用户名: 密码: 验证码:
海藻酸钙凝胶体系中无机矿物(碳酸钙、草酸钙)的结晶行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海藻酸钙水凝胶是一种含有大量水的交联网状物,可用作碳酸钙(CaCO3)和草酸钙(CaC2O4)仿生矿化的前驱体,论文共分为两个部分:
     碳酸钙:通过氨和二氧化碳气体的缓慢扩散,海藻酸钙前驱凝胶明确的空间结构、渗透性和离子交换性有利于方解石超结构的形成。当海藻酸钙水凝胶胶凝了大量的液体时,通过对海绵状凝胶珠外部的羧基官能团的成核点的复制,得到了外部方解石排列的碳酸钙。这些方解石超结构的内部特征表明了方解石向内生长的趋势,此即凝胶珠的渗透性和渗透气体的扩散方向。在较少量液体存在(即成核点密度较大)时,前驱凝胶有利于具有平滑表面的方解石超结构的形成,证明了超结构内部方解石纳米颗粒的局部有序排列。这在一定程度上模拟了生物机体控制无机物矿化过程,主要体现在以下几个方面:(1)生物分子官能团吸附Ca2+;(2)三维网状有机结构中的无机矿物的受限结晶;(3)与有机基质结构相关的矿物粒子超结构的形成。此部分最有创新型的研究结果是:一些看上去类似单晶的碳酸钙实际上是由一些微小的方解石斜方颗粒组成的,而且这些堆积的颗粒是沿着聚合物骨架排列的。所以说,多价金属凝胶相中无机矿物的结晶行为为仿生合成功能材料提供了一种新的途径。
     草酸钙:草酸钙有一水草酸钙(COM)、二水草酸钙(COD)和三水草酸钙(COT)三种晶型,其中COM是泌尿系统结石的主要组分,与COM相比,COD晶体更容易通过代谢排出。在30℃条件下,草酸铵((NH)4C2O4)饱和溶液加入到不同的钙离子溶液体系中反应得到了形貌和晶型各异的草酸钙沉淀。(1)在水溶液反应体系和邻苯二甲酸氢钾缓冲液反应体系中,当钙离子浓度为0.0172mol/L,改变草酸根的浓度时仅得到相貌各异的COM晶体。(2)在四硼酸钠缓冲液反应体系(固定Ca2+浓度为0.0172 mol/L)中,C2O42-浓度较低时得到的沉淀主要是COD,其中COD的百分含量随着草酸根浓度的增加而降低;C2O42-浓度较高时,得到的沉淀只有COM。(3)(NH)4C2O4饱和溶液与海藻酸钙凝胶混合,反应主要得到了一些球形的聚集结构,其组成单元是多分散的草酸钙晶体颗粒。在Ca2+浓度较低的反应体系中,COM和COD共存;当Ca2+浓度较高时,得到的草酸钙均为COM。固定海藻酸钙水凝胶的量(反应体系中Ca2+浓度约为0.0172 mol/L)时,改变草酸根的浓度得到了COM和COD两种晶型;COD的百分含量随着草酸根浓度的增加而降低,C2O42-浓度较高时,得到的沉淀只有COM。这部分的研究结果表明:在非凝胶反应体系中,四硼酸钠缓冲液能够促进COD的成核与生长;在凝胶反应体系中,海藻酸钙水凝胶不仅能够促进COD的成核与生长,还在草酸钙晶体颗粒聚集结构的形成起到一定的模板作用。
Hydrogels of calcium alginate are the physically cross-linked networks containing a large fraction of water, which could be used as the precursors for the biomimetic mineralization of calcium carbonate (CaCO3) and calcium oxalate (CaC2O4) crystals. Also, these are the main subjects of the thesis.
     CaCO3:The well-defined geometry, the permeability, and the ion-exchange property of calcium alginate pre-gels favored the facile fabrication of calcite superstructures through the slow inpouring of ammonia and carbon dioxide gases. This strategic approach indicated to a great extent the biologically controlled mineralization mechanism, dealing with (1) the pre-adsorption of calcium ions by the functional groups of biomolecules, (2) the confined crystallization within the three-dimensional networks, and (3) the proper arrangement of nanosized calcites by association with the organic architectures. Surprisingly, even the apparently 'single-crystalline' CaCO3 was proven to comprise tiny calcite rhombohedrons, furthermore these building blocks co-aligned each other with respect to the polymers' conjugated backbones. Therefore, these suggest a novel pathway of multivalent metal pre-gelation phases for the biomimetic fabrication of functional materials.
     CaC2O4:Calcium oxalate crystals have three hydrate forms:calcium oxalate monohydrate (COM), calcium oxalate dihydrate (COD), and calcium oxalate trihydrate (COT), among which COM is the principal inorganic component of urinary deposites and the other two can be easily excreted through urethra. In the in vitro experiments, calcium oxalate crystals were prepared from the mixture of calcium chloride (CaCl2) and ammonium oxalate ((NH4)2C2O4) in different reaction systems at 30℃Only the sheet-like aggregates of COM were precipitated from aqueous systems at various pH values and at a fixed Ca2+concentration of 0.0172 mol/L, so did the reaction systems of the buffer solutions of potassium hydrogen phthalate (pH=4.00). Surprisingly, when Ca2+(0.0172 mol/L) and different amount of C2O42- were added into the buffer solutions of sodium tetraborate (pH=9.18), both COM and COD crystals were obtained at a relatively low concentration of C2O42-. The content of COD decreased with the increase of C2O42- concentration until it disappeared at a relatively high C2O42- concentration.
