用户名: 密码: 验证码:
强化木质纤维素干消化产气机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻草和互花米草都属于木质纤维素。稻草的废弃与焚烧,以及互花米草的疯长,带来严重的环境污染与生态问题和重大的经济损失。合理利用稻草和互花米草成了一个亟待解决的新问题。稻草和互花米草的干消化生产清洁的沼气,不仅解决其污染和危害,而且给当地居民带来经济的收益和生态环境的良性循环;从而激发当地居民的积极性,积极参与禁止稻草焚烧和控制互花米草疯长的活动。
     本论文考察石灰预处理和干消化稻草过程中组分和结构的变化,揭示复杂的木质纤维素结构是限制微生物利用、降低稻草产气率的根本原因;试图通过高温、同时石灰处理与干消化工艺和两相工艺来强化木质纤维素结构的破坏、提高木质纤维素的水解效率,增加干消化互花米草的产气,以期为提高干消化木质纤维素的产气效率提供理论基础和技术指导。主要结果如下:
     1.中温、干消化稻草的结构变化及产气特性。木质纤维素复杂结构导致了干消化的低水解速率,造成了低的生物转化效率和低的产气效率。60天干消化稻草的累积产气量达到278.1mL/g VS,产气转化率仅为39.9%;纤维素和半纤维相对含量分别降低22.4%和13.1%,而木质素相对含量增加了59%。石灰预处理导致乙酰基链断裂,致使木质素和多糖的去除;预处理过程中结晶区氢键的重组导致结晶指数的增加;发酵阶段主要通过p-1,4糖苷键断裂实现脱聚、结晶区氢键改变实现晶体结构破坏,最终实现多糖的降解。预处理和干消化显著影响稻草的热解特性。一级热解动力学很好的模拟了原稻草、预处理与干消化后稻草热解的主失重阶段,活化能在42.27-47.82KJ/mol之间变化。
     2.高温强化互花米草的产气效率。高温强化干消化的产气速率和木质素纤维素降解,产气率从181.2mL/g VS(中温)增加到283.9mL/g VS(高温),生物转化率从32.2%(中温)提高到50.4%(高温),VS去除率从57.3%(中温)提高到69%(高温)。
     3.同时石灰处理与干消化工艺强化干消化互花米草的产气效率。同时石灰处理与干消化工艺厌氧发酵木质纤维素在技术上是可行的,有最高的初始产气速率(k=0.023d-1)和最大的VS去除率(71.9%),厌氧发酵的前40天的产气率达到192.7mL/g VS,但干消化过程存在着抑制。Na+、K+和Ca2+阳离子并不是导致同时石灰处理与干消化工艺产气抑制的根本原因。
     4.高温强化互花米草结构破坏机理。高温强化了木质纤维素结构的破坏,同时石灰处理与干消化工艺实现了最大的结构破坏和组分去除。木质素去除主要出现在预处理阶段,主要通过乙酰基链断裂、羧基碳、芳碳和酚碳的脱除来实现。干消化去除多糖,主要通过p,1-4糖苷键断裂、多糖碳和乙缩醛碳的脱除。石灰预处理对木质纤维素素结构破坏有限,需要强化预处理,提高木质纤维素的生物降解性。预处理和干消化显著影响互花米草的热解特性。一级热解动力学很好的模拟了原、预处理与干消化后互花米草的主失重阶段,预处理增加活化能而干消化降低活化能。
     5.两相工艺强化木质纤维素的水解效率,增加干消化互花米草的产气效率。补加尿素调节碳氮比,创造更适宜生存环境、试图增加水解效率,但导致气相甲烷菌的氨抑制;FA抑制产甲烷反应,其值高于55mg/L就会对高温产甲烷菌产生严重的抑制。两相干消化互花米草的产气量为98.6mL/g VS,转化率仅为17.5%。木质纤维素复杂结构导致了低的水解效率,需要大幅度地强化预处理效果,增加木质纤维素结构的破坏,才能明显提高干消化木质纤维素的产气量。
Rice straw is one of main agricultural residues in country and smooth cordgrass is main salt-mash plant at the coast of China Sea. Rice straw and smooth cordgrass all belong to lignocelluloses. Recently open-field burning of rice straw and excessive spread of smooth cordgrass has lead to seriously environmental pollution, economical loss and ecological problem. Effective utilization of rice straw and smooth cordgrass has become a new problem. Dry digestion of rice straw or smooth cordgrass for biogas production may not only solve the pollution question, but also may bring economical and environmental benefits to local inhabitants. This helps to further control and lessen their negative impacts on environment.
     In this work, an investigation on changes of lignocellulosic composition and structure was performed during lime pretreatment and dry digestion of rice straw; changes of complex lignocelluloses structure was discussed by X-ray, FTIR and TG analysis. Result showed that lignocellulosic structure was main limited factor of low biogas yield. Enhancing measures for biogas production, including thermophilic conditions, simultaneous lime treatment and dry digestion process, and two-phase process was carried out. Main contents and results are as follows:
     In chapter2, structure changes and biogas production characteristics of rice straw were investigated during lime pretreatment and dry digestion. Low hydrolysis rate limits utilization of lignocelluloses for microorganism. Cumulative biogas yield reached278.1mL/g VS at60days dry digestion of rice straw, and the relative content of cellulose and hemicellulose decreased23.4%and13.1%, respectively; and whereas lignin content relative increased59%. Lime pretreatment resulted in the lignin and polysaccharides removal by the cleavage of ester linkage and rearrangement of hydrogen bonding in the crystalline region. The decomposition of polysaccharides was carried out by the cleavage of β,1-4glycosidic bonds linkages during dry digestion. Biogas conversation rate was only39.9%and measures need be adopted for the improvement of biogas production for dry digestion of lignocelluloses. Pretreatment and dry digestion had obvious influence on pyrolysis characteristics of rice straw. The part of main weight loss for pyrolysis rice straw very fit first-order kinetic model, and the value of activate energy ranged from42.27to47.82KJ/mol.
     In chapter3, enhancing biogas production was discussed by thermophilic conditions. Thermophilic conditions enhanced biogas production and lignocellulosic bioconversion. During60days dry digestion, biogas yield reached283.9mL/g VS and181.2mL/g VS at55℃and35℃, respectively. Compared with32.2%biogas conversion rate and57.3%VS reduction at mesophilic condition (35℃), thermophilic condition (55℃) obtained50.4%biogas conversion rate and69%VS reduction.
     In chapter3, enhancing biogas production was also discussed by simultaneous lime treatment and dry digestion (SLTTD) process. SLTTD process was achieved in one reactor with highest initial biogas production constant (k=0.023d-1) and VS removal rate (71.9%). Biogas yield with192.7mL/g VS was obtained at the beginning of40days during60days dry digestion, but inhibition of anaerobic microorganisms occurred at SLTTD process during dry digestion. Sodium, potassium and calcium ions were not the cause of inhibition for SLTTD process.
     In chapter4, the breakage of lignocellusic structure was investigated at mesophilic and thermophilic conditions. Thermophilic conditions brought a greater rupture of lignocellulosic structure. Highest breakage of lignocelluloses and higher composition remove was carried out in SLTTD experiment. Lignin removal occurred at lime pretreatment phase by the cleavage of ester linkage and the reducing carboxyl, aryl and phenolic C functional group. Polysaccharides decomposition happened at dry digestion by the cleavage of β,1-4glycosidic bonds linkages, and the reduction of carbohydrate and Di-O-alkl C functional group. The part of main weight loss very fit a first-order kinetic model for smooth cordgrass pyrolysis. The increase in activate energy appeared at pretreatment phase, and whereas the decrease occurred at dry digestion phase.
     In chapter5, Two-phase digestion of smooth cordgrass was investigated for improving hydrolysis rate of lignocelluloses. Free ammonia (FA) inhibition occurred at two-phase process, when the C/N rate of digester was adjusted by adding urea. Adding chemical for adjusting C/N rate should be very cautious and co-digestion with organic wastes containing high nitrogen would be better choice for adjusting C/N rate. When FA concentration was over55mg/L, biogas production rate obviously decreased or stopped. Biogas yield was only98.6mL/g VS with17.5%bioconversion rate during53days two-phase digestion of smooth cordgrass. Hydrolysis of smooth cordgrass was a limited step during anaerobic digestion and lignocellulose pretreatment need be a great scale improved for higher biogas production.
引文
[1]U.S. Energy Information Administration. International energy outlook 2005, http://www.eia.doe.gov/oiaf/ieo/download (Accessed March 11,2011)
    [2]任东明.我国可再生能源产业的发展现状与前景[J].中国科技投资,2008,(4):52-53.
    [3]石元春.一个年产亿吨的生物质油田设想[J].科学中国人,2007,(4):33-35.
    [4]中国公布2020年温室气体减排目标到2020年,单位GDP二氧化碳排放比2005年下降40%-50%. http://news.sina.com.cn/o/2009-11-27/054916676255s.shtml.
    [5]国家发展改革委员会.可再生能源中长期发展规划[EB/OL].2007-8http://www.sdpc.gov.cn/zcfb/2cfbtz/2007tongzhi/W020070904607346044110.pdf
    [6]中华人民共和国可再生能源法(修正案).http://www.chinanews.com/ny/news/2009 /12-26/2040229.shtml.
    [7]Farrell A.E., Plevin R.J., Turner B.T., et al. Ethanol can contribute to energy and environmental goals [J]. Science,2006,311(5760):506-508.
    [8]Lloyd T.A., Wyman C.E. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids [J]. Bioresource Technology,2005,96(18):1967-1977.
    [9]毕于运.秸秆资源评价与利用研究[D].中国农业科学院博士论文,2010.
    [10]王亚静,毕于运,高春雨.中国秸秆资源可收集利用量及其适宜性评价[J].中国农业科学,2010,43(9):1852-1859.
