energy resources. IEEE Transactions on Power Systems,2011,26(4):2285-2292.
    [59]Gomez-Quiles C, Gil H A. Price and resource-related uncertainty in the estimation of the revenue of a wind farm. IEEE Transactions on Power Systems,2011,26(4):2074-2083.
    [60]Billinton R, Huang D. Incorporating wind power in generating capacity reliability evaluation using different models. IEEE Transactions on Power Systems,2011,26(4):2509-2517.
    [61]Q/GDW 392-2009风电场接入电网技术规定.北京:国家电网公司,2009.
    [62]Makarov Y, Etingov P, Ma J, et al. Incorporating uncertainty of wind power generation forecast into power system operation, dispatch, and unit commitment procedures. IEEE Transactions on Sustainable Energy,2011,2(4):433-442.
    [63]Al-Awami A T, El-Sharkawi M A. Coordinated trading of wind and thermal energy. IEEE Transactions on Sustainable Energy,2011,2(3):277-287.
    [64]Amjady N, Keynia F, Zareipour H. Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization. IEEE Transactions on Sustainable Energy,2011,2(3):265-276.
    [65]Foley A M, Leahy P G, McKeogh E J. Wind power forecasting & prediction methods.9th International Conference on Environment and Electrical Engineering, May 16-19,2010, Prague, CZE:61-64.
    [66]李雪明,行舟,陈振寰,等.大型集群风电有功智能控制系统设计.电力系统自动化,2010,34(17):59-63.
    [67]张伯明,吴文传,郑太一,等.消纳大规模风电的多时间尺度协调的有功调度系统设计.电力系统自动化,2011,35(1):1-6.
    [68]王松岩,朱凌志,陈宁,等.基于分层原则的风电场无功控制策略.电力系统自动化,2009,33(13):83-88.
    [69]陈慧粉,乔颖,鲁中相,等.风电场群的无功电压协调控制策略.电力系统自动化,2010,34(18):78-83.
    [70]Anaya-Lara O, Hughes F M, Jenkins N, et al. Contribution of DFIG based wind farms to power system short-term frequency regulation. IEE Proceedings-Generation, Transmission and Distribution,2006,153(2):164-170.
    [71]Luo C, Far H G, Banakar H, et al. Estimation of wind penetration as limited by frequency deviation. IEEE Transactions on Energy Conversion,2007,22(3):783-791.
    [72]Tamimi A A, Pahwa A, Starrett S, et al. Maximizing wind penetration using voltage stability based methods for sizing and locating new wind farms in power system. IEEE Power and Energy Society General Meeting, July 25-29,2010, Minneapolis, USA:1-7.
    [73]Chen Y, Liu Z. Effect of large-scale wind farm on transient stability. International Conference on Electrical and Control Engineering, June 25-27,2010, Wuhan, China: 3680-3683.
    [74]Yang Q, Zhang J, Yang J. A new way of maximum injection power calculation of wind farms connected to power systems. Asia-Pacific Power and Energy Engineering Conference, March 28-31,2010, Chengdu, China:1-4.
    [75]Burke D J, O'Malley M J. Maximizing firm wind connection to security constrained transmission networks. IEEE Transactions on Power Systems,2010,25(2):749-759.
    [76]Xiao S, Yang G, Zhou H. A LVRT control strategy based on flux tracking for DFIG-based wind power systems. IEEE 8th International Conference on Power Electronics and ECCE Asia, May 30-June 03,2011, Jeju, Korea:76-82.
    [77]Singh B, Kyriakides E, Singh S N. Intelligent control of grid connected unified doubly-fed induction generator. IEEE Power and Energy Society General Meeting, July 25-29,2010, Minneapolis, USA:1-7.
    [78]朱晓东,石磊,陈宁,等.考虑Crowbar阻值和退出时间的双馈风电机组低电压穿越.电力系统自动化,2010,34(18):84-89.
    [79]谭靖,李国杰,唐志伟.基于压缩空气储能的风电场功率调节及效益分析.电力系统自动化,2011,35(8):33-37.