     When calcium alginate hydrogels were used as calcium sources, its reaction with (NH4)2C2O4 resulted in spherical aggerates of calcium oxalate crystals. Crystallographic analyses proved that COM and COD coexisted at a relatively low concentration of Ca2+ions. For example, when Ca2+concentration was fixed at a value of 0.0172 mol/L, the 1:1 molar ratio of Ca2+/C2O42-resulted in the major COD (64.0%) and minor COM (36.0%). The content of COD decreased with the increase of C2O42-, and the unique crystals of COM were obtained at a relatively high concentration of C2O42-ions.
     In conclusion, the above results indicated:(1) the supersaturation at a relatively high concentration of Ca2+or C2O42-ions promoted the nucleation and crystallization of COM; (2) sodium tetraborate buffer reaction systems contributed to the formation of COD crystals at a relatively low concentration of C2O42- ions; (3) calcium alginate hydrogels exerted a great influence on the crystallization of COD and played an important role in the template formation of CaC2O4 crystalline superstructures. Interestingly, the formation of COD suggests a biomimetic pathway for the therapy of urinary stones.
引文
1. Mann, S. Biomineralization:Principles and Concepts in Bioinorganic Materials Chemistry, Oxford University Press,2001,6-23.
    2. Faatz, M.; Grohn, F.; Wegner, G Amorphous Calcium Carbonate:Synthesis and Potential Intermediate in Biomineralization. Adv. Mater.2004,16(12),996-1000.
    3. Touryan, L.; Lochhead, M. J.; Marquardt, B. J.; Vogel, V. Sepuential Switch of Biomineral Crystal Morphology using Trivalent Ions. Nat. Mater.2004,3,239-243.
    4. Kosarev, E. L.; Muranov, K. O. Superresolution Chromatography. Instrum. Exp. Tech.2001,44(5),638-643.
    5. Baek, S. H.; Kim, H. H.; Doh, Y. S.; Kim, K. W. Estimation of High-Temperature Properties of Rubberized Asphalt using Chromatograph. KSCE J. Civil Engineering 2009,13(3),161-167.
    6. Aksit, A. C.; Onar, N. Leaching and Behavior of Cotton Fabrics Dyed with Different Type of Dyes using Sol-Gel Process. J. Appl. Polym. Sci.2008,109(1), 97-105.
    7. Park, S.; Jung, S. B.; Yang, J. K.; Park, H.; Kim, H. Ambient Pressure Dried SiO2 Aerogel Films on GaAs for Application to Interlayer. Thin Solid Films 2002,420, 461-464.
    8. Jung, S. B.; Park, S. K.; Yang, J. K.; Park, H. H.; Kim, H. Application of SiO2 Aerogel Film for Interlayer Dielectric on GaAs with a Barrier of Si3N4. Thin Solid Films 2004,447,580-585.
    9. Yao, N.; Cao, S. L.; Yeung, K. L. Mesoporous TiO2-SiO2 Aerogels with Hierarchal Pore Structures. Micropor. Mesopor. Mat.2009,117(3),570-579.
    10. Sperka, G. Crystal Growth in Gels-A Survey. Progr. Colloid Polym. Sci.1988,77, 207-210.
    11. Chen, C. Y.; Zheng, H.; Ouyang, J. M. Research Progress in Biomineral Grown in Gel System. J. Synthetic Crystals 2005,34(5),926-930.
    12. Petrova, R. I.; Swift, J. A. Selective Growth and Distribution of Crystalline Enantiomers in Hydrogels. J. Am. Chem. Soc.2004,126(4),1168-1173.
    13. Grassmann,0.; Muller, G.; Lobmann, P. Organic-Inorganic Hybrid Structure of Calcite Crystalline Assemblies Grown in a Gelatin Hydrogel Matrix:Relevance to Biomineralization. Chem. Mater.2002,14(11),4530-4535.
    14. Fanili, G.; Fermani, S.; Gazzano, M.; Ripamonti, A. Polymorphism and Architectural Crystal Assembly of Calcium Carbonate in Biologically Inspires Polymetric Matrices. J. Chem. Soc, Dalton Trans.2000,3983-3987.
    15. Butler, M. F.; Glaser, N.; Weaver, A. C.; Kirkland, M.; Heppenstall-Butler, M. Calcium Carbonate Crystallization in the Presence of Biopolymers. Cryst. Growth Des.2006,6(3),781-794.
    16. Sonawane, P. S.; Biradar, S. S.; Radhakrishnan, S.; Kulkarni, B. D. Role of Ionic Diffusion in Polymer Gel Mediated Growth Technique for the Synthesis of Nanoparticulate Fillers. Mater. Chem. Phys.2007,105,348-353.
    17. Petrova, H. I.; Swift, J. A. Habit Changes of Sodium Bromate Crystals Grown Gel Media. Cryst. Growth Des.2002,2(6),573-578.
    18. Kumar, R. R.; Wang, M. Biomimetic Deposition of Hydroxyapatite on Brushite Single Crystals Grown by the Gel Technique. Mater. Lett.2001,49,15-19.
    19. Huang, Y. W.; Li, H.; Yang, F. D.; Zhang, Y. M. Biomimitic Mineralization of Calcium Phosphates in Gel System. Chemical Res. Appl.2008,20(5),537-542.
    20. Reyes-Grajeda, J. P.; Jauregui-Zuniga, D.; Batina, N.; Salmon-Salazar, M.; Moreno, A. Experimental Simulations of the Biomineralization Phenomena in Avian Eggshells using BaCO3 Aggregates Grown inside an Alkaline Silica Matrix. J. Cryst. Growth 2002,234,227-236.
    21. Han, Q.; Shen, F. L.; Gui, L. L.; Bi, R. C. Studies on the Gel Technique for Growing of Lysozyme Crystals. Acta Biophysica Sinica,1993,9(4),515-519.
