用户名: 密码: 验证码:
pll-DCIONP介导野生型p53基因转染对耐顺铂肺腺癌靶向治疗和耐药影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     肺癌是全球恶性肿瘤死亡的主要原因。肺癌将成为21世纪对人类健康威胁最大的恶性肿瘤。虽然化疗药物的发展大大的改善了肺癌的临床疗效,但肺癌患者的5年生存率仍然低于15%。顺铂耐药是导致化疗失败、影响肺癌治愈率和远期生存率的主要原因。因此,寻找有效的方法和制剂逆转肺癌耐药具有十分重要的意义。
     p53基因突变是肺癌中发生频率最高的遗传改变。50%的非小细胞肺癌(NSCLC)和70%以上的小细胞肺癌(SCLC)中均可检测到p53基因突变。研究表明:p53基因突变能刺激肿瘤血管生成和肿瘤转移使肿瘤细胞具有更强的侵袭性,还能“序列特异性反式激活”耐药基因启动子,诱导耐药基因表达,对化疗及放疗的敏感性下降,明显降低了放化疗的效果;研究还表明突变型p53蛋白表达率高的患者预后明显较差。因此阻断突变型或功能失活性p53癌基因成为肺癌治疗靶点及逆转多药耐药的最重要策略之一。
     有效的基因治疗除了安全有效的治疗基因外,安全高效的基因导入系统也至关重要。目前基因治疗研究面临的严峻挑战之一就是基因治疗的载体系统。基因导入载体包括两大类,即病毒和非病毒载体,病毒载体由于其高转导效率和较好的靶向性而成为肿瘤基因治疗中应用最广泛的方法,但是病毒载体自身具有能诱导宿主免疫反应、潜在的致瘤性、装载容量有限、代价高等缺点;非病毒型载体因具有安全、低毒、装载容量大、操作简单等优势而逐渐引起学者们的关注,但转染效率偏低是其最大缺陷。因此,寻找即安全又有效的基因导入载体非常必要。
     纳米技术的出现为解决基因转移载体提供了新的思路。纳米颗粒因为具有小尺寸效应,表面效应,随着颗粒直径变小,比表面积将会显著增大,故具有很高的化学活性,因而纳米成为了最有应用前景的非病毒载体。采用纳米载体转运核苷酸有很多优越性:①有助于核苷酸高效率转染细胞;②能够靶向定位输送核苷酸;③能有效保护核苷酸,防止体内生物酶的降解,逃脱体内网状内皮系统的吞噬作用;④无机纳米粒本身具有杀伤癌细胞的作用,且对正常细胞无损害。磁性纳米除了具有一般纳米颗粒的特性外,还具有超顺磁性,即在磁场中有较强的磁性,没有磁场时,磁性很快消失,从而不会被永久磁化;在外加磁场的作用下,能携带核苷酸实现定向移动,并进行缓释、控制性基因传递,从而实现基因靶向治疗。
     本实验对耐顺铂人肺腺癌细胞株A549/CDDP第5~8外显子进行基因测序,检测其突变情况;构建氧化铁磁性纳米颗粒并作为载体介导野生型p53基因(wild-type p53,wt-p53),进行DNA结合实验、抵抗DNase-Ⅰ消化和血清保护实验,在外加磁场引导下将其转染入耐顺铂人肺腺癌细胞株,检测其转染情况,探讨其对耐顺铂肺腺癌细胞增殖、凋亡及耐药影响,寻求提高肺癌铂类药物化疗疗效的有效途径;并将其转染入耐顺铂肺腺癌动物模型,在外加磁场下,探讨其高效持续的靶向抗肿瘤作用和逆转顺铂耐药作用;并初步探讨氧化铁磁性纳米颗粒转运体系在体内外的毒性情况。
     一、氧化铁磁性纳米颗粒作为野生型p53基因载体并转染耐顺铂肺腺癌细胞的可行性研究
     目的体外评价氧化铁磁性纳米颗粒(pll-DCIONP)作为体外野生型p53基因(wt-p53)载体并转染耐顺铂人肺癌细胞的可行性方法1.以碱沉淀法制成外包葡聚糖的氧化铁磁性生物纳米颗粒(DCIONP),在其表面修饰多聚赖氨酸制成多聚赖氨酸-氧化铁纳米颗粒(pll-DCIONP),扫描电镜观察其形态特征,用激光粒度检测仪测定其粒度分布和Zeta表面电位。2.分光光度计及琼脂糖凝胶电泳分析pll-DCIONP与wt-p53基因的结合力及其复合物抵抗DNase-Ⅰ和血清消化的作用。3.进行纳米颗粒pll-DCIONP携带编码绿色荧光蛋白的EGFP-C2质粒的体外报告基因转染实验,荧光显微镜和流式细胞术观察和分析其转染效率。4.pll-DCIONP作为wt-p53基因载体转染耐顺铂肺腺癌细胞A549/CDDP,RT-PCR以及western blot分析细胞内p53基因的表达。5.MTT法分析纳米颗粒pll-DCIONP转运体系的细胞毒性。结果1.pll-DCIONP的直径在60~80纳米(nanometer,nm)之间,分散状态良好,其Zeta电位无论在酸性、中性或碱性环境里均为正电荷。2.pll-DCIONP无论在酸性、中性及碱性的条件下,均可与wt-p53基因结合,以二者质量比为1:1时结合力最强;pll-DCIONP/wt-p53复合物能抵抗DNase-Ⅰ和血清对wt-p53基因的消化作用。3.pll-DCIONP作为报告基因载体转染肺腺癌细胞,在磁场引导作用下,pll-DCIONP的转染效率明显高于脂质体(P<0.01)。4.以pll-DCIONP作为wt-p53基因载体转染肺腺癌细胞,随着时间延长细胞内p53基因含量持续增高,而以脂质体作为转染载体时随着时间延长细胞内p53基因含量递减。5.pll-DCIONP转运体系对细胞无明显细胞毒性。结论pll-DCIONP可作为野生型p53基因理想的转染载体之一,并能持续高效地将外源性p53基因转染入耐顺铂肺腺癌细胞中。
     二、氧化铁磁性纳米颗粒介导的野生型p53基因转染对耐顺铂人肺腺癌细胞体外持续生长抑制、凋亡诱导作用及耐药的影响