    [11]文军,骆东奇,罗献宝,等.千岛湖区域农业面源污染及其控制对策[J].水土保持学报,2004,18(3):126-129.
    [12]Gadde B., Bonnet S., Menke C., et al. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines [J]. Environmental Pollution,2009,157 (5):1554-1558.
    [13]周芳,胡明辅,周国平.生物质能的开发利用与技术进展[J].可再生能源,2007,(4):49-51,54.
    [14]周中仁,吴文良.生物质能研究现状及展望[J].农业工程学报,2005,21(12):12-15.
    [15]Berndes G. Bioenergy and water—the implications of large-scale bioenergy production for water use and supply [J]. Global Environmental Change,2002,12(4):253-271.
    [16]Yang B., Wyman C.E. Pretreatment:the key to unlocking low-cost cellulosic ethanol [J]. Biofuels Bioproducts& Biorefining-Biofpr.,2008,2(1):26-40.
    [17]Sousa L.D., Chundawat S., Balan V., et al.'Cradle-to-grave' assessment of existing lignocellulose pretreatment technologies [J]. Current Opinion in Biotechnology,2009, 20(3):339-347.
    [18]Fan L.T., Lee Y.H., Gharpuray M.M. The nature of cellulose material and their pretreatment for enzymatic hydrolysis. In:Cellulose Hydrolysis [M]. Springer Berlin, 1987:157-187.
    [19]高洁,汤烈贵.纤维素科学[M].科学出版社,1996.
    [20]Sannigrahi P., Pu Y.Q., Ragauskas A. Cellulosic biorefineries—unleashing lignin opportunities [J]. Current Opinion in Environmental Sustainability,2010, 2(5-6):383-393.
    [21]Zhu L. Fundamental study of structure features affecting enzymatic hydrolysis of lignocellulosic biomass [D]. Texas A&M University, USA,2005.
    [22]Malherbe S., Cloete T.E. Lignocellulose biodegradation:Fundamentals and applications [J] Reviews in Environmental Science & Biotechnology,2002,1(2):105-114.
    [23]Hendriks A.T.W.M., Zeeman G., Pretreatments to enhance the digestibility of lignocellulosic biomass [J]. Bioresource Technology,2009,100(1):10-18.
    [24]Laureano-Perez L, Teymouri F, Alizadeh H, et al. Understanding factors that limit enzymatic hydrolysis of biomass:Characterization of pretreated corn stover [J]. Applied Biochemistry and Biotechnology,2005,121(1-3):1081-1099.
    [25]Buranov A.U., Mazza G. Lignin in straw of herbaceous crops [J]. Industrial Crops and Products,2008,28(3):237-259.
    [26]Jorgensen H., Kristensen J.B., Felby C. Enzymatic conversion of lignocellulose into fermentable sugars:Challenges and opportunities [J]. Biofuels Bioproducts & Biorefining,2007,1(2):119-134.
    [27]Kumar P., Barrett D. M., Delwiche M.J., et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production [J]. Industrial Engineering Chemical Research,2009,48 (8):3713-3729.
    [28]Hsu T.A., Ladisch M.R., Tsao G.T. Alcohol from cellulose [J]. Chemical Technology, 1980,10 (5):315-319.
    [29]Mosier N.S, Wyman C., Dale B., et al. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresource Technology,2005,96(6): 673-686.
    [30]Lynd L.R., Elander R.T., Wyman C.E. Likely features and costs of mature biomass ethanol technology [J]. Applied Biochemistry and Biotechnology,1996,57-58 (1):741-761.
    [31]Lee J. Biological conversion of lignocellulosic biomass to ethanol [J]. Journal Biotechnology,1997,56(1):1-24.
    [32]Weimer P.J., Hackney J.M., French A.D. Effects of chemical treatments and heating on the crystallinity of celluloses and their implications for evaluating the effect of crystallinity on cellulose biodegradation [J]. Biotechnology Bioengineering,1995, 48(2):169-178.
    [33]Liu C.G., Wyman C.E. The effect of flow rate of compressed hot water on xylan, lignin and total mass removal from corn stover [J]. Industrial Engineering Chemical Research, 2003,42(21):5409-5416.
    [34]Deng L., Wang Y., Zhang Y., et al. The enhancement of ammonia pre-treatment on the fermentation of rice straw hydrolysate to xylitol [J]. Journal of Food Biochemistry, 2007,31(2):195-205.
    [35]Jin S., Chen H. Structural properties and enzymatic hydrolysis of rice straw [J]. Process Biochemical,2006,41 (6):1261-1264.
    [36]杨盛茹,丁长河,王罗琳,等.氨纤维爆破法预处理木质纤维生物质原料[J].酿酒,2010,37(5):16-18,73.
    [37]Hon D.N.S., Shiraishi N. Wood and Cellulosic Chemistry (2nd editor) [M]. Dekker, New York,2001.
    [38]席北斗,刘鸿亮,孟伟,等.垃圾堆肥高效复合微生物菌剂的制备[J].环境科学研究,2003,16(2):58-60.
    [39]Susana C., Sovan S., Francisco J., et al. Description of an versatile peroxidase involved in the natural degradation of lignin that has manganese peroxidase and lignin peroxidase substrate interaction sites [J]. The Journal of Biological Chemistry,1999,274 (15):10324-10330.
    [40]Balan V., Da Costa S.L, Chundawat S.P.S., et al. Mushroom spent straw:A potential substrate for an ethanol-based biorefinery [J]. Journal of Industrial Microbiology and Biotechnology,2008,35(5):293-301.
    [41]Park N., Kim H.Y., Koo B.W., et al. Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida) [J]. Bioresource Technology,2010,101(18):7046-7053.
    [42]Zhang Y.H.P., Ding S.Y., Mielenz J.R., et al. Fractionating recalcitrant lignocellulose at modest reaction conditions [J]. Biotechnology and Bioengineering,2007, 97(2):214-223.
    [43]Moxley G., Zhu Z., Zhang Y.H.P. Efficient sugar release by cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis [J]. Journal of Agricultural Food Chemical,2008,56(17):7885-7890.
    [44]Kaar W.E., Holtzapple M.T. Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover [J]. Biomass and Bioenergy,2000,18 (3):189-199.
    [45]Eggeman T, Elander R.T. Process and economic analysis of pretreatment technologies [J]. Bioresource Technology,2005,96 (18):2019-2025.
    [46]Wilkinson J.M., Gonzalez-Santillana R., Ensiled alkali-treated straw. I. Effect of level and type of alkali on the composition and digestibility in vitro of ensiled barley straw [J]. Animal Feed Science Technology,1978,3(2):117-132.
    [47]Chang V.S., Nagwani M., Holtzapple M.T. Lime pretreatment of crop residues bagasse and wheat straw [J]. Applied Biochemistry and Biotechnology,1998,74(3):135-159.
    [48]Ibrahim M.N.M., Pearce G.R. Effects of chemical pretreatments on the composition and in vitro digestibility of crop by-products [J]. Agricultural Wastes,1983,5 (3):135-156.
    [49]Gandi J., Holtzapple M.T, Ferrer A., et al. Lime treatment of agricultural residues to improve rumen digestibility [J]. Animal Feed Science Technology,1997,68 (3-4):195-211.
    [50]Chang V.S., Burr B., Holtzapple M.T. Lime pretreatment of switchgrass [J]. Applied Biochemistry and Biotechnology,1997,63-65(1):3-19.
    [51]Kim S., Holtzapple M.T. Delignification kinetics of corn stover in lime pretreatment [J]. Bioresource Technology,2006,97 (5):778-785.
    [52]Kim S., Holtzapple M.T. Lime pretreatment and enzymatic hydrolysis of corn stover [J]. Bioresource Technology,2005,96(18):1994-2006.
    [53]Kaar W.E., Holtzapple M.T. Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover [J]. Biomass and Bioenergy,2000,18 (3):189-199.
    [54]Forrest A.K., Hernandez J., Holtzapple M.T. Effects of temperature and pretreatment conditions on mixed-acid fermentation of water hyacinths using a mixed culture of thermophilic microorganisms [J]. Bioresource Technology,2010,101(19):7510-7515.
    [55]Saha, B.C., Cotta M.A. Enzymatic hydrolysis and fermentation of lime pretreated wheat straw to ethanol [J]. Journal of Chemical Technology and Biotechnology,2007,82 (10):913-919.
    [56]Liang Y.N., Siddaramu T., Yesuf J., et al. Fermentable sugar release from Jatropha seed cakes following lime pretreatment and enzymatic hydrolysis [J]. Bioresource Technology,2010,101(16):6417-6424.
    [57]Agbogbo F., Holtzapple M.T. Fermentation of rice straw/chicken manure to carboxylic acids using a mixed culture of marine mesophilic microorganisms [J]. Applied Biochemistry and Biotechnology,2006,132(1-3):997-1014.
    [58]Gharib F.H., Meiske J.C., Goodrich R.D., et al. In Vitro evaluation of chemically-treated poplar bark [J]. J. Anim. Sci.,1975,40:734-742.,
    [59]Sierra R., Granda C., Holtzapple M.T. Short-term lime pretreatment of poplar wood [J]. Biotechnology Progress,2009,25(2):323-332.
    [60]Rabelo S.C., Filho R.M., Costa A.C. Lime pretreatment of sugarcane bagasse for bioethanol production [J]. Applied Biochemistry and Biotechnology,2009, 153(1-2):139-150.
    [61]Saha B.C., Cotta M.A. Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol [J]. Biomass Bioenergy,2008,32 (10):971-977.
    [62]Cowward-Kelly G., Chang V.S., Agbogbo F.K., et al. Lime treatment of keratinous materials for the generation of highly digestible animal feed 1. Chicken feathers [J]. Bioresource Technology,2006,97 (11):1337-1343.