    22. Liu, Y. M.; Yuan, H. X.; Chen, C. Y.; Yao, X. Q.; Tan, Y H.; Ouyang, J. M. Effect of Different Kinds of Potassium Carboxylates on Growth of Calcium Oxalate Crystals in Silica Gel System. Acta Chemica Sinica 2006,64,779-783.
    23. Klock, G.; Pfeffermann, A.; Ryser, C.; Grohn, P.; Kuttler, B.; Hahn, H.-J.; Zimmermann, U. Biocompatibility of Mannuronic Acid-rich Alginates. Biomaterials 1997,18,707-713.
    24. Salomonsen, T.; Jensen, H. M.; Stenba(?)k, D.; Engelsen, S. B. Chemometric Prediction of Alginate Monomer Composition:A comparative Spectroscopic Study using IR, Raman, NIR and NMR. Carbohydr. Polym.2008,72,730-739.
    25. Shenoy, D. B.; Sukhourukov, G. B. Microgel-Based Engineering Nanostructures and Their Applicability with Template-Directed Layer-by-Layer Polyelectrolyte Assembly in Protein Encapsulation. Macromol. Biosci.2005,5,451-458.
    26. Wang, C. Y.; Liu, H. X.; Gao, Q. X.; Liu, X. X.; Tong, Z. Algiante-Calcium Carbonate Porous Microparticles Hybrid Hydrogels with Variable Mechanical Strengths. Carbohydr. Polym.2008,71,476-480.
    27. Sriamornsak, P.; Kennedy, R. A. A Novel Gel Formation Method, Micro structure and Mechanical Properties of Calcium Polysaccharide Gel Films. Int. J. Pharm.2006, 323,72-80.
    28. Broderick, E.; Lyons, H.; Pembroke, T.; Byrne, H.; Murray, B.; Hall, M. The Characterisation of a Novel, Covalently Modified, Amphiphilic Alginate Derivative, which Retains Gelling and Non-Toxic Properties. J. Colloid Interf. Sci.2006,298, 154-161.
    29. Roopa, B. S.; Bhattacharya, S. Alginate Gels:1. Characterization of Textural Attributes. J. Food Eng.2008,85,123-131.
    30. Montero, P.; Perez-Mateos, M. Effects of Cations on the Gelling Characteristics of Fish Mince with Added Nonionic and Ionic Gums. Food Hydrocolloids 2002,16, 375-385.
    31. Gill, I. Bio-doped Nanocomposite Polymers:Sol-Gel Bioencapsulates. Chem. Mater.2001,13,3404-3421.
    32. Mammarella, E. J.; Rubiolo, A. C. Crosslinking Kinetics of Cation-Hydrocolloid Gels. Chem. Eng. J.2003,94,73-77.
    33. Plieva, F. M.; Mattiasson, B. Microporous Gel Particles as Novel Sorbent Materials:Rational Design. Ind. Eng. Chem. Res.2008,47,4131-4141.
    34. Braccini, I.; Perez, S. Molecular Basis of Ca2+-Induced Gelation in Alginates and Pectins:The Egg-Box Model Revisited. Biomacromolecules 2001,2,1089-1096.
    35. Donati, I.; Holtan, S.; Morch, Y.; Borgogna, M.; Dentini, M.; Skjak-Br(?)k, G. New Hypothesis on the Role of Alternating Sequences in Calcium-Alginate Gels. Biomacromolecules 2005,6,1031-1040.
    36. Li, L. B.; Fang, Y. P.; Vreeker, R.; Appelqvist, I. Reexamining the Egg-Box Model in Calcium-Alginate Gels with X-Ray Diffraction. Biomacromolecules 2007,8, 464-468.
    37. Matricardi, P.; Pontoriero, M.; Coviello, T.; Casadei, M. A.; Alhaique, F. In Situ Cross-Linkable Novel Alginate-Dextran Methacrylate IPN Hydrogels for Biomedical Applications:Mechanical Characterization and Drug Delivery Properties. Biomacromolecules 2008,9,2014-2020.
    38. Smidsrod, O.; Haug, A. Dependence upon the Gel-Sol State of the Ion-Exchange Properties of Alginate. Acta Chem. Scand.1972,26(5),2063-2074.
    39.王秀娟,张坤生,任云霞,姚俊.海藻酸钠凝胶特性的研究.食品工业科技,2008,29,295-262.
    40. Manoli, F.; Dalas, F. Spontaneous Precipitation of Calcium Carbonate in the Presence of Chondroitin Sulfate. J. Cryst. Growth.2000,217,416-421.
    41. Wei, H.; Shen, Q.; Zhao, Y; Wang, D. J.; Xu, D. F. Influence of Polyvinylrrolidone on the Precipitation of Calcium Carbonate and on the Transformation of Vaterite to Calcite. J. Cryst. Growth 2003,250,516-524.
    42.刘涉江.溶液法制备不同晶形碳酸钙的研究.天津:河北工业大学.2002.
    43.钱军民,金志浩.填料碳酸钙的制备及其形状与晶型控制研究进展.化工矿物与加工,2002,4,1-4.
    44.宋兆昌.我国首次发现冰洲石—方解石巨晶、超巨晶群体及形成机制探讨.中国岩溶,1994,13,393-394.
    45.白鹤玲.纳米级活性碳酸钙的制备.长沙:中南大学,2002.
    46. Mann, S. Biomineralization:the Form(id)able Part of Bioinorganic Chemistry. J. Chem. Soc., Dalton Trans.1997,3953-3961.
    47. Grassmann, O.; Lobmann, P. Biomimetic Nucleation and Growth of CaCO3 in Hydrogels Incorporating Carboxylate Groups. Biomaterials 2004,25,277-282.