     目的1.检测耐顺铂肺腺癌A549/CDDP细胞第5~8外显子基因突变情况。2.探讨pll-DCIONP介导wt-p53基因转染对耐顺铂肺腺癌细胞A549/CDDP体外持续生长抑制、凋亡诱导作用及耐药的影响。方法1.利用DNA测序方法对A549/CDDP细胞第5~8外显子进行基因突变分析。2.MTT法观察pll-DCIONP介导wt-p53基因转染对A549/CDDP细胞持续生长抑制作用。3.应用荧光显微镜、流式细胞仪观察其对A549/CDDP细胞的凋亡作用,RT-PCR检测其对A549/CDDP细胞凋亡促进基因Bax mRNA表达的影响;激酶法检测其对A549/CDDP细胞Caspase-3表达活性的影响。4.MTT法分析其对A549/CDDP细胞耐药性的影响,并计算转染前后的耐药指数的变化。5.RT-PCR以及细胞免疫组化法分析其对A549/CDDP细胞内肺癌耐药蛋白LRP表达的影响。结果1.A549/CDDP细胞p53基因第5外显子第82位核苷酸发生C→A点突变。2.pll-DCIONP介导wt-p53基因转染对A549/CDDP细胞具有持续生长抑制作用,呈时间依赖性和浓度依赖性;联合顺铂时其抑制作用得到进一步放大。而脂质体作为转染载体时,其生长抑制作用短暂;单独使用顺铂干预A549/CDDP细胞,对细胞生长抑制作用不明显,与对照组比较无差异(P>0.05)。3.pll-DCIONP介导wt-p53基因转染可引起A549/CDDP细胞凋亡改变,表现为细胞变圆变小,细胞核固缩,核边集,核碎裂等,细胞凋亡率明显增高,并能显著上调Bax mRNA的表达和Caspase-3活性,呈时间依赖性和持续性;联合顺铂时其上述作用得到进一步放大。而脂质体作为转染载体时,其上述凋亡诱导作用时间短暂,转染第1天上述其凋亡诱导作用与pll-DCIONP作为转染载体比较无明显差别(P>0.05),但第3天后其凋亡诱导作用明显减弱,与pll-DCIONP作为转染载体同一时间点比较存在显著差异性。4.以pll-DCIONP和脂质体作为wt-p53基因转染载体,均可使A549/CDDP细胞对顺铂的IC_(50)及耐药倍数下降;但以pll-DCIONP作为wt-p53基因转染载体时A549/CDDP细胞对顺铂的IC_(50)及耐药倍数下降更为明显(P<0.01)。5.pll-DCIONP介导wt-p53基因转染A549/CDDP细胞,能持续下调细胞内肺癌耐药蛋白LRP的表达,转染第3天后其作用明显强于脂质体作为基因转染载体。结论1.采用恒定顺铂药物浓度、周期性作用的体外诱导法反复筛选建成的一株耐顺铂的A549细胞系发生了p53基因的突变和p53蛋白构象的改变。2.pll-DCIONP介导wt-p53基因转染对A549/CDDP细胞具有持续生长抑制和凋亡诱导作用。3.pll-DCIONP介导wt-p53基因转染较大程度上逆转了A549/CDDP细胞对顺铂的耐药,通过下调肺癌耐药蛋白(LRP)的表达可能是其逆转耐药的机制。
     三、氧化铁磁性纳米颗粒介导的野生型p58基因转染靶向治疗耐顺铂人肺腺癌裸鼠移植瘤的实验研究
     目的1.建立耐顺铂人肺腺癌细胞A549/CDDP移植瘤裸鼠模型。2.体内探讨pll-DCIONP介导的wt-p53基因靶向治疗耐顺铂人肺腺癌移植瘤的可行性。方法1.常规体外培养A549/CDDP细胞,采用皮下注射法建立移植瘤裸鼠动物模型。2.在外加磁场作用下,pll-DCIONP介导的wt-p53基因转染尾静脉注射裸鼠,观察肿瘤生长情况,称瘤重,计算肿瘤生长指数。3病理组织切片和HE染色观察pll-DCIONP介导的wt-p53基因转染对肝脾肾的损伤作用。4.通过流式细胞术检测细胞凋亡率。5.实时荧光定量PCR以及免疫组化法分析其对细胞内肺癌耐药蛋白LRP表达的影响。结果1.pll-DCIONP介导的wt-p53基因转染尾静脉注射裸鼠无明显毒副作用,HE染色表明肝脾肾均无明显的损伤。2.pll-DCIONP-wtp53组移植瘤不但生长缓慢,部分瘤体体积出现缩小,瘤重和生长指数分别为0.698±0.226g和1.153±0.657,明显低于对照组和顺铂组(P<0.001),与脂质体-wtp53组也存在差异(P<0.01),pll-DCIONP-wtp53组移植瘤联合顺铂时其作用更为明显;单独使用顺铂组与对照组比较无明显差别(P>0.05)。3.pll-DCIONP-wtp53组移植瘤细胞凋亡率为42.49±11.76%,明显低于对照组(10.62±3.89%)和顺铂组(10.47±4.12%)(P<0.001),与脂质体-wtp53组(18.63±5.26%)也存在差异(P<0.01),pll-DCIONP-wtp53组移植瘤联合顺铂时其凋亡率更为明显;单独使用顺铂组与对照组凋亡率比较无明显差别(P>0.05)。4.pll-DCIONP-wtp53组移植瘤组织LRP表达明显减弱,明显低于对照组和顺铂组(P<0.001),与脂质体-wtp53组也存在差异(P<0.01),pll-DCIONP-wtp53组移植瘤联合顺铂时其减弱程度更为明显。结论1.纳米颗粒pll-DCIONP能携带wt-p53基因在磁场引导作用下体内靶向发挥抗肿瘤作用,并增强肿瘤细胞对顺铂的化疗敏感性,其作用明显强于脂质体作为wt-p53基因载体。2.纳米颗粒pll-DCIONP介导wt-p53基因转染能明显下调耐顺铂肺腺癌裸鼠肿瘤组织LRP的表达,从机理上解释了其逆转耐药的可能机制;其作用也明显强于脂质体作为wt-p53基因载体。3.纳米颗粒pll-DCIONP在体内具有良好的生物安全性。