    [63]Winugroho M., Ibrahimt M.N.M., Pearce G.R. A soak-and-press method for the alkali treatment of fibrous crop residues. Calcium hydroxide and sodium hydroxide treatments of rice straw [J]. Agricultural Wastes,1984,9 (2):87-99.
    [64]Djajanegara A., Molina B.T., Doyle P.T. The utilization of untreated and calcium hydroxide treated wheat straw by sheep [J]. Animal Feed Science Technology,1985, 12(2):141-150.
    [65]Lopez-Torres M., del C. Espinosa-Llorens M. Effect of alkaline pretreatment on anaerobic digestion of solid wastes [J]. Waste Management,2008,28 (11):2229-2234.
    [66]Forrest A.K., Sierra R., Holtzapple M.T. Suitability of pineapple, Aloevera, molasses, glycerol, and office paper as substrates in the MixAlco processTM [J]. Biomass Bioenergy,2010,34 (8):1195-1200.
    [67]曹春梅,闫贵龙.石灰处理秸秆的适宜剂量优选[J].草原与饲料,2005,25(4):35-37.
    [68]Wyman C.E., Dale B.E., Elander R.T., et al. Coordinated development of leading biomass pretreatment technologies [J]. Bioresource Technology,2005,96(18): 1959-1966.
    [69]Lissens G., Vandevivere P., De Baere L., et al. Solid waste digestors:Process performance and practice for municipal solid waste digestion [J]. Water Science and Technology,2001,44(8):91-102.
    [70]Rapport J., Zhang R., Jenkins B.M., et al. Current anaerobic digestion technologies used for treatment of municipal organic solid waste [R]. California Environmental Protection Agency,2008. http://www.calrecycle.ca.gov/Publications/Organics/2008011.pdf.
    [71]Schafer W., Lehto M., Teye F. Dry anaerobic digestion of organic residues on-farm-A feasibility study [R].2006, http://stat.www.fi/cgi-bin/stat2?redr=www.mtt.fi/met/pdf /met77.pdf&serv=mtt&page=met77.pdf.
    [72]Lissens G., Vandevivere P., De Baere, et al. Solid waste digestors:Process performance and practice for municipal solid waste digestion [J]. Water Science and Technology, 2001,44(8):91-102.
    [73]Radwan A.M., Sebak H.A., Mitry N.R., et al. Dry anaerobic fermentation of agricultural residues [J]. Biomass and Bioenergy,1993,5(6):495-499.
    [74]李强,曲浩丽,承磊,等.沼气干发酵技术研究进展[J].中国沼气,2010,28(5):10-14.
    [75]De Baere L. Will anaerobic digestion of solid waste survive in the future? [J]. Water Science and Technology,2006,53(8):187-194.
    [76]http://www.ows.be/pages/index.php?menu=85&choose_lang=EN
    [77]Nichols C.E. Overview of anaerobic digestion technologies in Europe [J]. BioCycle, 2004,45(1):47-53.
    [78]http://www.kompogas.ch/en/index.html
    [79]余昆朋.城市生活垃圾厌氧消化技术进展[J].环境卫生工程,2003,11(1):16-20.
    [80]Vandevivere P.L. De Baere L., Verstraete W. Types of anaerobic digesters for solid wastes, In:Mata-Alvarez J., Editor. Biomethanization of the Organic Fraction of Municipal Solid Wastes, IWA Publishing,2002:111-140.
    [81]http://www.onsitepowersystems.com/technology.html
    [82]Zhang R.H., Zhang Z.Q. Biogasification of rice straw with an anaerobic-phased solids digester system [J]. Bioresource Technology,1999,68(3):235-245.
    [83]Chynoweth D.P., Owens J., Okeefe D., et al. Sequential batch anaerobic composting of the organic fraction of municipal solid-waste [J]. Water Science and Technology,1992, 25(7):327-339.
    [84]Okeefe D.M., Chynoweth D.P., Barkdoll A.W., et al. Sequential batch anaerobic composting of municipal solid-waste (MSW) and yard waste [J]. Water Science and Technology,1993,27(2):77-86.
    [85]Chynoweth D.P., Bosch G., Earle J.F.K., et al. A novel process for anaerobic composting of municipal solid-waste [J]. Applied Biochemistry and Biotechnology,1991,28-29(1): 421-432.
    [86]邓亚丽译Wujcik W.J., Jewell W.J., Dry anaerobic fermentation. Biotechnol. Bioeng. Symp.,1980,10:43-65, In:国外沼气,1984,第四集:1-10.
    [87]Poggi-Varaldo H.M., Oleszkiewicz J.A. Anaerobic co-composting of municipal solid waste and waste sludge at high total solids levels [J]. Environmental Technology,1992, 13(5):409-421.
    [88]邹元良,赵中举.沼气固体发酵试验[J].中国沼气,1983,(3):11-14.
    [89]刘克鑫.沼气的干发酵[J].太阳能,1983,(4):7-7.
    [90]孙国朝,邵廷杰,连莉文,等.干发酵工艺条件的研究[J].太阳能学报,1985,6(3):221-235.
    [91]Sun G.C., Wu Y.Z., Sha S.J., et al. Dry digestion of crop wastes:studies on dry anaerobic digestion with agricultural wastes [J]. Biological Wastes,1987,20 (4):291-302.
    [92]武少箐,刘圣勇,王晓东,等.秸秆干发酵产沼气技术的概述和展望[J].中国沼气,2008,26(4):20-23.
    [93]叶小梅,常志洲.有机固体废物干法厌氧发酵技术研究综述[J].生态与农村环境学报,2008,24(2):76-79,96.
    [94]Li Y.B., Stephen Y.P., Zhu J.Y. Solid-state anaerobic digestion for methane production from organic waste [J]. Renewable and Sustainable Energy Reviews,2011,15(!): 821-826.
    [95]邹元良赵中举.农村沼气干发酵的研究[J].中国沼气,1985,(3):13-18
    [96]王天光.沼气干发酵的产气与造肥效果[J].江苏农业科学,1985,(1):24-25.
    [97]孙国朝,沙士津,周绍英,等.干发酵生产性试验[J].太阳能学报,1986,7(1):10-15.
    [98]赵哈乐,魏洁山.干物质含量与沼气干发酵[J].可再生能源,1987,(4):13-14.
    [99]缪刚学,宋明芝,赵哈乐,等.北方农村沼气池干发酵的应用试验[J].中国沼气,1988,(4):23-25.
    [100]叶森,魏吉山,赵哈乐,等.自动排料沼气干发酵装置[J].中国沼气,1989,(4):17-19.
    [101]刘克鑫,Chen T.H., Chynoweth D.F.城市垃圾的高固体浓度发酵试验及其农业利用[J].农业现代化研究,1989,10(5):37-39.
    [102]刘晓风,廖银章,刘克鑫.城市有机垃圾干发酵研究[J].太阳能学报,1995,16(2):170-173.
    [103]冷成保,肖波,杨家宽,等.暗河式生活垃圾干发酵处理研究[J].环境工程,2001,19(4):45-47,5.
    [104]曲静霞,姜洋,何光设,等.农业废弃物干法厌氧发酵技术的研究[J].可再生能源,2004,(2):40-41.
    [105]边义,刘庆玉,李金洋.玉米秸秆干发酵制取沼气的试验[J].沈阳农业大学学报,2007,38(3):440-442.
    [106]隋继超,蒋建国,吴时要,等.有机垃圾单级高固体厌氧消化启动实验研究[J].环境科学,2007,28(3):684-688.
    [107]何荣玉,闫志英,刘晓风,等.秸秆干发酵沼气增产研究[J].应用与环境生物学报,2007,13(4):583-585
    [108]蒋建国,吴时要,隋继超,等.易腐有机垃圾单级高固体厌氧消化实验研究[J].环境科学,2008,29(4):1104-1108.
    [109]朱海春,张建萍,张无敌,等.香蕉皮干发酵试验研究[J].现代农业科技,2008,(14):21-22
    [110]张望,李秀金,庞云芝,等.稻草中温干式厌氧发酵产甲烷的中试研究[J].农业环境科学学报,2008,27(5):2075-2079.
    [111]全桂香,常志州,叶小梅,等.秸秆沼气干发酵快速启动条件与影响因素研究[J].江苏农业科学,2009,(3):366-368.
    [112]陈智远,姚建刚.不同接种量对玉米秸秆发酵的影响[J].农业工程技术(新能源产业),2009,(12):20-22.
    [113]黄俊,何予鹏,牛俊玲,等.麦秸中温厌氧干发酵技术实验研究[J].中国沼气,2009,28(1):7-9,13.
    [114]寇巍,赵勇,徐鑫,等.膨化技术用于玉米秸秆厌氧干发酵的试验研究[J].可再生能源,2010,28(3):63-65.
    [115]王伟,崔昌龙,张楠,等.秸秆干法发酵产沼气技术的研究[J].黑龙江农业科学,2010,(8):129-130.
    [116]黄威,陈秉良译Jewell W.J厌氧干发酵工艺的扩大研究[M].国外沼气,1984,第四集:11-16.
    [117]De Baere L., Gent A.N. Anaerobic fermentation of refuse [J]. Resources and Conservation,1987,14:295-308.
    [118]Llabres-Luengo P., Mata-Alvarez J. The hydrolytic step in a dry digestion system [J]. Biological Wastes,1988,23(1):25-37.
    [119]Molnar L., Bartha I., High solids anaerobic fermentation for biogas and compost production [J]. Biomass,1988,16(3):173-182.
    [120]Brummeler, E.T., I.W. Koster, Enhancement of dry anaerobic batch digestion of the organic fraction of municipal solid waste by an aerobic pretreatment step [J]. Biological Wastes,1990,31(3):199-210.