    48. Grassmann, O.; Lobmann, P. Morphogenetic Control of Calcite Crystal Growth in Sulfonic Acid Based Hydrogels. Chem. Eur. J.2003,9(6),1310-1316.
    49. Shen, Q.; Wang, L. C.; Li, X. P.; Liu, F. L. Biomimetic Synthesis of Calcium Carbonate Polymorphs Using the Lamellar Lyotropic Liqiud Crystalline Systems of Calcium Dodecyl Sulfate. Cryst. Growth Des.2008,8,3560-3565.
    50. You, C.; Zhang, Q.; Jiao, Q. Z.; Fu, Z. D. Supernet Structures of Calcium Carbonate Mesocrystals Formed in a Blend System of Anionic/Nonionic Surfactants. Cryst. Growth Des.2009,9,4720-4724.
    51. Walsh, D.; Mann, S. Synthesis of Cellular Inorganic Films from Self-Organized Media. Adv. Mater.1997,9,658-662.
    52. Menahem, T.; Mastai. Y. Controlled crystallization of calcium carbonate superstructures in macroemulsions. J. Cryst.Growth 2008,310,3552-3556.
    53. Sheng, X. X.; Jung, T. S.; Wesson, J. A.; Ward, M. D. Adhesion at Calcium Oxalate Crystal Surfaces and the Effect of Urinary Constituents. Proc.Natl. Acad. Sci. USA 2005,102(2),267-272.
    54.欧阳健明.草酸钙结石研究中的化学基础.化学通报2002,65,326-332.
    55. Grases, F.; Llobera, A. Experimental Model to Study Sedimentary Kidney Stones. Micron 1998,29,105-111.
    56. Mandel, N. Crystal-Membrane Interaction in Kidney Stone Disease. J. Am. Soc. Nephrol.1994,5, S37-S45.
    57. Talham, D. R.; Backov, R.; Benitez, I. O.; Sharbaugh, D. M.; Whipps, S.; Khan, S. R. Role of Lipids in Urinary Stones:Studies of Calcium Oxalate Precipitation at Phospholipid Langmuir Monolayers. Langmuir 2006,22,2450-2456.
    58. Backov, R.; Lee, C. M.; Khan, S. R.; Mingotaud, C.; Fanucci, G. E.; Talham, D. R. Calcium Oxalate Monohydrate Precipitation at Phosphatidylglycerol Langmuir Monolayers. Langmuir 2000,16,6013-6019.
    59. Cabrera, T. M.; Friguglietti, L. M.; King, C. M.; Larson-Mekler, A. E.; Graham, C. E.; Gurney, R. W. Templating the Nucleation of Calcium Oxalate Monohydrate via Micropatterned Self-Assembled Monolayers on Gold. Cryst. Growth Des.2007,7(12), 2436-2443.
    60. Teng, M. M.; Song, A. X.; Liu, L. P.; Hao, J. C. Metal-Ligand-Coordinated Vesicles and Vesicle-Assisted Preparation of Calcium Oxalate. J. Phys. Chem. B 2008, 112,1671-1675.
    61. Ouyang, J. M.; Deng, F.; Duan, L. Effect of Concentration of Lecithin, Calcium and Oxalate on Crystal Growth of Calcium Oxalate in Vesicles. Colloids Surf. A 2005, 257-258,215-220.
    62. Shen, Y. H.; Li, S. K.; Xie, A. J.; Xu, W. H.; Qiu, L. G.; Yao, H.; Yu, X. R.; Chen, Z. X. Controlled Growth of Calcium Oxalate Crystal in Bicontinuous Microemulsions Containing Amino Acids. Colloids Surf. B 2007,58,298-304.
    63. Shen, Y. H.; Yue, W. J.; Xie, A. J.; Qian, Z. Effects of Amino Acids on Crystal Growth of CaC2O4 in Reverse Microemulsion. Colloids Surf B 2005,45,120-124.
    64. Mosquera, M. J.; Pozo, J.; Esquivias. L. Application of Mercury Porosimetry to the Study of Xerogels used as Stone Consolidants. J. Non-Cryst. Solids 2002,11(2), 185-194.
    65. Ouyang, J. M. Effects of Temperature on Growth and Aggregation of Calcium Oxalate in Presence of Various Carboxylic Acids in Silica Gel Systems. Mater. Sci. Eng. C 2006,26,679-682.
    66. Deng, S. P.; Ouyang, J. M. Effect of Concentration of Structurally-Different Carboxylic Acids on Growth and Aggregation of Calcium Oxalate in Gel Systems. Chin. J. Chem.2007,25,1379-1384.
    67. Xie, A. J.; Zhang, L.; Zhu, J.; Shen, Y. H.; Xu, Z.; Zhu, J. M.; Li, C. H.; Chen, L.; Yang, L. B. Formation of Calcium Oxalate Concentric Precipitate Rings in Two-Dimensional Agar Gel Systems Containing Ca2+-RE3+(RE=Er, Gd and La)-C2O42-. Colloids Surf. A 2009,332,192-199.
    68. Tsujihata, M.; Miyake, O.; Yoshimura, K.; Kakimoto, K.; Takahara, S.; Okuyama, A. Comparison of Fibronectin Content in Urinary Macromolecules between Normal and Subjects and Recurrent Stone Formers. Eur. Urol.2001,40,458-462.
    69. Ouyang, J. M.; Deng, S. P. Controlled and Uncontrolled Crystallization of Calcium Oxalate Monohydrate in the Presence of Citric Acid. Dalton Trans.2003, 2846-2851.