    [80]Dutta S, Overbye T J. Optimal storage scheduling for minimizing schedule deviations considering variability of generated wind power. IEEE PES Power Systems Conference and Exposition, March 20-23,2011, Phoenix, USA:1-7.
    [81]Chakraborty S, Senjyu T, Yona A, et al. Security constrained unit commitment strategy for wind/thermal units using Lagrangian relaxation based Particle Swarm Optimization. International Power Electronics Conference, Jun 21-24,2010, Sapporo, Japan:549-554.
    [82]Constantinescu E M, Zavala V M, Rocklin M, et al. A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation. IEEE Transactions on Power Systems,2011,26(1):431-441.
    [83]Kalantari A, Galiana F D. The impact of wind power variability and curtailment on ramping requirements. IEEE PES Transmission and Distribution Conference and Exposition:Latin America, November 8-10,2010, Sao Paulo, Brazil:133-138.
    [84]Matos M A, Bessa, R J. Setting the operating reserve using probabilistic wind power forecasts. IEEE Transactions on Power Systems,2011,26(2):594-603.
    [85]Ding Y, Wang P, Goel L, et al. Long-term reserve expansion of power systems with high wind power penetration using universal generating function methods. IEEE Transactions on Power Systems,2011,26(2):766-774.
    [86]Chen X, Sun H, Wen J, et al. Integrating wind farm to the grid using hybrid multiterminal HVDC technology. IEEE Transactions on Industry Applications,2011,47(2):965-972.
    [87]Wang L, Chen L Y. Reduction of power fluctuations of a large-scale grid-connected offshore wind farm using a variable frequency transformer. IEEE Transactions on Sustainable Energy, 2011,2(3):226-234.
    [88]Ciupuliga A R, Gibescu M, Pelgrum E, et al. Round-the-year security analysis with bottleneck ranking for interconnected power systems with large-scale wind power. IEEE PES Conference on Innovative Smart Grid Technologies Europe, October 11-13,2010, Gothenburg, Sweden:1-8.
    [89]Mount T D, Lamadrid A J, Maneevitjit S, et al. Integrating wind power:can controllable load substitute for transmission upgrades? 44th Hawaii International Conference on System Sciences, January 4-7,2011, Kauai, Hawaii:1-9.
    [90]何世恩,索南加乐,杨铖,等.适应于酒泉风电送出的750kV线路纵联保护原理研究.电力系统保护与控制,2010,38(16):87-91.
    [91]Molina Zubiri G, Lopez Barba S, De La Fuente Del Castillo I, et al. Impact on the power system protection of high penetration of wind farms technology. CIGRE, Session B5, August 22-27,2010, Paris, France:1-9.
    [92]李生虎,贾树森,孙莎莎.风电系统距离Ⅲ段保护动作特性分析.电力系统自动化,2011,35(5):31-35,41.
    [93]Comech M P, Montanes M A, Garcia M G. Overcurrent protection behavior before wind farm contribution.14th Mediterranean Electrotechnical Conference, May 5-7,2008, Ajaccio, France:762-767.
    [94]王宾,董新洲,潘贞存,等.含风电接入配电系统电压跌落传播特性分析.电力系统自动化,2011,35(10):53-58.
    [95]宋少群,付超,王毅,等.适合风电特性的联络线过载切机装置控制策略.电力系统自动化,2010,34(15):52-55.
    [96]Guttinger M, Ahcin P. The potential of demand side management and vehicle-to-grid for the city of Bern, Switzerland.10th International Conference on Environment and Electrical Engineering, May 8-11,2011, ROME, Italy:1-5.
    [97]Hu W, Chen Z, Bak-Jensen B. Impact of optimal load response to real-time electricity price on power system constraints in Denmark.45th International Universities Power Engineering Conference, August 31-September 3,2010, Cardiff, U.K.:1-6.
    [98]余昆,曹一家,陈星鸾,等.含分布式电源的地区电网无功电压优化.电力系统自动化,2011,35(8):28-32.
    [99]Pan F, Bent R, Berscheid A, et al. Locating PHEV exchange stations in V2G. First IEEE International Conference on Smart Grid Communications, October 4-6,2010, Gaithersburg, USA:173-178.