    [121]Chen T.H., Chynowth P., Biljetina R. Anaerobic digestion of municipal solid waste in a nonmixed solid concentrating digestor [J]. Applied Biochemistry and Biotechnology, 1990,24-25(1):533-544.
    [122]Cecchi F., Marcomini A., Pavan P., et al. Mesophilic digestion of the organic fraction of refuse:Performance and kinetic study [J]. Waste Management & Research,1990,8(1): 33-44.
    [123]Cecchi F., Pavan P., Mata-Alvarez J., et al., Anaerobic digestion of municipal solid waste:thermophilic vs. mesophilic performance at high solids [J]. Waste Management & Research,1991,9(4):305-315.
    [124]Richards B.K., Cummings R.J., Jewell W.J., et al. High solids anaerobic methane fermentation of sorghum and cellulose [J]. Biomass and Bioenergy,1991, 1(1):47-53.
    [125]Anand V., Chanakya H.N., Raj an M.G.C. Solid phase fermentation of leaf biomass to biogas [J]. Resources, Conservation and Recycling,1991,6(1):23-33.
    [126]Cecchi F., Mata-Alvarez J., Pavan F., et al., Seasonal effects on anaerobic digestion of the source sorted organic fraction of municipal solid waste [J]. Waste Management & Research,1992,10(5):435-443.
    [127]Poggi-Varaldo H.M., Oleszkiewicz J.A. Anaerobic co-composting of municipal solid waste and waste sludge at hlgh total solids levels [J]. Environmental Technology,1992, 13(5):409-421.
    [128]Chanakya H.N., Borgaonkar S., Rajan M.G.C., et al. Two-phase anaerobic digestion of water hyacinth or urban garbage [J]. Bioresource Technology,1992,42(2):123-131
    [129]Radwan A.M., Sebark H.A. Mitry N.R. et al. Dry anaerobic fermentation of agricultural residues [J]. Biomass and Bioenergy,1993,5(6):495-499.
    [130]Chanakya H.N., Borgaonkar S., Meena G., et al. Solid-phase biogas production with garbage or water hyacinth [J]. Bioresource Technology,1993,46 (3):227-231.
    [131]Singh R., Anand R.C., Comparative performances of Indian small solid-state and conventional anaerobic digesters [J]. Bioresource Technology,1994,47(3):235-238
    [132]Pavan P., Musacco A., Cecchi F., et al. Thermophilic semi-dry anaerobic digestion process of the organic fraction of municipal solid waste during transient conditions [J]. Environmental Technology,1994,15 (12):1173-1182.
    [133]Cho J.K., Park S.C., Chang H.N., Biochemical methane potential and solid state anaerobic digestion of Korean food wastes [J]. Bioresource Technology,1995,52(3): 245-253.
    [134]Chanakya H.N., Venkatsubramaniyam R., Modak J. Fermentation and methanogenic characteristics of leafy biomass feedstocks in a solid phase biogas fermentor [J]. Bioresource Technology,1997,62(3):71-78.
    [135]O'Keefe D.M., Chynoweth D.P. Influence of phase separation, leachate recycle and aeration on treatment of municipal solid waste in simulated landfill cells [J]. Bioresource Technology,2000,72 (1):55-66.
    [136]Bujoczek G., Oleszkiewicz J., Sparling R., et al. High solid anaerobic digestion of chicken manure [J]. Journal of Agricultural Engineering Research,2000,76(1):51-60.
    [137]Kalia A.K., Singh S.P. Effect of mixing digested slurry on the rate of biogas production from dairy manure in batch fermenter [J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2001,23(8):711-715.
    [138]Bolzonella D., Innocenti L., Pavan P., et al. Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste:Focusing on the start-up phase [J]. Bioresource Technology,2003,86(2):123-129.
    [139]Ekama G.A., Stemann S.W., Wentzel M.C. Biodegradability of dairy cattle manure under dry anaerobic fermentation process [J]. Water Research,2003,41(1):244-252.
    [140]Svensson L.M., Bjornsson L., Mattiasson B. Straw bed priming enhances the methane yield and speeds up the start-up of single-stage, high-solids anaerobic reactors treating plant biomass[J]. Journal of Chemical Technology and Biotechnology,2006,81(11): 1729-1735.
    [141]Lu S., Imai T., Ukita M., et al. Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes [J]. Journal of Environmental Sciences, 2007,19(4):416-420.
    [142]Svensson L.M., Bjrnsson L., Mattiasson B. Enhancing performance in anaerobic high-solids stratified bed digesters by straw bed implementation [J]. Bioresource Technology,2007,98(1):46-52.
    [143]Forster-Carneiro T., Prez M., Romero L.I., et al. Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste:Focusing on the inoculum sources [J]. Bioresource Technology,2007,98(17):3195-3203.
    [144]Forster-Carneiro T., Perez M., Romero L.I. Composting potential of different inoculum sources in the modified SEBAC system treatment of municipal solid wastes [J]. Bioresource Technology,2007,98(17):3354-3366.
    [145]Agdag O.N., Sponza D.T. Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors [J]. Journal of Hazardous Materials,2007,140(1-2):75-85.
    [146]Forster-Carneiro T., Perez M., Romero L.I. Anaerobic digestion of municipal solid wastes:Dry thermophilic performance [J]. Bioresource Technology,2008,99(17): 8180-8184.
    [147]Forster-Carneiro T., Perez M., Romero L.I. Thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste [J]. Bioresource Technology, 2008,99(15):6763-6770.
    [148]Forster-Carneiro T., Perez M., Romero L.I. Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste [J]. Bioresource Technology,2008,99(15):6994-7002.
    [149]Forster-Carneiro T., Perez M., Romero L.I. Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW) [J]. Bioresource Technology,2008,99(14):6075-6080.
    [150]Kusch S., Oechsner H., Jungbluth T. Biogas production with horse dung in solid-phase digestion systems [J]. Bioresource Technology,2008,99(5):1280-1292.
    [151]Macias-Corral M., Samani Z., Hanson A, et al. Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure [J]. Bioresource Technology,2008,99(17):8288-8293.
    [152]Demirer GN., Chen S. Anaerobic biogasification of undiluted dairy manure in leaching bed reactors [J]. Waste Management,2008,28(1):112-119.
    [153]Illmer P., Gstraunthaler G. Effect of seasonal changes in quantities of biowaste on full scale anaerobic digester performance [J]. Waste Management,2009.29(1):162-167
    [154]Abouelenien F., Nakashimada Y., Nishio N. Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture [J]. Jounal of Bioscience and Bioengineering,2009,107(3):293-295.
    [155]Abouelenien F., Kitamura Y., Nishio N., et al. Dry anaerobic ammonia-methane production from chicken manure [J]. Applied Microbiology Biotechnology,2009,82 (4):757-764.
    [156]Zheng M.X., Li X.J., Li L.Q., et al. Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment [J]. Bioresource Technology,2009,100 (21):5140-5145.
    [157]Fdez-Guelfo L.A., Alvarez-Gallego C., Marquez D.S., et al., Start-up of thermophilic dry anaerobic digestion of OFMSW using adapted modified SEBAC inoculum [J]. Bioresource Technology,2010,101(23):9031-9039.
    [158]Li D., Yuan Z.H., Sun Y.M. Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW) [J]. Bioresource Technology, 2010,101(8):2722-2728.
    [159]Nizami A.S., Thamsiriroj T., Singh A. et al., Role of leaching and hydrolysis in a two-phase grass digestion system [J]. Energy and Fuels,2010,24(8):4549-4559.
    [160]Mumme J., Linke B., Tolle R. Novel upflow anaerobic solid-state (UASS) reactor [J]. Bioresource Technology,2010,101(2):592-599.
    [161]Zhu J., Wan C., Li Y. Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment [J]. Bioresource Technology,2010,101(19):7523-7528.
    [162]Li L.H., Li D., Sun Y.M., et al., Effect of temperature and solid concentration on anaerobic digestion of rice straw in south China [J]. International Journal of Hydrogen Energy,2010,35(13 SI):7261-7266.
    [163]Guendouz J., Buffiere P., Cachoet J., al., Dry anaerobic digestion in batch mode:Design and operation of a laboratory-scale, completely mixed reactor [J]. Waste Management, 2010,30(10):1768-1771.
    [1]Kim S., Dale B.E. Global potential bioethanol production from wasted crops and crop residues [J]. Biomass and Bioenergy,2004,26 (4):361-375.
    [2]Gadde B., Bonnet S., Menke C., et al. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines [J]. Environmental Pollution,2009,157 (5):1554-1558.
    [3]国家统计局http://www.moa.gov.cn/tjsj/pages/daomi_scdt_历年中国稻谷播种面积、总产、单产(年度).html. [Accessed 2011年3月11]
    [4]李久海,董元华,曹志洪.稻草焚烧产生的多环芳烃排放特征研究[J].中国环境科学,2008,28(1):23-26.
    [5]吴少杰.从秸杆焚燃污染看当前我国的生物质能资源的开发利用[J].资源与人居环境,2008,(02):26-29.
    [6]Lissens G., Vandevivere P., De Baere L., et al. Solid waste digestors:Process performance and practice for municipal solid waste digestion [J]. Water Science and Technology,2001,44 (8): 91-102.
    [7]叶小梅,常志州.有机固体废物干法厌氧发酵技术研究综述[J].生态与农村环境学报,2008,24(2):76-79,96.
    [8]Radwan A.M., Sebak H.A., Mitry N.R., et al. Dry anaerobic fermentation of agricultural residues [J]. Biomass and Bioenergy,1993,5(6):495-499.
    [9]杜静,常志州,王世梅,等.不同底物沼气干发酵启动阶段的产酸特征研究[J].江苏农业科学,2008,(1):225-227.
    [10]Agbogbo F.K., Holtzapple M.T. Fixed-bed fermentation of rice straw and chicken manure using a mixed culture of marine mesophilic microorganisms [J]. Bioresource Technology, 2007,98 (8):1586-1595.