    70. Grohe, B.; O'Young, J.; Andrei-lonescu, D.; Lajoie, G.; Rogers, K. A.; Karttunen, M.; Goldberg, H. A.; Hunter, G. K. Control of Calcium Oxalate Crystal Growth by Face-Specific Adsorption of an Osteopontin Phosphopeptide. J. Am. Chem. Soc.2007, 129,14946-14951.
    71. Sargut, S. T.; Sayan, P.; Kuran, B. Influence of Essential and Non-Essential Amino Acids on Calcium Oxalate Crystallization. Cryst. Res. Technol.2010,45(1),31-38.
    72. Akin, B.; Oner, M.; Bayram, Y.; Demadis, K. D. Effects of Carboxylate-M odified, "Green" Inulin Biopolymers on the Crystal Growth of Calcium Oxalate. Crsyt Growth Des.2008,8(6),1997-2005.
    73. Wang, L. J.; Guan, X. Y.; Tang, R. K.; Hoyer, J. R.; Wierzbicki, A.; De Yoreo, J. J.; Nancollas, G. H. Phosphorylation of Osteopontin is Required of Inhibition of Calcium Oxalate Crystallization.J.Phys. Chem.B 2008,112,9151-9157.
    1. Klock, G.; Pfeffermann, A.; Ryser, C.; Grohn, P.; Kuttler, B.; Hahn, H.-J.; Zimmermann, U. Biocompatibility of Mannuronic Acid-rich Alginates. Biomaterials 1997,18,707-713.
    2. Salomonsen, T.; Jensen, H. M.; Stenbaek, D.; Engelsen, S. B. Chemometric Prediction of Alginate Monomer Composition:A comparative Spectroscopic Study using IR, Raman, NIR and NMR. Carbohydr. Polym.2008,72,730-739.
    3. Roopa, B. S.; Bhattacharya, S. Alginate Gels:1. Characterization of Textural Attributes. J. Food Eng.2008,85,123-131.
    4. Montero, P.; Perez-Mateos, M. Effects of Cations on the Gelling Characteristics of Fish Mince with Added Nonionic and Ionic Gums. Food Hydrocolloids 2002,16, 375-385.
    5. Sriamornsak, P.; Kennedy, R. A. A Novel Gel Formation Method, Microstructure and Mechanical Properties of Calcium Polysaccharide Gel Films. Int. J. Pharm.2006, 323,72-80.
    6. Broderick, E.; Lyons, H.; Pembroke, T.; Byrne, H.; Murray, B.; Hall, M. The Characterisation of a Novel, Covalently Modified, Amphiphilic Alginate Derivative, which Retains Gelling and Non-Toxic Properties. J. Colloid Interface Sci.2006,298, 154-161.
    7. Yu, C.-Y.; Jia, L.-H.; Yin, B.-C.; Zhang, X.-Z.; Cheng, S.-X.; Zhuo, R.-X. Fabrication of Nanospheres and Vesicles as Drug Carriers by Self-Assembly of Alginate. J. Phys. Chem. C2008,112,16774-16778.
    8. Gill, I. Bio-doped Nanocomposite Polymers:Sol-Gel Bioencapsulates. Chem. Mater.2001,13,3404-3421.
    9. Mammarella, E. J.; Rubiolo, A. C. Crosslinking Kinetics of Cation-Hydrocolloid Gels. Chem. Eng. J.2003,94,73-77. 10. Plieva, F. M.; Mattiasson, B. Microporous Gel Particles as Novel Sorbent Materials:Rational Design. Ind. Eng. Chem. Res.2008,47,4131-4141.
    11. Zhang, H.; Tumarkin, E.; Peerani, R.; Nie, Z.; Sullan, R. M. A.; Walker, G. C.; Kumacheva, E. Microfluidic Production of Biopolymer Microcapsules with Controlled Morphology. J. Am. Chem. Soc.2006,128,12205-12210.
    12. Perullini, M.; Jobbagy, M.; Moretti, B. M.; Garcia, S. C.; Bilmes, S. A. Optimizing Silica Encapsulation of Living Cells:In Situ Evaluation of Cellular Stress. Chem. Mater.2008,20,3015-3021.
    13. Gardea-Torresdey, J. L.; Becker-Hapak, M. K.; Hosea, J. M.; Darnall, D. W. Effect of Chemical Modification of Algal Carboxyl Groups on Metal Ion Binding. Environ. Sci. Technol.1990,24,1372-1378.
    14. Davis, T. A.; Kalis, E. J. J.; Pinheiro, J. P.; Town, R. M.; van Leeuwen, H. P. Cd(Ⅱ) Speciation in Alginate Gels. Environ. Sci. Technol.2008,42,7242-7247.
    15. Braccini, I.; Perez, S. Molecular Basis of Ca2+-Induced Gelation in Alginates and Pectins:The Egg-Box Model Revisited. Biomacromolecules 2001,2,1089-1096.
    16. Draget, K. I.; Strand, B.; Hartmann, M.; Valla, S.; Smidsr(?)d, O.; Skjak-Br(?)k, G. Ionic and Acid Gel Formation of Epimerised Alginates:the Effect of AlgE4. Int. J. Biol. Macromol.2000,27,117-122.
    17. Puttipipatkhachorn, S.; Pongjanyakul, T.; Priprem, A. Molecular Interaction of Pharmacy and Pharmacology. Int. J. Pharm.2005,293,51-62.
    18. Baskoutas, S.; Giabouranis, P.; Yannopoulos, S. N.; Dracopoulos, V.; Toth, L.; Chrissanthopoulos, A.; Bouropoulos, N. Preparation of ZnO Nanoparticles by Thermal Decomposition of Zinc alginate. Thin Solid Films 2007,515,8461-8464.