Background
     As one of the leading causes of death among all the malignant tumorsin the world, lung cancer will become the biggest health-killer in the 21 stcentury. Great improvements have made in the efficacy of treating lungcancer with chemotherapy. However, the overall 5-year survival rate ofpatients is less than 15%. A majority of patients with lung cancer rapidlydevelop resistance to cisplatin causing therapy failure. For this reason, itis of importance to search for an appropriate and effective way to reversecisplatin resistance in lung cancer.
     p53 mutations are the most frequently found of genetic change in thelung cancer.Mutations in the p53 gene have been identified with a highfrequency of 50%and 70%in NSCLC and SCLC respectively. It isthought that p53 mutations could stimulate angiogenesis and metastasisof neoplasm, make neoplasm more metastatic, transactivate promoter ofdrug resistance gene in a sequence-specific way and induce expression ofdrug resistance gene so as to show a poor treatment response tochemotherapy and radiation. Furthermore patients with mutated p53presented a poor survival. For this reason, replacing mutated p53 orfunctionally inactivating p53 will be one of the most important strategiesof therapeutic gene targeting and reversal of multidrug resistance.
     Efficient and nontoxic gene delivery and expression of deliveredexogenous gene are important determinant of gene therapy. It is also adraconic task for research of gene therapy. Nowadays gene deliverysystems are mainly divided into viral vectors and non-viral vectors. Theviral vectors have very strong capabilities of delivering genes so that it isused most extensively in gene therapy of tumor. But viral vectors areassociated with immunogenicity, toxicity, lack of tissue specificity,difficulty in large-scale production and potential risk of inducing tumorigenic mutations. Non-viral vectors have become an attractivealternative because it can be easily scaled up, produced at relatively lowcosts and with less toxicity. But most non-viral vectors are limited in lowefficiency of transfection, especially in vivo. Therefore it is verynecessary to search for efficient and non-toxic targeted gene deliverysystems.