    [11]张望,李秀金,庞云芝,等.稻草中温干式厌氧发酵产甲烷的中试研究[J].农业环境科学学报,2008,27(5):2075-2079.
    [12]李东,李连华,马隆龙,等.华南地区稻草的厌氧干发酵制取沼气研究[J].太阳能学报,2008,29(6):754-758.
    [13]Zhang R.H., Zhang Z.Q. Biogasification of rice straw with an anaerobic-phased solids digester system [J]. Bioresource Technology,1999,68 (3):235-245.
    [14]Chanakya H.N., Srikumar K.G., Modak V., et al. Fermentation properties of agro-residues, leaf biomass and urban market garbage in a solid phase biogas fermenter [J]. Biomass and Bioenergy,1999,16(6):417-429.
    [15]Buranov A.U., Mazza G. Lignin in straw of herbaceous crops [J]. Industrial Crops and Product, 2008,28 (3):237-259
    [16]Sewalt V.J.H., Glasser W.G., Beauchemin K.A. Lignin impact on fiber degradation.3. Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives [J]. Journal of Agricultural Food Chemistry,1997,45(5):1823-1828.
    [17]Yang B., Wyman C.E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose [J]. Biotechnology and Bioengineering,2004,86(1):88-95.
    [18]Mosier N., Wyman C., Dale B., et al. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresource Technology,2005,96(6):673-686.
    [19]Yang B., Wyman C.E. Pretreatment:the key to unlocking low-cost cellulosic ethanol [J]. Biofuels Bioproduct Biorefining,2008,2(1):26-40.
    [20]Besle J.M., Comu A., Jouany J.P. Roles of structural phenylpropanoids in forage cell wall digestion [J]. Journal of the Science of Food and Agriculture,1994,64 (2):171-190.
    [21]Yin F., Hwang A., Yu N., et al. Hydrolysis of agricultural wastes [C]. In:Proceeding of resource recovery solid wastes conference,1982,447-456.
    [22]Valdes G., Planes L.R. Study of the hydrolysis of rice straw with sulfuric acid under moderate conditions [J]. Revista de Ciencias Quimicas,1983,14(1):11-19.
    [23]Felipe M.G.A., Sato S., De Castro H.F. Evaluation of rice straw hemicelluloses hydrolysate in the production of xylitol by Candida guilliermondii [J]. Biotechnology Letters,1994,16 (11):1211-1216.
    [24]Roberto I.C., Mussatto S.I., Rodrigues R.C.L.B. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor [J]. Industrial Crops and Products, 2003,7(3):171-176.
    [25]Vlasenko E.Y., Ding H., Labavitch J.M., et al. Enzymatic hydrolysis of pretreated rice straw [J]. Bioresource Technology,1997,59(2-3):109-119.
    [26]Karimi K.., Kheradmandiniaa S., Taherzadeh M.J. Conversion of rice straw to sugars by dilute-acid hydrolysis [J]. Biomass and Bioenergy,2006,30(3):247-253.
    [27]Abedinifar S., Karimi K., Khanahmadi M., et al. Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation [J]. Biomass and Bioenergy,2009,33(5):828-833.
    [28]Garrett W.N., Walker H.G, Kohler GO., et al. Response of ruminants to diets containing sodium hydroxide or ammonia-treated rice straw [J]. Journal of Animal Science,1979, 48(1):92-103.
    [29]He Y.F., Pang Y.Z., Liu Y.Y., et al. Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid-state for enhancing biogas production [J]. Energy and Fuels,2008,22 (4):2775-2781.
    [30]Yang D., Zheng Y, Zhang R.H. Alkali pretreatment of rice straw for increasing the biodegradability [C]. ASABE Annual International Meeting,2009.
    [31]He Y.F., Pang Y.Z., Li X.J., et al. Investigation on the changes of main compositions and extractives of rice straw pretreated with sodium hydroxide for biogas production [J]. Energy and Fuels,2009,23 (4):2220-2224.
    [32]Wanapat M., Varvikko T., Vanhatalo A. The influence of selected chemical treatments on the ruminal degradation and subsequent intestinal digestion of cereal straw [J]. Asian- Australian. Journal Animal. Science,1990,3(2):75-83.
    [33]Rahal A., Singh A., Singh M. Effect of urea treatment and diet composition on, and prediction of nutritive value of rice straw of different cultivars [J]. Animal Feed Science Technology, 1997,68(1):165-182.
    [34]Nakashima, Y., Brskov, E.R. Rumen degradation of straw.9. Effect of cellulase and ammonia treatment on different varieties of rice straw and their botanical fractions [J]. Animal Product., 1990,50(2):309-317.
    [35]Abou-El-Enin O.H., Fadel J.G., Mackill D.J. Differences in chemical composition and fibre digestion of rice straw with, and without, anhydrous ammonia from 53 rice varieties [J]. Animal Feed Science and Technology,1999,79(1):129-136.
    [36]Weimer P.J., Mertens D.R., Ponnampalamc E., et al. FIBEX-treated rice straw as a feed ingredient for lactating dairy cows [J]. Animal Feed Science and Technology,2003, 103(1-4):41-50.
    [37]Selim A.S.M., Pan J., Takano T., et al. Effect of ammonia treatment on physical strength of rice straw, distribution of straw particles and particle-associated bacteria in sheep rumen [J]. Animal Feed Science and Technology,2004,115(1-2):117-128.
    [38]Karunanandaa K., Varga G.A., Akin D.E., et al. Botanical fractions of rice straw colonized by white-rot fungi:Changes in chemical composition and structure animal [J]. Feed Science Technology,1995,55 (3):179-199.
    [39]Liu J.X., Orskov E.R., Chen X.B. Optimization of steam treatment as a method for upgrading rice straw as feeds [J]. Animal Feed Science and Technology,1999,76 (3):345-357.
    [40]Liu J.X., Erskov E.R. Cellulase treatment of untreated and steam pre-treated rice straw effect on in vitro fermentation characteristics [J]. Animal Feed Science and Technology,2000,88 (3-4):189-200.
    [41]Moniruzzaman M. Effect of steam explosion on the physicochemical properties and enzymatic saccharification of rice straw [J]. Applied Biochemistry and Biotechnology,1996, 59(3):283-297.
    [42]Jin S.Y., Chen H.Z. Fractionation of fibrous fraction from steam-exploded rice straw [J]. Process Biochemistry,2007,42 (2):188-192.
    [43]Zhu S.D., Wu Y.X., Yu Z.N., et al. Comparison of three microwave/chemical pretreatment processes for enzymatic hydrolysis of rice straw [J]. Biosystems Engineering,2006,93(3): 279-283.
    [44]Chang V.S., Burr B., Holtzapple M.T. Lime Pretreatment of Switchgrass [J]. Applied Biochemistry and Biotechnology,1997,63-65(1):3-19.
    [45]Thanakoses P., Black A.S., Holtzapple M.T. Fermentation of corn stover to carboxylic acids. [J]. Biotechnology and Bioengineering,2003,83(2):191-200.
    [46]Anthonisen A.C., Loehr R.C., Prakasam T.B.S., et al. Inhibition of nitrification by ammonia and nitrous acid [J]. Journal Water Pollution Control Federation,1976,48(5):835-852.
    [47]Van Soest P.J. Use of detergents in the analysis of fibrous feeds-Ⅱ. A rapid method for the determination of fiber and lignin [J]. Journal Association of Analysis Chemical,1963,46: 829-835.
    [48]Segal L, Creely J.J., Martin A.E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer [J]. Textile Research Journal, 1959,29(10):786-794.
    [49]修双宁,易维明,李保明.生物质热裂解动力学的研究进展[J].生物质化学工程,2007,41(2):47-53.
    [50]Haykifi-Acma H., Yaman S., Kueukbayrak S. Effect of heating rate on the pyrolysis yields of rape seed [J]. Renewable Energy,2006,31(6):803-810.
    [51]Sonobe T. Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activator energy model [J]. Fuel,2008,87(3):414-421.
    [52]李永玲,吴占松.秸秆热解特性及热解动力学模型研究[J].热力发电,2008,37(7):1-5.
    [53]Buswell A.M., Mueller H.F. Mechanism of methane fermentation [J]. Industrial and Engineering Chemistry,1952,44 (3):550-552.
    [54]Martin D.J., Mass transfer limitations solid-state digestion [J]. Biotechnology Letters,1999, 21(9):809-814.
    [55]Lehtomaki A., Huttunen S., Lehtinen T.M., et al. Anaerobic digestion of grass silage in batch leach bed processes for methane production [J]. Bioresource Technology,2008, 99(8):3267-3278.
    [56]Rittmann B.E., McCarty P.L. Environmental Biotechnology:Principles and Applications [M]. Mc Graw Hill,2001:599-600.
    [57]Deublein D., Steinhauser A. Biogas from Waste and Renewable Resources:An Introduction [M]. Wiley-VCH Verlag GmbH & Co. KGaA,2008:92-100.
    [58]Sun Y, Cheng J.Y. Hydrolysis of lignocellulosic materials for ethanol production:A review [J]. Bioresource Technology,2002,83(1):1-11.
    [59]Baucher M., Monties B., Van Montagu M., et al. Biosynthesis and genetic engineering of lignin [J]. Critical Review Plant Science,1998,17(2):125-197.
    [60]李继红,杨世关,郑正,等.互花米草中温厌氧发酵木质纤维结构的变化[J].农业工程学报,2009,25(2):199-203.
    [61]Kumar R., Mago G., Balan V., et al. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies [J]. Bioresource Technology,2009,100(17):3948-3962.
    [62]Ray D., Sarkar B.K., Rana A.K., et al. The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres [J]. Composites:Part A,2001, 32(1):119-127.