    19. Sugiyama, S.; Fuji, M.; Fukuta, K.; Seyama, K.; Sotowa, K.-I.; Shigemoto, N. Preparation of Alkaline Earth Phosphates with Sol Containing Sodium Alginate and Sodium Diphosphate. J. Colloid Interf. Sci.2006,295,141-147.
    20. Chai, Y.; Mei, L.-H.; Lin, D.-Q.; Yao, S.-J. Diffusion Coefficients in Intrahollow Calcium Alginate Microcapsules. J. Chem. Eng. Data 2004,49,475-478.
    21. Robitzer, M.; David, L.; Rochas, C.; Renzo, F. D.; Quignard, F. Nanostructure of Calcium Alginate Aerogels Obtained from Multistep Solvent Exchange Route. Langmuir 2008,24,12547-12552.
    22. Zhao, Y.; Carvajal, M. T.; Won, Y.-Y.; Harris, M. T. Preparation of Calcium Alginate Microgel Beads in an Eletrodispersion Reactor Using an Internal Source of Calcium Carbonate Nanoparticles. Langmuir 2007,23,12489-12496.
    23. Stein, E. W.; Volodkin, D. V.; McShane, M. J.; Sukhorukov, G. B. Real-Time Assessment of Spatial and Temporal Couples Catalysis within Polyeletrolyte Microcapsules Containing Coimmobilized Glucose Oxidase and Peroxidase. Biomacromolecules 2006,7,710-719.
    24. Volodkin, D. V.; Larionova, N. I.; Sukhorukov, G. B. Protein Encapsulation via Porous CaCO3 Microparticles Templating. Biomacromolecules 2004,5,1962-1972.
    25. Mann, S. Biomineralization-Principles and Concepts in Bioinorganic Materials Chemistry; Compton, R. G., Davies, S. G., Evans, J., Eds.; Oxford University Press: Oxford, U.K.,2001; pp 6-10.
    26. Watabe, N. In Progress in Crystal Growth and Characterization; Pamplin, B. R., Ed.; Pergamon Press:New York,1981; Vol,4, pp 99-147.
    27. Meldrum, F. C. Calcium Carbonate in Biomineralisation and Biomimetic Chemistry. Int. Mater. Rev.2003,48,187-224.
    28. Demadis, K. D.; Katarachia, S. D. Metal-phosphonate Chemistry:Synthesis, Crystal Structure of Calcium-Amino-Tris-(Methylene Phosphonate) and Inhibition of CaCO3 Crystal Growth. Phosphorus, Sulfur, Silicon 2004,179,627-648.
    29. Buijnsters, P. J. J. A.; Donners, J. J. J. M.; Hill, S. J.; Heywood, B. R.; Nolte, R. J. M.; Zwanenburg, B.; Sommerdijk, N. A. J. M. Oriented Crystallization of Calcium Carbonate under Self-Organized Monolayers of Amide-Containing Phospholipids. Langmuir 2001,17,3623-3628.
    30. Donners, J. J. J. M.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. A Shaped-Persistent Polymeric Crystallization Template for CaCO3. J. Am. Chem. Soc.2002,124,9700-9701.
    31. Ajikumar, P. K.; Wong, L. G.; Subramanyam, G.; Lakshminarayanan, R.; Valiyaveettil, S. Synthesis and Characterization of Four Novel Supramolecular Compounds Based on Metal Zinc and Cadmium. Cryst. Growth Des.2005,5, 1129-1139.
    32. Chibowski, E.; Szczes, A.; Holysz, L. Influence of Sodium Dodecyl Sulfate and Static Magnetic Field on the Properties of Freshly Prescipitated Calcium Carbonate. Langmuir 2005,21,8114-8122.
    33. Shen, Q.; Wang, L. C.; Huang, Y. P.; Sun, J. L.; Wang, H. H.; Zhou, Y.; Wang, D. J. Oriented Aggregation and Novel Phase Transformation of Vaterite Controlled by the Synergistic Effect of Calcium Dodecyl Sulfate and n-Pentanol. J. Phys. Chem. B 2006, 110,23148-23153.
    34. Shen, Q.; Wang, L. C.; Li, X. P.; Liu, F. L. Biomimetic Synthesis of Calcium Carbonate Polymorphs Using the Lamellar Lyotropic Liquid Crystalline Systems of Calcium Dodecyl Sulfate. Cryst Growth Des.2008,8,3560-3565.
    35. Weiner, S. Mollusk Shell Formation:Isolation of two Organic Matrix Proteins Associated with Calcite Deposition in the Bivalve Mytilus Californianus. Biochemistry.1983,22,4139-4145.
    36. Levi-Kalisman, Y.; Falini, G.; Addadi, L.; Weiner, S. Structure of the Nacreous Organic Matrix of a Bivalve Mollusk Shell Examined in the Hydrated State Using Cryo-TEM. J. Structural Biol. 2001,135,8-17.
    37. Pokroy, B.; Zolotoyabko, E.; Adir, N. Purification and Functional Analysis of a 40 KD Protein Extracted from the Strombus decorus persicus Mollusk Shells. Biomacromolecules 2006,7,550-556.
    38. Orme, C. A.; Noy, A.; Wierzbicki, A.; Mcbride, M. T.; Grantham, M.; Teng, H. H.; Dove, P. M.; DeYoreo, J. J. Formation of Chiral Morphologies through Selective Binding of Amino Acids to Calcite Surface Steps. Nature 2001,411,775-779.
    39. Lakshminarayanan, R.; Joseph, J. S.; Kini, R. M.; Valiyaveettil, S. Structure-Function Relationship of Avian Eggshell Matrix Proteins:A Comparative Study of Two Major Eggshell Matrix Proteins, Ansocalcin and OC-17. Biomacromolecules2005,6,741-751.