     The development of nanotechnology has provided us new ways toovercome barrier of gene delivery vectors. The nanoparticles can beeffectively endocytosed by the cells resulting in a high cellular uptake ofthe entrapped DNA because of its subcellular size. There are manyadvantages of nanoparticles as gene delivery vectors: (1) They have ahigh efficiency for nucleotide delivery. (2) They can deliver nucleotide tothe target size. (3) They can protect nucleotide from degradation bydigestive enzyme and phagocytosis by reticuloendothelial system. (4)They have the abilities of killing cancer cells, but not normal cells.Magnetic nanoparticles have character of superparamagnetism besidesthose mentioned above. Magnetic nanoparticles can deliver the focusednucleotide to the target site/cells via high-field/high-gradient magnets.Thus the nucleotide is released slowly from the nanoparticles resulting insustained intracellular gene delivery and it plays a role of targeting genetherapy.
     The authors examined p53 mutations in cisplatin-resistant humanlung adenocarcinoma cells A549/CDDP. Poly-L-Lysine modified ironoxide magnetic nanoparticles(pll-DCIONP) was synthesized as wt-p53gene carriers, The potential adsorbing wt-p53 gene and resistingDNase-Ⅰand blood serum digestion of pll-DCIONP/wt-p53 complexswas analyzed, magnetic field used to direct movement of pll-DCIONPand A549/CDDP cells was transfected with wt-p53 DNA-loadednanoparticles. The efficiency of transfection was analyzed to study effectof magnetic iron oxide nanoparticle-mediated wild-type p53 genedelivery on sustained antiproliferative activity and apoptosis in human lung adeno-carcinoma cell lines A549/CDDE The authors further treatedA549/CDDP xenograft in nude mice with an intravenous injection ofwt-p53 DNA-loaded nanoparticles so as to study effect of highly efficientand targeted tumor-killing, reversal of cisplatin resistance and in vitro andvivo toxicity of pll-DCIONP delivery systems.
     PartⅠUse of magnetic iron oxide nanoparticles as wt-p53 genecarrier and transfeetion with it in cisplatin-resistant lungadenocarcinoma cells
     Objective To evaluate the feasibility of using iron oxidenanoparticles as gene carder and transfecting with it in cisplatin-resistantlung adenocarcinoma cells. Methods 1.The dextran coated iron oxidenanoparticles (DCIONP) was synthesized with deposition. The surface ofDCIONP was modified by self-assembled poly-L-lysine to form particlecomplexes (pll-DCIONP).The configuration of pll-DCIONP was detectedby SEM. The diameter and Zeta surface potential of pll-DCIONP weredetected by Zetasizer. 2. The potential adsorbing wt-p53 gene andresisting DNase-Ⅰand blood serum digestion of pll-DCIONP wasanalyzed by spectrophotometer and agarose gel electrophoresis. 3. To testthe ability of pll-DCIONP to transfer gene in vitro, assays of delivery ofreporter plasmid DNA into A549/CDDP cells, The efficiency oftransfection was analyzed by fluorescent microscope and flow cytometry.4. The pll-DCIONP was evaluated as a kind of wt-p53 gene carrier bytransfecting human lung adenocarcinoma cell line A549/DDP in vitro.The expression of intracellular p53 gene was analyzed by RT-PCR andWestern blot. 5. The toxicity of delivery systems of pll-DCIONP in vitrowas measured by MTT. Results 1. The diameter of the pll-DCIONP is60~80nm with a satisfactory dispersed status, the Zeta surface potentialof pll-DCIONP is positively charged at different pH. 2. Under thedifferent condition of pH, the pll-DCIONP have the potential to adsorbwt-p53 gene and the potential of adsorbing was the strongest aspll-DCIONP/wt-p53 complexes prepared at w/w ratio of 1:1, pll-DCIONP/wt-p53 complex have the potential to resist DNase-Ⅰandblood serum digestion. 3. Magnetic field was used to direct movement ofpll-DCIONP capable of transferring reporter plasmid DNA into cells evenmore efficiently than the lipids examined in vitro(P<0.01). 4. Cellstransfected with wt-p53 DNA-loaded nanoparticles pll-DCIONPdemonstrated a sustained and increased p53 gene levels with incubationtime as opposed to a decrease in gene levels in the cells transfected withthe wt-p53 DNA-lipofectamine complex. 5. There was no significanttoxicity of delivery systems of pll-DCIONP. Conclusion pll-DCIONPwill become one of favored gene carriers for wt-p53 gene delivery and ithave the potential of transfecting the wt-p53 gene in cisplatin-resistantlung adenocarcinoma cells with a sustained and significantly efficientgene expression.