    [63]Chang S. Lime pretreatment of lignocellulosic biomass [D]. Texas A&M University, USA, 1999.
    [64]Wu Y.Q., Wu S.Y., Li Y., et al. Physico-chemical characteristics and mineral transformation behavior of ashes from crop straw [J]. Energy and Fuels,2009,23(10):5144-5150.
    [65]Tseng D.V., Vir R., Traina S.J., et al. A Fourier-transform infrared spectroscopic analysis of organic matter degradation in a bench-scale solid substrate fermentation (composting) system [J]. Biotechnology and Bioengineering,1996,52(6):661-671.
    [66]Faix O. Fourier transform infrared spectroscopy. In:Lin, S.Y., Dence, C.W. (Eds.), Methods in Lignin Chemistry [M]. Springer, Berlin,1992:83-109.
    [67]Sun X.F., Xu F., Sun R.C., et al. Characteristics of degraded cellulose obtained from steam-exploded wheat straw [J]. Carbohydrate Research,2005,340(1):97-106.
    [68]Popescu C.M., Popescu M.C., Vasile C. Structural changes in biodegraded lime wood [J]. Carbohydrate Polymers,2010,79(2):362-372.
    [69]Pandey K.K., Pitman A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi [J]. International Biodeterioration & Biodegradation,2003, 52(3):151-160.
    [70]Laureano-Perez L., Teymouri F., Alizadeh H., et al. Understanding factors that limit enzymatic hydrolysis of biomass:Characterization of pretreated corn stover [J]. Applied Biochemistry and Biotechnology,2005,121 (1-3):1081-1099.
    [71]鲁杰,石淑兰,杨汝男,等.纤维素酶酶解苇浆纤维微观结构和结晶结构的变化[J].中国造纸学报,2005,20(2):85-90.
    [72]Sugiyama J., Persson J., Chanzy H. Combined infrared and electron diffraction study of the polymorphism of native celluloses [J]. Macromolecules,1991,24 (9):2461-2466.
    [73]Raveendran K., Ganesh A., Khilar K.C. Pyrolysis characteristics of biomass and biomass components [J]. Fuel,1996,75(8):987-998.
    [74]傅旭峰,仲兆平,肖刚,等.草类生物质热解特性及动力学的对比研究[J].锅炉技术,2009,40(3):66-70.
    [75]赵明,吴文权,卢玫,等.草热裂解动力学研究[J].农业工程学报,2002,18(1):107-110.
    [76]赵宇,金文英,金珊,等.非木质生物质/废塑料共热解热重分析及动力学研究[J].辽宁石油化工大学学,2009,29(2):15-18.
    [77]冉景煜,曾艳,张力,等.几种典型农作物生物质的热解及动力学特性[J].重庆大学学报,2009,32(1):76-81.
    [78]卢洪波,苏桂秋,贾春霞,等.生物质秸秆热解反应及动力学分析[J].东北电力大学学报,2007,27(1):38-41.
    [79]冯剑,舒新前.玉米秆和稻草的能源利用研究[J].水利电力机械,2006,28(12):14-17.
    [80]Calvo L.F, Otero M., Jenkins B.M, et al. Heating process characteristics and kinetics of rice straw in different atmospheres [J]. Fuel Processing Technology,2004,85(4):279-291.
    [81]Yu Z.S., Ma X.Q., Liu A. Kinetic studies on catalytic combustion of rice and wheat straw under air- and oxygen-enriched atmospheres, by using thermogravimetric analysis [J]. Biomass and Bioenergy,2008,32(11):1046-1055.
    [82]Zhang S.Q., Yue X.M., Yin Z.Y., et al. Study of the co-pyrolysis behavior of sewage-sludge /rice-straw and the kinetics [J]. Procedia Earth and Planetary Science,2009,1(1):661-666.
    [83]Chiang W.F., Fang H.Y., Wu C.H., et al. The effect of oxygen on the kinetics of the thermal degradation for rice straw [J]. Journal of the Air and Waste Management Association,2009, 59(2):148-154.
    [1]An S.Q., Gu B.H., Zhou C.F., et al. Spartina invasion in China:Implications for invasive species management and future research [J]. Weed Research,2007,47(3):183-191.
    [2]徐国万,卓荣宗.我国引种互花米草的初步研究[J].南京大学学报(米草研究的进展-22年来地演技成果论文集),1985,5:212-225.
    [3]刘海华,李玉宝.1993-2003年间温州沿海互花米草变迁[J].温州大学学报(自然科学版),2007,28(5):19-24.
    [4]宋连清.互花米草及其对海岸的防护作用[J].东海海洋,1997,15(1):11-19.
    [5]李加林,张忍顺.互花米草海滩生态系统服务功能及其生态经济价值的评估—以江苏为例[J].海洋科学,2003,27(10):68-72.
    [6]张晟途,钦佩,谢民.不同海滨港湾环境条件下互花米草总黄酮积累动态研究[J].生态学报,1999,19(4):587-590.
    [7]李加林,杨晓平,童亿勤,等.互花米草入侵对潮滩生态系统服务功能的影响及其管理[J].海洋通报,2005,10(5):33-38.
    [8]王蔚,张凯,汝少国.米草生物入侵现状及防治技术研究进展[J]海洋科学,2003,27(7):38-42.
    [9]李继红.互化米草与土豆混合厌氧发酵试验研究[D].南京大学博士论文,2008.
    [10]郑贵荣,徐开亩,张如.互花米草粉饲养肉鸡试验[J].养禽与禽病防治,1994,(6):21-22
    [11]郑贵荣,张如.互花米草粉饲养肉猪试验[J].饲料研究,1995,(5):23-24.
    [12]王伯诚,杨泉灿,戴均灿,等.互花米草作水稻基肥和喂兔试验[J].浙江农业科学,1996,(1):37-38.
    [13]林国粱,张瑞光,李德椿.圈养山羊饲喂米草试验[J].福建畜牧兽医,1999,21(4):4-4.
    [14]钦佩,谢民,桂诗礼.米草食用价值的开发研究[J].自然杂志1988,11(12):931-933.
    [15]罗彩林,温杨敏,郑晨娜.大米草和互花米草药用价值研究进展[J].亚太传统医药,2010,6(7):180-181.
    [16]胡芝华,钦佩,蔡鸣,等.互花米草总黄酮降血脂作用研究[J].海洋科学,1998,(2):16-18.
    [17]董玉平,董磊,景元琢,等.大米草气、电、热三联供技术研究[J].农业工程学报,2007,23(8):222-226.
    [18]朱洪光.发展海洋种植业拓展生物质能源新渠道[J].农业工程技术,2007.03,13-16.
    [19]罗艳,陈广银,罗兴章,等.NaOH溶液间歇式处理对互花米草厌氧发酵特性的影响[J].环境科学学报,2010,30(10):2017-2021.
    [20]李继红,杨世关,郑正,等.互花米草厌氧发酵产沼气初步试验研究[J].农业环境科学学报2008,27(3):1254-1258.
    [21]杨世关,李继红,郑正,等.互花米草厌氧生物转化可行性分析与试验研究[J].农业工程学报,2008,24(5):196-199.
    [22]陈广银,郑正,邹星星,等.牛粪对互花米草混合厌氧消化过程的影响研究[J].环境科学,2009,30(7):2130-2135.
    [23]陈广银,郑正,邹星星,等.牛粪与互花米草混合厌氧消化产沼气的试验[J].农业工程学报,2009,25(3):179-183.
    [24]邹星星,郑正,,杨世关,等.汽爆预处理对互花米草厌氧发酵产气特性的影响[J].中国环境科学2009,29(10):1117-1120.
    [25]梁越敢,郑正,汪龙眠,等.干发酵对稻草结构及产沼气的影响[J].中国环境科学2011,31(3):417-422.
    [26]Jin S., Chen H. Structural properties and enzymatic hydrolysis of rice straw [J]. Process Biochemical,2006,41 (6):1261-1264.
    [27]He Y.F., Pang Y.Z., Liu Y.P., et al. Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid-state for enhancing biogas production [J]. Energy and Fuels,2008,22(4):2775-2781.
    [28]万仁新.生物质能工程[M].北京:中国农业出版社,1995.
    [29]McKendry P. Energy production from biomass (part 1):Overview of biomass [J]. Bioresource Technology,2002,83(1):37-46.
    [30]Chen H.Z., Liu L.Y. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction [J].Bioresource Technology,2007,98(3):666-676.
    [31]朱洪光,陈小华,唐集兴.以互花米草为原料生产沼气的初步研究[J].农业工程学报,2007,23(5):201-204.
    [32]安雷,朱洪光,陈小华.互花米草发酵产沼气的潜力研究[J].现代农业科技,2009,(14):229,238
    [33]朱洪光,陈小华,王彪.发酵液循环对互花米草沼气发酵的影响[J].中国沼气,2007,25(3):19-22.
    [34]罗艳,陈广银,罗兴章,等.互花米草不同部位厌氧发酵特性[J].环境化学,2010,29(5):909-913.
    [35]胡纪萃,编著.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2002.
    [36]Michael H G. The Microbiology of Anaerobic Digesters [M].A John Wiley & Sons, Inc., Publication,2003:100-100.
    [37]Goberna M., Schoen M.A., Sperl D., et al., Mesophilic and thermophilic co-fermentation of cattle excreta and olive mill wastes in pilot anaerobic digesters [J]. Biomass and Bioenergy, 2010,34(3):340-346.
    [38]Mackie R.I., Bryant M.P. Anaerobic digestion of cattle waste at mesophilic and thermophilic temperatures [J]. Applied and Environmental Microbiology,1995,43(3):346-350.
    [39]Hendriks A.T.W.M., Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass [J]. Bioresource Technology,2009,100(1):10-18.