    40. Butler, M. F.; Glaser, N.; Weaver, A. C.; Kirkland, M.; Heppenstall-Butler, M. Calcium Carbonate Crystallization in the Presence of Biopolymers. Cryst. Growth Des.2006,6,781-794.
    41. Kanakis, J.; Malkaj, P.; Petroheilos, J.; Dalas, E. The Crystallization of Calcium Carbonate on Porcine and Human Cardiac Valves and the Antiminer Alization Effect of Sodium Alginate. J. Cryst, Growth 2001,223,557-564.
    42. Manoli, F.; Dalas, E. The Effect of Sodium Alginate on the Crystal Growth of Calcium Carbonate. J. Mater. Sci.2002,13,155-158.
    43. Matricardi, P.; Pontoriero, M.; Coviello, T.; Casadei, M. A.; Alhaique, F. In Situ Cross-Linkable Novel Alginate-Dextran Methacrylate IPN Hydro gels for Biomedical Applications:Mechanical Characterization and Drug Delivery Properties. Biomacromolecules 2008,9,2014-2020.
    44. Donati, I.; Benegas, J. C.; Cesaro, A.; Paolerri, S. Specific Interactions Versus Counterion Condensation.2. Theoretical Treatment within the Counterion Condensation Theory. Biomacromolecules 2006,7,1587-1596.
    45. Grant, G. T.; Morris, E. R.; Rees, D. A.; Smith, P. J. C.; Thom, D. Biological Interactions Between Polysaccharides and Divalent Cations:The Egg-Box Model. FEBS Lett.1973,32,195-198.
    46. DeYoreo, J. J.; Dove, P. M. Shaping Crystals with Biorriolecules. Science 2004, 306,1301-1302.
    47. Elhadj, S.; DeYoreo, J. J.; Hoyer, J. R.; Dove, P. M. Role of Molecular Charge and Hydrophilicity in Regulating the Kinetics of the Crystal Growth. Proc. Natl. Acad. Sci. U.S.A.2006,103,19237-19242.
    48. Kim, I. W.; Darragh, M. R.; Orme, C.; Evans, J. S. Molecular "Tuning " of Crystal Growth by Nacre-Associated Polypetides. Cryst. Growth Des.2006,6,5-10.
    49. Kong, H. J.; Kim, C. J.; Huebsh, N.; Weitz, D.; Mooney, D. J. Noninvasive Probing of the Spatial Organization of Polymer Chains in Hydrogels Using Fluorescence Energy Transfer. J. Am. Chem. Soc.2007,129,4518-4519.
    50. Cao, Y.; Shen, X.; Chen, Y.; Guo, J.; Chen, Q.; Jiang, X. pH-Induced Self-Assembly and Capsules of Sodium Alginate. Biomacromolecules 2005,6, 2189-2196.
    51. Sarmento, B.; Ferreira, D.; Veiga, F.; Ribeiro, A. Characterization of Insulin-Loaded Alginate Nanoparticles Produced by Ionotropic Pre-gelation through DSC and FTIR Studies. Carbohydr. Polym.2006,66,1-7.
    52. Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofobers. Science 2001,294,1684-1688.
    53. Boskey, A. L. Biomineralization:Conflicts, Challenges, and Opportunities. J. Cell Biochem.1998,30/31,83-91.
    54. Xu, G.; Yao, N.; Aksay, I. A.; Groves, J. T. Biomimetic Synthesis of Macroscopic-Scale Calcium Carbonate Thin Films. Evidence for a Multistep Assembly Process. J. Am. Chem. Soc.1998,120,11977-11985.
    55. Sartori, C.; Finch, D. S.; Ralph, B.; Gilding, K. Determination of the Cation Content of Alginate Thin Films by FT-IR Spectroscopy. Polymer 1997,38,43-51.
    56. Leal, D.; Matsuhiro, B.; Rossi, M.; Caruso, F. FT-IR Spectra of Alginic Acid Block Fractions in Three Species of Brown Seaweeds. Carbohydr. Res.2008,343, 308-316.
    57. Tam, S. K.; Dusseault, J.; Polizu, S.; Menard, M.; Halle, J.-P.; Yahia, L.-H. Physicochemical Model of Alginate-Poly-l-lysine Microcapsules Defined at the Micrometric/Nanometric Scale Using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials 2005,26,6950-6961.
    58. Aizenberg, J.; Lambert, G.; Weiner, S.; Addadi, L. Factors Involved in the Formation of Amorphous and Crystalline Calcium Carbonate:A Study of an Ascidian Skeleton. J. Am. Chem. Soc.2002,124,32-39.
    59. Shen, Q.; Wei, H.; Zhou, Y.; Huang, Y P.; Yang, H. R.; Wang, D. J.; Xu, D. F. Properties of Amorphous Calcium Carbonate and the Template Action of Vaterite Spheres. J. Phys. Chem.B 2006,110,2994-3000.
    60. Berman, A.; Ahn, D. J.; Lio, A.; Salmeron, M.; Reichert, A.; Charych, D. Total Alignment of Calcite at Acidic Polydiacetylene Films:Cooperativity at the Organic-Inorganic Interface. Science 1995,269,515-518.
    61. Manoli, F.; Koutsopoulos, S.; Dalas, E. Crystallization of Calcite on Chitin. J. Cryst. Growth 1997,182,116-124.
    62. Manoli, F.; Dalas, E. Calcium Carbonate Overgrowth on Elastin Substrate. J. Cryst. Growth 1999,204,369-375.
    63. Li, M.; Schnablegger, H.; Mann, S. Coupled Synthesis and Self-Assembly of Nanoparticles to Give Structures with Controlled Organization. Nature 1999,402, 393-395.