     PartⅡMagnetic iron oxide nanoparticle-mediated wild-type p53gene delivery resulted in sustained antiproliferative activity,apoptosis and its efficacy of reversing resistance in cisplatin-resistanthuman lung adenocarcinoma cells
     Objective 1. To examine p53 mutations in cisplatin resistant humanlung adeno-carcinoma cells lines A549/CDDP. 2. To study effect ofmagnetic iron oxide nanoparticle-mediated wild-type p53 gene deliveryon sustained antiproliferative activity, apoptosis and its efficacy ofreversing resistance in cisplatin-resistant human lung adenocarcinomacell lines A549/CDDP. Methods 1. Mutation of p53 gene was screenedby DNA direct sequencing in cell lines A549 and A549/CDDP. 2.Theanti-proliferative effect of magnetic iron oxide nanoparticle-mediatedwild-type p53 gene delivery against A549/CDDP cells was tested by MTT.3. The apoptosis of cells transfected with wt-p53 DNA-loadedpll-DCIONP was detected by fluorescent microscope. The apoptosis ratioof tumor cells transfected with wt-p53 DNA-loaded pll-DCIONP wasmeasured with flow cytometry. The variation of expression ofpro-apoptosis gene Bax mRNA of cells transfected with wt-p53 DNA-loaded pll-DCIONP was determined by RT-PCR. The activity ofCaspase-3 of cells transfected with wt-p53 DNA-loaded pll-DCIONP wasmeasured by colorimetric assay. 4. The resistance to cisplatin of cellsA549/CDDP was evaluated by MTT and the resistance index of cellscalculated respectively before and after transfection with wt-p53DNA-loaded pll-DCIONP. 5. The expression of mRNA and protein oflung resistance protein (LRP) of cells transfected with wt-p53DNA-loaded pll-DCIONP was measured by RT-PCR and IHC SP assayrespectively. Results 1. There was C to A transversion in 82nd nucleotideof 5th exon of cells A549/CDDP. 2. The anti-proliferative effect was moresustained and greater in cells transfected with wt-p53 DNA-loadedpll-DCIONP than the DNA-lipofectamine complex. The anti-proliferativeeffects became stronger with incubation time and with an increase in thecase of pll-DCIONP. The anti-proliferative effect became stronger withwt-p53 DNA-loaded pll-DCIONP and low-does cisplatin together,whereas the effect was transient and lasted for only 1 day when the cellswere transfected with DNA-lipofectamine complex and the inhibitoryeffect with DNA-lipofectamine complex did not extend beyond 3 dayspost-transfection. There was no significant difference in theanti-proliferative effect of cells cultivated with low-does cisplatin withcontrols(P>0.05). 3. As compared with the controls, cells transfected withwt-p53 DNA-loaded pll-DCIONP caused typical apoptotic changes,including distinct morphological changes characterized by chromatincondensation, nuclear shrinkage and nuclear cleavage. And the cells grewmore rounded, smaller and some floated. The apoptosis ratio and activityof Caspase-3 were more sustained and higher in cells transfected withwt-p53 DNA-loaded pll-DCIONP than the DNA-lipofectamine complex.The apoptosis ratio grew higher with incubation time in the case ofpll-DCIONP, The apoptosis ratio and activity of Caspase-3 became higherwith wt-p53 DNA-loaded pll-DCIONP and low-does cisplatin together,whereas the effect was transient and lasted for only 1 day when the cells were transfected with DNA-lipofectamine complex and the apoptosiseffect and activity of Caspase-3 with DNA-lipofectamine complex didnot extend beyond 3 days post-transfection. There was no significantdifference in the apoptosis effect and activity of Caspase-3 of cellscultivated with low-does cisplatin with control(P>0.05).pll-DCIONP-mediated wild-type p53 gene delivery could up-regulatelevels of expression of Bax mRNA of A549/CDDP cell. Meanwhile itdemonstrated a higher Bax mRNA level compared to cells transfectedwith wt-p53 DNA-lipofectamine complex(P<0.05). 4. The IC_(50) andresistance index to cisplatin were down-regulated in cells transfected withwt-p53 DNA-loaded pll-DCIONP and the DNA-lipofectamine complex,but the effect of down-regulate was more significant in cells transfectedwith wt-p53 DNA-loaded pll-DCIONP than the DNA-lipofectaminecomplex(P<0.01). 5. Cells transfected with wt-p53 DNA-loadedpll-DCIONP demonstrated a relatively lower level of LRP mRNA andprotein than the wt-p53 DNA-lipofectamine complex on 3rd and 5th dayin this study. Conclusion 1. Genetic and protein pattern changes werefound in p53 mutations. 2. Magnetic iron oxide nanoparticle-mediatedwild-type p53 gene delivery resulted in sustained antiproliferative activityand apoptotic effects on cisplatin-resistant human lung adenocarcinomacell lines A549/CDDP. 3. Magnetic iron oxide nanoparticle-mediatedwild-type p53 gene delivery resulted in a reversal effect of cisplatinresistance in cisplatin-resistant human lung adenocarcinoma cell linesA549/CDDP, Down-regulating the levels of cellular expression of LRPmay be one of mechanism of resistance reversal.