    [40]Yang B., Wyman C.E. Pretreatment:the key to unlocking low-cost cellulosic ethanol [J]. Biofuels, Bioproducts and Biorefining,2008,2(1):26-40.
    [41]Mosier N., Wyman C., Dale B., et al. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresource Technology,2005,96 (6):673-686.
    [42]Pang Y.Z., Liu Y.P., Li X.J., et al. Improving biodegradability and biogas production of corn stover though sodium hydroxide solid state pretreatment [J]. Energy and Fuels,2008,22(4): 2761-2766.
    [43]熊承永,胡荣笃,宋平,等.户用沼气池干发酵工艺操作要点及其生产性应用结果[J].中国沼气,1988,6(1):24-27.
    [44]Chang S. Lime pretreatment of lignocellulosic biomass [D]. PhD thesis of Texas A & M University, USA,1999.
    [45]Zhang R.H., Zhang Z.Q. Biogasification of rice straw with an anaerobic-phased solids digester system [J]. Bioresource Technology,1999,68(3):235-245.
    [46]Yang S.G., Li J.H., Zheng Z., et al. Characterization of Spartina alterniflora as feedstock for anaerobic digestion [J]. Biomass Bioenergy,2009,33(4):597-602.
    [47]Thanakoses P., Black A.S., Holtzapple M.T. Fermentation of corn stover to carboxylic acids [J]. Biotechnology and Bioengineering,2003,83(2):191-200.
    [48]张丽英.饲料分析及饲料质量检测技术(第2版)[M].北京:中国农业大学出版社,2003:63-75.
    [49]Bilgili M.S., Demir A., Varank G. Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste:A pilot scale study [J]. Bioresource Technology,2009,100 (21):4976-4980.
    [50]Gunaseelan V.N. Biochemical methane potential of fruits and vegetable solid waste feedstocks [J]. Biomass and Bioenergy,2004,26(4):389-399.
    [51]Lei Z.F., Chen J.Y., Zhang Z.Y., et al. Methane production from rice straw with acclimated anaerobic sludge:Effect of phosphate supplementation [J]. Bioresource Technology,2010, 101(12):4343-4348.
    [52]De La Rubia M., Romero L.I., Sales D., et al. Temperature conversion (mesophilic to thermophilic) of municipal sludge digestion [J]. AIChE Journal 2005,51(9):2581-2586.
    [53]Goberna M., Schoen M.A., Sperl D., et al. Mesophilic and thermophilic co-fermentation of cattle excreta and olive mill wastes in pilot anaerobic digesters [J]. Biomass and Bioenergy, 2010,34(3):340-346.
    [54]Cho J.K., Park S.C., Chang H.N. Biochemical methane potential and solid state anaerobic digestion of Korean food wastes [J]. Bioresource Technology,1995,52(3):245-253.
    [55]Bauer A., Leonhartsberger C., Boosch P., et al. Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27 [J].Clean Technologies and Environmental Policy,2010,12(2):153-161.
    [56]Dinuccio E., Balsari P., Gioelli F., et al. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses [J].Bioresource Technology,2010,101(10):3780-3783
    [57]Sharma S.K., Mishral. M., Sharma M.P., et al. Effect of particle size on biogas generation from biomass residues [J]. Biomass,1988,17(4):251-263.
    [58]Martin D.J. Mass transfer limitations solid-state digestion [J]. Biotechnology Letter,1999,21 (9):809-814.
    [59]陈广银NaOH处理对互花米草厌氧发酵影响机制[D].南京大学博士论文,2010.
    [60]任南琪,赵丹,陈晓蕾,等.厌氧生物处理丙酸产生和积累的原因及控制对策[J].中国科学(B辑),2002,32(1):83-89.
    [61]Yang S.G., Li J.H., Zheng Z., et al. Lignocellulosic structural changes of Spartina alterniflora after anaerobic mono- and co-digestion [J]. International Biodeterioration and Biodegradation, 2009,63(5):569-575.
    [62]张希衡,等编著.废水厌氧生物处理工程[M].北京:中国环境科学出版社,1996:318-321.
    [63]Chen Y., Cheng J.J., Creamer K.S. Inhibition of anaerobic digestion process:A review [J]. Bioresource Technology,2008,99(10):4044-4064.
    [64]Karthikeyan O.P., Swati M., Nagendran R., et al. Performance of bioreactor landfill with waste mined from a dumpsite [J]. Environmental Monitoring and Assessment,2007, 135(1-3):141-151.
    [65]Rittman B.E., McCarty P.L. Environmental Biotechnology:Principles and Applications [M]. McGraw-Hill Book Co., New York,2001.
    [66]McCarty P.L., McKinney R. Salt toxicity in anaerobic digestion [J]. Journal Water Pollution Control Federation,1961,33(4):399-415.
    [1]Buranov A.U., Mazza G. Lignin in straw of herbaceous crops [J]. Industrial Crops and Product, 2008,28(3):237-259.
    [2]Laureano-Perez L., Teymouri F., Alizadeh H., et al. Understanding factors that limit enzymatic hydrolysis of biomass:Characterization of pretreated corn stover [J]. Applied Biochemistry and Biotechnology,2005,121(1-3):1081-1099.
    [3]Hendriks A.T.W.M., Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass [J]. Bioresource Technology,2009,100(1):10-18.
    [4]Sewalt V.J.H., Glasser W.G., Beauchemin K.A. Lignin impact on fiber degradation.3. Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives [J]. Journal of Agricultural and Food Chemistry,1997,45(5):1823-1828.
    [5]Yang B., Wyman C.E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose [J]. Biotechnology and Bioengineering,2004,86(1):88-95.
    [6]Kumar R, Wyman C.E. Does change in accessibility with conversion depend on both the substrate and pretreatment technology? [J]. Bioresource Technology,2009,100(18): 4193-4202.
    [7]马礼敦.近代x射线多晶体衍射——实验技术与数据分析[M].北京:化学工业出版社,2004:541-550.
    [8]贾敬华,金东青.稻草改性的红外光谱分析[J].环境保护科学,2008,34(2):104-105,116.
    [9]邱颖,陈兵,贾东升.红外光谱技术应用的进展[J].环境科学导刊,2008,29(增刊):23-26.
    [10]施蕴渝,吴季辉.核磁共振波谱应用于结构生物学的研究进展[J].生物物理学报,2007,23(4):240-245.
    [11]李余增.热分析[M].北京:清华大学出版社,1987:12-12.
    [12]Hames B., Ruiz R., Scarlata C., et al. Preparation of samples for compositional analysis. Laboratory Analytical Procedure NREL/TP-510-42620,2005.
    [13]张丽英.饲料分析及饲料质量检测技术(第2版)[M].北京:中国农业大学出版社,2003:63-75.
    [14]Roncero M.B., Torres A.L., Colom J.F., et al. TCF bleaching of wheat straw pulp using ozone and xylanase, Part A:paper quality assessment [J]. Bioresource Technology,2003,87(3): 305-314.
    [15]Haykifi-Acma H., Yaman S., Kueukbayrak S. Effect of heating rate on the pyrolysis yields of rape seed [J]. Renewable Energy,2006,31(6):803-810.
    [16]Sonobe T., Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activator energy model [J]. Fuel,2008,87(3):414-421.
    [17]Wongsiriamnuay T., Tippayawong N. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis [J]. Bioresource Technology,2010,101 (14):5638-5644.
    [18]Maiti S., Purakayastha S., Ghosh B. Thermal characterization of mustard straw and stalk in nitrogen at different heating rates [J]. Fuel,2007,86(10-11):1513-1518.
    [19]Saddawi A., Jones J.M., Williams A., et al. Kinetics of the thermal decomposition of biomass [J]. Energy and Fuel,2010,24(2):1274-1282.
    [20]Seo M.W., Kim S.D., Lee S.H., et al. Pyrolysis characteristics of coal and RDF blends in non-isothermal and isothermal conditions [J]. J. Anal. Appl. Pyrol.,2010,88(2):160-167.
    [21]Bouallagui H., Haouari O., Touhami Y., et al. Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste [J]. Process Biochemistry,2004, 39(12):2143-2148.
    [22]Parikh D.V., Thibodeaux D.P., Condon B. X-ray crystallinity of bleached and crosslinked cottons [J]. Textile Research Journal,2007,77(8):612-616.
    [23]Munawar S.S., Umemura K., Tanaka F., et al. Effects of alkali, mild steam, and chitosan treatments on the properties of pineapple, ramie, and sansevieria fiber bundles [J]. Journal of Wood Science,2008,54(1):28-35.
    [24]Goswami P., Blackburn R.S., El-Dessouky H.M., et al. Effect of sodium hydroxide pre-treatment on the optical and structural properties of lyocell [J]. European Polymer Journal 2009,45(2):455-465.
    [25]Ray D., Sarkar B.K., Rana A.K., et al. The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres [J]. Composites Part A:Applied Science and Manufacturing,2001,32 (1):119-127.
    [26]Thring R.W., Chornet E., Bouchard J., et al. Characterization of lignin residues derived from the alkaline hydrolysis of glycol lignin [J]. Canadian Journal of Chemistry,1990,68(1):82-89.
    [27]Kumar R., Mago G, Balan V., et al. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies [J]. Bioresource Technology,2009,100(17):3948-3962.
    [28]Yang S.G., Li J.H., Zheng Z., et al. Lignocellulosic structural changes of Spartina alterniflora after anaerobic mono-and co-digestion [J]. International Biodeterioration and Biodegradation, 2009,63(5):569-575.
    [29]Chang S. Lime pretreatment of lignocellulosic biomass [D]. Ph.D. thesis of Texas A & M University, USA,1999.
    [30]Tseng D.V., Vir R., Traina S.J, et al. A fourier-transform infrared spectroscopic analysis of organic matter degradation in a bench-scale solid substrate fermentation (composting) system [J]. Biotechnology and Bioengineering,1996,52(6):661-671.