    64. Yu, S.-H.; Colfen, H. Bio-Inspired Crystal Morphogenesis by Hydrophilic Polymers. J. Mater. Chem.2004,14,2124-2147.
    65. Oaki, Y.; Kotachi, A.; Miura, T.; Imai, H. Bridged Nanocrystals in Biominerals and Their Biomimetics:Classical yet Modern Crystal Growth on the Nanoscale. Adv. Funct. Mater.2006,16,1633-1639.
    1. Sheng, X. X.; Jung, T. S.; Wesson, J. A.; Ward, M. D. Adhesion at Calcium Oxalate Crystal Surfaces and the Effect of Urinary Constituents. PNSA 2005,102(2),267-272.
    2. Smesko, A.; Singh, R. L.; Lanzalaco, A. C.; Nancollas, G. H. The Influence of Serum and Albumin on the constant Composition Growth and Surface Properties of Calcium Oxalate Monohydrate. Colloids Surf.1988,30,361-371.
    3. Mandel, N. Crystal-Membrane Interaction in Kidney Stone Disease. J. Am. Soc. Nephrol.1994,5, S37-S45.
    4. Tsujihata, M.; Miyake, O.; Yoshimura, K.; Kakimoto, K.; Takahara, S.; Okuyama, A. Comparison of Fibronectin Content in Urinary Macromolecules between Normal and Subjects and Recurrent Stone Formers. Eur. Urol 2001,40,458-462.
    5. Backov, R.; Lee, C. M.; Khan, S. R.; Mingotaud, C.; Fanucci, G. E.; Talham, D. R. Calcium Oxalate Monohydrate Precipitation at Phosphatidylglycerol Langmuir Monolayers. Langmuir 2000,16,6013-6019.
    6. Whipps, S.; Khan, S. R.; O'Palko, F. J.; Backov, R.; Talham, D. R. Growth of Calcium Oxalate monohydrate at Phospholipid Langmuir monolayers. J. Cryst. Growth 1998,192,243-249.
    7. Benitez, I. O.; Talham, D. R. Brewster Angle Microscopy of Calcium Oxalate Monohydrate Precipitation at Phospholipid Monolayer Phase Boundaries. Langmuir 2004,20,8287-8293.
    8. Benitez, I. O.; Talham, D. R. Calcium Oxalate Monohydrate Precipitation at Membrane Lipid Rafts. J. Am. Chem. Soc.2005,127,2814-2815.
    9. Ouyang, J. M.; Deng, S. P. Controlled and Uncontrolled Crystallization of Calcium Oxalate Monohydrate in the Presence of Citric Acid. Dalton Trans.2003,2846-2851.
    10. Ouyang, J. M.; Deng, S. P. Formation of Circular Patterns of Calcium Oxalate Crystals at Defective Sites of Langmuir-Blodgett Films. Colloids Surf. A 2008,317, 155-158.
    11. Ouyang, J. M.; Duan, L.; Tieke, B. Effects of Carboxylic Acids on the Crystals Growth of Calcium Oxalate Nanoparticles in Lecithin-Water Liposome Systems. Langmuir 2003,19,8980-8985.
    12. Teng, M. M.; Song, A. X.; Liu, L. P.; Hao, J. C. Metal-Ligand-Coordinated Vesicles and Vesicle-Assisted Preparation of Calcium Oxalate. J. Phys. Chem. B 2008, 112,1671-1675.
    13. Wang, L. J.; Qiu, S. R.; Zachowicz, W.; Guan, X. Y.; DeYoreo, J. J.; Nancolls, G. H.; Hoyer, J. R. Modulation of Calcium Oxalate Crystallization by Linear Aspartic Acid-Rich Peptides. Langmuir 2006,22,7279-7285.
    14. Akin, B.; Oner, M.; Bayram, Y.; Demadis, K. D. Effects of Carboxy late-Modified, "Green" Inulin Biopolymers on the Crystal Growth of Calcium Oxalate. Crsyt. Growth Des.2008,8(6),1997-2005.
    15. Ouyang, J. M. Effects of Temperature on Growth and Aggregation of Calcium Oxalate in Presence of various Carboxylic Acids in Silica Gel Systems. Mater. Sci. Eng.2006,26,679-682.
    16. Xie, A. J.; Zhang, L.; Zhu, J.; Shen, Y. H.; Xu, Z.; Zhu, J. M.; Li, C. H.; Chen, L.; Yang, L. B. Formation of Calcium Oxalate Concentric Precipitate Rings in Two-Dimensional Agar Gel Systems Containing Ca2+-RE3+(RE=Er, Gd and La)-C2O42". Colloids Surf. A 2009,332,192-199.
    17. Shen, Y. S.; Li, S. K.; Xie, A. J.; Xu, W. H.; Qiu, L. G.; Yao, H.; Yu, X. R.; Chen, Z. X. Controlled Growth of Calcium Oxalate Crystal in Bicontinuous Microemulsions Containing Amino Acids. Colloids Surf. B 2007,58,298-304.
    18. Li, X. P.; Shen, Q.; Su, Y. L.; Tian, R.; Zhao, Y.; Wang, D. J. Structure-Function Relationship of Calcium Alginate Hydrogels:A Novel Crystal-Forming Engineering. Cryst. Growth Des.2009,9(8),3470-3476.
    19. El-Shall, H.; Jeon, J. W.; Abdel-Aal, E. A.; Khan, S.; Gower, L.; Rabinovich, Y. A Study of Primary Nucleation of Calcium Oxalate Monohydrate:II. Effect of Urinary Species. Cryst. Res. Technol.2004,39(3),222-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700