     PartⅢMagnetic iron oxide nanoparticle-mediated wild-type p53gene delivery resulted in targeting gene treatment with cisplatin-resistant human lung adenocarcinoma xenograft in nude mice
     Objective To explore the feasibility of magnetic iron oxidenanoparticle-mediated wild-type p53 gene delivery results in targetinggene treatment with cisplatin-resistant human lung adeno-carcinoma xenograff in nude mice. Methods 1. Cisplatin-resistant cell linesA549/CDDP were cultured routinely and A549/CDDP cells implanted tosubcutaneous in nude mice to establish cisplatin-resistant xenograftanimal model. 2. Magnetic field was used to direct movement ofpll-DCIONP. The wt-p53 DNA-loaded pll-DCIONP was injectedintravenously and the tumor growth was then observed. Volumes andweight of tumor mass were detected respectively. Then tumor growthindex was thereby calculated. 3. Then specimens were fixed byparaformaldehyde and then paraffin section, Hematoxylin and eosin (HE)staining and histological examination performed. 4. Apoptotic index intumor tissues was measured by flow cytomety. 5. Expression of lungresistance protein (LRP) mRNA was measured through real-time PCRand expression of LRP protein detected by IHC SP assay. Results 1.There was no obvious side-effect for treatment following the wt-p53DNA-loaded pll-DCIONP to be injected intravenously and liver, kidneyand spleen tissues was proved no distinct injured by HE staining assay. 2.Treatment with single wt-p53 DNA-loaded pU-DCIONP, The growth ofxenograft was slow even part of them shrank. The weight of tumor massand growth index of tumor were 0.698±0.226g and 1.153±0.657respectively and it was significantly less than control groups andCDDP groups treated with low-does cisplatin(P<0.001) and also lessthan Lip groups treated with the wt-p53 DNA-lipofectaminecomplex(P<0.01). The effect became stronger with wt-p53 DNA-loadedpll-DCIONP and low-does cisplatin to be co-administrated. 3. Treatmentwith single wt-p53 DNA-loaded pll-DCIONP, The apoptotic index oftumor tissues was 42.49±11.76%and it was significantly more thancontrol groups (10.62±3.89%)and CDDP groups (10.47±4.12%)treated with low-does cisplatin(P<0.001). And it was also more thanLip groups(18.63±5.26%) treated with the wt-p53 DNA-lipofectaminecomplex(P<0.01). The effect became stronger with wt-p53 DNA-loadedpll-DCIONP and low-does cisplatin to be co-administrated. 4. Treatment with single wt-p53 DNA-loaded pll-DCIONP, The expression of LRP oftumor tissues was down-regulated and it was significantly less thancontrol groups and CDDP groups treated with low-doescisplatin(P<0.001). And it was also less than Lip groups treated withthe wt-p53 DNA-lipofectamine complex(P<0.01). The levels ofexpression of LRP dropped with wt-p53 DNA-loaded pll-DCIONP andlow-does cisplatin to be co-administrated. Conclusion 1. Magnetic ironoxide nanoparticle-mediated wild-type p53 gene delivery resulted intargeting anti-tumor with cisplatin resistant human lung adeno-carcinomaxenograft in vivo and reversed the resistance in cisplatin resistant humanlung adenocarcinoma xenograft in vivo. The effect grew stronger thanxenograft treated with the wt-p53 DNA-lipofectamine complex. 2.Down-regulating the expression levels of of LRP in tumor tissues may beone of mechanism of resistance reversal. 3. There was no significant invivo toxicity of delivery systems of pll-DCIONP.
引文
[1] Brambilla C,Fievet F, Jeanmart M,et al. Early detection of lung cancer: role of biomarkers, J Eur Respir.2003, (Suppl. 39) :36s-44s.
    [2] Sullivan GF,Yang JM,Vassil A,et al.Regulation of expression of the multidrug resistance protein MRP1 by p53 in human prostate cancer cells[J].J Clin Invest,2000 May;105(9):1261-1267.
    [3] Tsang WP,Chau SP,Fung KP,et al.Modulation of multidrug resistance-associated protein 1 (MRP1) by p53 mutant in Saos-2 cells.Cancer Chemother Pharmacol. 2003 Feb; 51(2):161-6.
    [4] Roth JA, Grammer SF. Gene replacement therapy for non-small cell lung cancer: a review. Hematol Oncol Clin North Am,2004,18(1) : 215-229.
    [5] Yuan RH,Jeng YM,Chen HL,et al.Stathmin overexpression cooperates with p53 mutation and osteopontin overexpression, and is associated with tumour progression, early recurrence, and poor prognosis in hepatocellular carcinoma. J Pathol. 2006 Aug;209(4):549-58.
    [6] Kohn DB. Sadelain M , Glorio so JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer, 2003; 3(7) I 477-488.
    [7] Fox JL. Gene therapy safety issues come to fore. Nat Biotech, 1999,17(9): 1153.
    [8] Williams DA.Gene therapy advances but struggles to interpret safety data in small animal models. Mol Ther. 2006 Jun; 13(6): 1027-8.
    [9] Yi Y,Hahm SH,Lee KH. Retroviral gene therapy: safety issues and possible solutions.Curr Gene Ther. 2005 Feb;5(1):25-35. Review.
    [10] Marshall J. The trouble with vectors. Science, 1995,269:1015-1055.