    [31]Faix O. Fourier transform infrared spectroscopy. In:Lin, S.Y., Dence, C.W. (Eds.), Methods in Lignin Chemistry [M]. Springer, Berlin,1992:83-109.
    [32]Popescu C.M., Popescu M.C., Vasile C. Structural changes in biodegraded lime wood [J]. Carbohydrate Polymers,2010,79(2):362-372.
    [33]Pandey K.K., Pitman A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi [J]. International Biodeterioration and Biodegradation,2003, 52(3):151-160.
    [34]Fan L.T., Lee Y.H., Gharpuray M.M. The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. In:Advances in Biochemical Engineering/Biotechnology [M].1982,23: 157-187.
    [35]Nevell T.P. Degradation of cellulose by acids, alkalis and mechanical means. In:T.P. Nevel, H.S. Zeronian (Eds.), Cellulose Chemistry and its Applications [M]. Wiley, New York, 1987:223.
    [36]鲁杰,石淑兰,杨汝男,等.纤维素酶酶解苇浆纤维微观结构和结晶结构的变化[J].中国造纸学报,2005,20(2):85-90
    [37]Stewart D., Wilson H.M., Hendra P.J. et al. Fourier-transform infrared and Raman spectroscopic study of biochemical and chemical treatment sofoak wood (Quercus rubru) and barley(Hordeum vulgare) straw [J]. Journal of Agricultural and Food Chemistry,1995, 43(8):2219-2225.
    [38]杨坤彬,彭金辉,张利波,等.升温速率对椰壳热解特性的影响及动力学分析[J].农业工程学报,2009,25(8):226-230.
    [39]Tsamba A.J., Yang W.H., Blasiak W. Pyrolysis characteristics and global kinetics of coconut and cashew nut shells [J]. Fuel Processing Technology,2006,87(6):523-530.
    [40]赖艳华,吕明新,马春元,等.秸秆类生物质热解特性及其动力学研究[J].太阳能学报,2002,23(2):203-206.
    [41]Sharma R.K., Wooten J.B., Baliga V.L., et al. Characterization of chars from pyrolysis of lignin [J]. Fuel,2004,83(11-12):1469-1482.
    [42]文丽华,王树荣,施海云,等.木材热解特性和动力学研究[J].消防科学与技术,2004,23(1):2-5.
    [43]G6mez X., Cuetos M.J., Garcia A.I., et al. An evaluation of stability by thermogravimetric analysis of digestate obtained from different biowastes [J]. Journal of Hazardous Materials, 2007,149(1):97-105.
    [44]李永玲,吴占松.秸秆热解特性及热解动力学模型研究[J].热力发电,2008,37(7):1-5.
    [45]Zou S.P., Wu Y.L., Yang M.D., et al. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer [J]. Bioresource Technology,2010,101(1):359-365.
    [46]Robert D. Carbon-13 nuclear magnetic resonance spectrometry. In:Lin S.Y., Dence C.W., (Eds.), Methods in lignin chemistry [M]. Springer, Berlin,1992:250-271.
    [47]Gilardi G., Abis L., Cass A.E.G. Carbon-13CP/MAS solid-state NMR and FT-IR spectroscopy of wood cell wall biodegradation [J]. Enzyme and Microbial Technology,1995, 17(3):266-275.
    [48]Preston C.M., Trofymow J.A., Niu J., et al.13CPMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island [J]. Forest Ecology and Management,1998, 111(1):51-68.
    [49]Mathers N.J., Xu Z.H., Blumfield T.J., et al. Composition and quality of harvest residues and soil organic matter under windrow residue management in young hoop pine plantations as revealed by solid-state 13C NMR spectroscopy [J]. Forest ecology and management,2003, 175(1-3):467-488.
    [50]樊永明.麦草甲酸法制桨脱木素化学及蒸煮历程的研究[D].北京林业大学博士论文,2007.
    [51]黄志群,徐志红,Sue Boyd,等.连栽杉木(Cunninghamia lancelata (Lamb) Hook)林中树桩分解过程中的化学组分变化趋势[J].科学通报,2005,50(21):2365-2369.
    [52]雷中方,陆雍森.木质素在厌氧处理过程中的转化[J].同济大学学报(自然科学版),1995,23(4):421-426.
    [1]王卿,安树青,马志军,等.入侵植物互花米草生物学、生态学及管理[J].植物分类学报,2006,44(5):559-588.
    [2]张晟途,钦佩,谢民.不同海滨港湾环境条件下互花米草总黄酮积累动态研究[J].生态学报,1999,19(4):587-590.
    [3]李加林,杨晓平,童亿勤,等.互花米草入侵对潮滩生态系统服务功能的影响及其管理[J].海洋通报,2005,10(5):33-38.
    [4]朱洪光.发展海洋种植业拓展生物质能源新渠道[J].农业工程技术,2007,(3):13-16.
    [5]李继红,杨世关,郑正,等.互花米草厌氧发酵产沼气初步试验研究[J].农业环境科学学报,2008,27(3):1254-1258.
    [6]陈广银,郑正,邹星星,等.牛粪与互花米草混合厌氧消化产沼气的试验[J].农业工程学报,2009,25(3):179-183.
    [7]董玉平,董磊,景元琢,等.大米草气、电、热三联供技术研究[J].农业工程学报,2007,23(8):222-226.
    [8]胡纪萃,编著.废水厌氧生物处理理论与技术[M].北京国建筑工业出版社,2002:235-240.
    [9]Pohland F.G., Ghosh S. Developments in anaerobic stabilization of organic wastes—the two phase concept [J]. Environmental Letters,1971, 1(4):255-266.
    [10]Pohland F. G, Ghosh S. Development in anaerobic treatment processes. In:Biological Waste Treatment [M]. Interscience Publishers, New York, N.Y.,1971:85-106.
    [11]Borchardt J.A. Anaerobic phase separation by dialysis technique. In:Pohland F. Editor. Anaerobic Biological Treatment Processes [M]. ACS:Washington, DC,1971:108-125.
    [12]任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].北京:科学出版社,2005:16-27.
    [13]Ghosh S., Buoy K., Dressel L., et al. Pilot-and full-scale two-phase anaerobic digestion of municipal sludge [J]. Water Environment Research,1995,67(2):206-214.
    [14]Park Y.J., Hong F., Cheon J.H., et al. Comparison of thermophilic anaerobic digestion characteristics between single-phase and two-phase systems for kitchen garbage treatment [J]. Journal of Bioscience and Bioengineering,2008,105(1):48-54.
    [15]Ghosh S. Improved sludge gasification by two-phase digestion [J]. Journal Enviromental Engineering,1987,113(6):1265-1284.
    [16]邹星星,郑正,杨世关,等.汽爆预处理对互花米草厌氧发酵产气特性的影响[J].中国环境科学,2009,29(10):1117-1120.
    [17]朱洪光,陈小华,唐集兴.以互花米草为原料生产沼气的初步研究[J].农业工程学报,2007,23(5):201-204.
    [18]Thanakoses P., Black A.S., Holtzapple M.T. Fermentation of corn stover to carboxylic acids [J]. Biotechnology and Bioengineering,2003,83(2):191-200.
    [19]Anthonisen A.C., Loehr R.C., Prakasam T.B.S., et al. Inhibition of nitrification by ammonia and nitrous acid [J]. Water Pollution Control Federation,1976,48(6):835-852.
    [20]张丽英.饲料分析及饲料质量检测技术(第2版)[M].北京:中国农业大学出版社,2003:63-75.
    [21]Buswell A.M., Mueller H.F. Mechanism of methane fermentation [J]. Industrial and Engineering Chemistry,1952,44(3):550-552.
    [22]胡纪萃,编著.废水厌氧生物处理理论与技术[M].北京国建筑工业出版社,2002:23-24,111-113.
    [23]梁越敢,郑正,罗兴章,等.高温干发酵对互花米草产气和结构的影响[J].环境工程学报,2011,5(2):462-466.
    [24]雷中方,陆雍森.木质素在厌氧处理过程中的转化[J].同济大学学报(自然科学版),1995,23(4):421-426.
    [25]张希衡,等编著.废水厌氧生物处理工程[M].北京:中国环境科学出版社,1996:113-113.
    [26]Rittmann B.E., McCarty P.L. Environmental Biotechnology:Principles and Applications [M]. McGraw Hill,2001:599-600.
    [27]Bhattacharya S.K., Parkin G.F. The effect ammonia on methane fermentation processes [J]. Journal of Water Pollution Control Federation,1989,61(1):55-59.
    [28]Tseng D.V., Vir R., Traina S.J., et al. A fourier-transform infrared spectroscopic analysis of organic matter degradation in a bench-scale solid substrate fermentation (composting) system [J]. Biotechnology and Bioengineering,1996,52(6):661-671.
    [29]Faix O. Fourier transform infrared spectroscopy. In:Lin, S.Y., Dence, C.W. (Eds.), Methods in Lignin Chemistry [M]. Springer, Berlin,1992:83-109.
    [30]Popescu C.M., Popescu M.C., Vasile C. Structural changes in biodegraded lime wood [J]. Carbohydrate Polymers,2010,79(2):362-372.
    [31]Pandey K.K., Pitman A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi [J]. International Biodeterioration and Biodegradation,2003, 52(3):151-160.
    [32]Laureano-Perez L., Teymouri F., Alizadeh H., et al. Understanding factors that limit enzymatic hydrolysis of biomass:Characterization of pretreated corn stover [J]. Applied Biochemistry and Biotechnology,2005,124(1-3):1081-1099.
    [33]鲁杰,石淑兰,杨汝男,等.纤维素酶酶解苇浆纤维微观结构和结晶结构的变化[J].中国造纸学报,2005,20(2):85-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700