    [100]赵俊华,文福栓,薛禹胜,等.计及电动汽车和风电出力不确定性的随机经济调度.电力系统自动化,2010,34(20):23-29.
    [101]王卿然,谢国辉,张粒子.含风电系统的发用电一体化调度模型.电力系统自动化,2011,35(5):15-18,30.
    [102]孙华东.计及感应电动机负荷的电压稳定分析及其应用研究.北京:中国电力科学研究院,2005.
    [103]井艳清,李兴源,郭晓鸣,等.考虑感应电动机负荷模型的暂态电压稳定快速判据.电力系统自动化,2011,35(5):10-14.
    [104]徐泰山,薛禹胜,韩祯祥.暂态电压稳定的模型要求和快速判断.电力系统自动化,1995,19(12):11-15.
    [105]Ashkhane Y. A new approach to improve voltage stability in a network with fixed speed wind turbines.19th Iranian Conference on Electrical Engineering, May 17-19,2011, Tehran, Iran:1-6.
    [106]Morren J, de Haan S W H. Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip. IEEE Transactions on Energy Conversion,2005,20(2): 435-441.
    [107]Samuelsson O, Lindahl S. On speed stability. IEEE Transactions on Power Systems,2005, 20(2):1179-1180.
    [108]周念成,王强钢,王鹏.含多感应发电机配电网的暂态稳定研究.中国电机工程学报,2011,31(16):40-47.
    [109]Kundur P. Power system stability and control. New York:McGraw-Hill Press,1994: 188-196.
    [110]Brauner G, Heidl M, Tiefgraber D, et al. Voltage collapse phenomena in wind parks.18th International Conference and Exhibition on Electricity Distribution, June 6-9,2005, Turin, Italy:1-5.
    [111]Gao Yi, Billinton R, Karki R. Composite generation and transmission system adequacy assessment considering wind energy seasonal characteristics. IEEE Power & Energy Society General Meeting, July 26-30,2009, Calgary, Canada:1-7.
    [112]葛炬,王飞,张粒子.含风电场电力系统旋转备用获取模型.电力系统自动化,2010,34(6):32-36.
    [113]张国强,吴文传,张伯明.考虑风电接入的有功运行备用协调优化.电力系统自动化,2011,35(12):15-19.
    [114]Lee Tsungying. Optimal spinning reserve for a wind-thermal power system using EIPSO. IEEE Transactions on Power Systems,2007,22(4):1612-1621.
    [115]Gribik P R, Chatterjee D, Navid N, et al. Dealing with uncertainty in dispatching and pricing in power markets. IEEE Power and Energy Society General Meeting, July 24-29,2011, Detroit, USA:1-6.
    [116]Xie Dongliang, Xue Yusheng, Dong Zhaoyang, et al. The simulation of risk-based adequacy control under smart grid. Fourth International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), July 6-9,2011, Weihai, Shandong, China:1086-1093.
    [117]Atwa Y M, Ei-Saadany E F, Guise A-C. Supply adequacy assessment of distribution system including wind-based DG during different modes of operation. IEEE Transactions on Power Systems,2010,25(1):78-86.
    [118]Sfetsos A. A novel approach for forecasting of mean hourly wind speed time series. Renewable Energy,2002,27(2):163-174.
    [119]Wang Lijie, Gerber A, Liang Jun, et al. Wind power forecasting for reduction of system reserve.45th international Universities Power Engineering Conference(UPEC), August 31-September 3,2010, Wales, USA:1-5.
    [120]Billinton R, Gao Yi, Karki R. Composite system adequacy assessment incorporating large-scale wind energy conversion systems considering wind speed correlation. IEEE Transactions on Power Systems,2009,24(3):1375-1382.
    [121]Gooi H B, Mendes D P, Bell K R W, et al. Optimal scheduling of spinning reserve. IEEE Transactions on Power Systems,1999,14(4):1485-1492.
    [175]Molina Zubiri G, Lopez Barba S, De La Fuente Del Castillo I, et al. Impact on the power system protection of high penetration of wind farms technology. CIGRE, August 22-27', 2010, Paris, France:1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700