    
    [11] Liu F, Qi H, Huang L, et al. Factors controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration. Gene Ther, 1997,4:517-523.
    
    [12] Tandia BM,Lonez C,Vandenbranden M,et al.Lipid mixing between lipoplexes and plasma lipoproteins is a major barrier for intravenous transfection mediated by cationic lipids.J Biol Chem. 2005 Apr;280(13):12255-61.
    
    [13] Dobson J. Gene therapy progress and prospects magnetic nanoparticle-based gene delivery [J].Gene Therapy, 2006 Feb;13(4):283-287.Review.
    
    [14] Kim JS,Yoon TJ,Yu KN,et al.Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells.J Vet Sci. 2006 Dec;7(4):321-6.
    [15] 成军.肿瘤相关基因.第一版.北京:北京医科大学出版社出版,2000.199~213.
    [16] Rappa G, Finch RA, Sartrelli AC, et al. New insights into the biology and pharmacology of the multidrug resistance protein (MRP) from gene knockout models. Biochem Pharmacol, 1999 Aug 15;58(4): 557-562.
    [17] Wang J, Liu X, Jiang W. Co-transfection of MRP and bcl-2 antisense S-oligodeoxynucleotides reduces drug resistance in cisplantin-resistant lung cancer cells. Chin Med J (Engl), 2000 Oct; 113(10): 957-960.
    [18] Rittierodt M,Tschernig T, Harada K.Modulation of multidrug-resistance-associated P-glycoprotein in human U-87 MG and HUV-ECC cells with antisense oligodeoxynucleotides to MDR1 mRNA.Pathobiology. 2004;71(3):123-8.
    [19] Li M,Yu LL,Wang ZH,et al.Study of bcl-2 antisense oligodeoxynucleotides on reversal of cisplatin resistance in ovarian cancer cell line A2780/DDP.Zhonghua Fu Chan Ke Za Zhi. 2006 Feb;41(2):121-5. Chinese.
    [20] Huang G,Allen R,Davis EL,et al.Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene.Proc Natl Acad Sci USA. 2006 Sep 26;103(39): 14302-6.
    [21] 余秉翔,朱捷,刘又宁等.端粒酶催化亚基脱氧核酶抑制A549/DDP耐药细胞生长的实验研究.中国肺癌杂志,2006,9(5):405-408.
    [22] Zhan M,Liu J,Pollock RE,et al.Transcdptional repression of protein kinase Calpha via Spl by wild type p53 is involved in inhibition of multidrug resistance 1 P-glycoprotein phosphorylation.J Biol Chem. 2005 Feb 11;280(6):4825-33.
    [23] Sullivan GF, Yang JM,Vassil A, et al.Regulation of expression of the multidrug resistance protein MRP1 by p53 in human prostate cancer cells[J].J Clin Invest,2000 May;105(9): 1261-1267.
    [24] Huang CL,Yokomise H, Miyatake A.Clinical significance of the p53 pathway and associated gene therapy in non-small cell lung cancers.Future Oncol. 2007 Feb;3(1):83-93.
    [25] Ndoye A,DOlivet G,Hogset A,et al.Eradication of p53-mutated head and neck squamous cell carcinoma xenografts using nonviral p53 gene therapy and photochemical internalization.Mol Ther. 2006 Jun; 13(6): 1156-62.
    [26] Lu AH,Salabas EL,Schuth F.Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application.Angew Chem Int Ed Engl. 2007 Feb 5;46(8): 1222-1244.
    [27] Lambert G, Fattal E, Couvreur P. Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv Drugs Deliv Rev, 2001,47 (1): 99~112.
    [28] Lavertu M,Methot S,Tran-Khanh N,et al. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation.Biomaterials. 2006 Sep;27(27):4815-24.
    [29] Zhang XQ,Wang XL,Zhang PC,et al.Galactosylated ternary DNA/ polyphosphoramidate nanoparticles mediate high gene transfection efficiency in hepatocytes.J Control Release. 2005 Feb 16; 102(3):749-63.
    [30] Ravi Kumar MN,Sameti M,Mohapatra SS,et al.Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro and in vivo.J Nanosci Nanotechnol. 2004 Sep;4(7):876-81.
    [31] Xiang JJ,Nie XM,Li GY, et al.In vitro gene transfection by magnetic iron oxide nanoparticles and magnetic field increases transfection efficiency.Zhonghua Zhong Liu Za Zhi. 2004 Feb;26(2):71-4. Chinese.
    [32] 陈刚,刘海峰,藤小春.NHE-1反义基因磁性纳米颗粒的构建及鉴定.消化外科,2005,4(1):44-47.
    [33] Dash PR, Read ML, Barrett LB, et al. Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery.Gene Ther,1999 Apr;6(4):643-650.
    [34] Anna M,Edgardo M,Alexei B,et al.Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model.Radiology,2000 Feb;214(2):568-576.
    [35] Harush-Frenkel O,Debotton N,Benita S,Targeting of nanoparticles to the clathrin-mediated endocytic pathway.Biochem Biophys Res Commun. 2007 Feb 2;353(1):26-32.
    [36] Finsinger D,Remy JS,Erbacher P, et al.Plank protective copolymers for nonviral gene vectors:synthesis,vectors characterization and application in gene delivery [J]. Gene Therapy,2000,7(14): 1183-1192.
    [37] Hisayasu S,Mjiyauchi M,Akiyama K,et al.In vivo targeted gene transfer into liver cells mediated by a novel galactosyl-n-lysine/D-serine copolymer[J].Gene Ther, 1999,6(14):689-693.
    [38] Gwinn MR, Vallyathan V.Nanoparticles: health effects--pros and cons.Environ Health Perspect. 2006 Dec;114(12):1818-25.
    [39] Carsten K,Mohammad S,Eleonore GH,et al.Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA[J].International Jourmal of Pharmaceutics,2000,196(5):257-261.
    [40] Ogris M,Wagner E.Targeting tumors with non-viral gene delivery systems.Drug Discov Today,2002 Jul 15;7(14):479-485.
    [41] Kim IS,Lee SK, Lee YB,et al.Physicochemical characterization of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carder. Int J Pharm, 2005 Jul 14;298(1):255-62.
    [42] Prabha S, Labhasetwar V.Nanoparticle-mediated wild-p53 gene delivery results in sustained antiproliferative activity in breast cancer cells.Mol Pharm,2004, 1 (3):211-219.
    [43] Lattuada M,Hatton TA.Functionalization of monodisperse magnetic nanoparticles.Langmuir. 2007 Feb 13;23(4):2158-68.
    [44] 刘岚,唐萌,何整等.Fe3O4及Fe3O4-Glu纳米颗粒的毒性和致突变性研究[J].环境与职业医学,2004,21(1):14-17.
    [45] 马明,朱毅,张宇等.四氧化三铁纳米粒子与癌细胞相互作用的初步研究[J].东南大学学报(自然科学版),2003,33(2):205-207.
    [46] Boldrini L,Faviana P, Gisfredi S,et al.Identification of FAS(APO-1/CD95) and p53 gene mutations in non-small cell lung cancer[J].Int J Oncol,2002 Jan;20(1):155-9
    [47] 徐美林,田铁栓,杨霞等.P53基因突变与非小细胞肺癌病理类型及分期的关系。天津医学,2004,32(11):694
    [48] 顾其华,李玲芝,舒畅等.肺癌胸腔积液p53基因测序的研究。中华结核和呼吸杂志,1995,22(5):282.
    [49] 张梅春.Survivin反义寡核苷酸对耐顺铂肺腺癌细胞凋亡和耐药影响及靶向治疗研究:[博士学位论文].长沙:中南大学,2005.
    [50] 刑传平,刘斌,董亮.免疫组织化学标记结果的判断方法.中华病理学杂志,2001,30(4):318.
    [51] Parkin DM, Bray FI, Devesa SS.Cancer burden in the year 2000. The global picture, Eur. J. Cancer.2001,37 (Suppl. 8): S4-S66.
    [52] Roth JA, Grammer SF, Swisher SG, et al.Gene replacement strategies for treating non-small cell lung cancer. Semin Radiat Oncol,2000,10 (4): 333-342.
    [53] Marchetti A, Buttitta F, Merlo G, et al. p53 alterations in non-small cell lung cancers correlate with metastatic involvement of hilar and mediastinal lymph nodes.Cancer Res,1993,53(12):2846-2851.
    [54] Takahashi T, Carbone D, Nau MM,et al.Wild-type but not mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions. Cancer Res, 1992,52(8):2340-2343.
    [55] Hainaut P, Pfeifer GP. Pattern of p53 G→T transversions in lung cancers reflect the primary-mutagenic signature of DNA-damage by tobacco smoke[J]. Carcinogenesis, 2001, 22 (3):367-374.
    [56] Takayama K,Nakanishi Y, Hara N.Gene Therapy for Lung Cancer Treatment [J].Nippon Rinsho,2000,58(2): 1048
    [57] Lieberman DA,Hoffman B,Steinman RA.Molecular Control of growth arrest and apoptosis:p53-dependent and independent pathways.Oncogene, 1995,11 (3): 1991.
    [58] Levine AJ.p53, the cellular gatekeeper for growth and division.Cell, 1997,88(5):323.
    [59] Huang CL,Yokomise H, Miyatake A.Clinical significance of the p53 pathway and associated gene therapy in non-small cell lung cancers.Future Oncol. 2007 Feb;3(1):83-93.
    [60] Oster B,Kaspersen MD,Hollsberg p,et al.Human herpesvirus 6B inhibits cell proliferation by a p53-independent pathway.J Clin Virol. 2006 Dec;37 Suppl 1:S63-8.
    [61] Sullivan GF, Yang JM,Vassil A,et al.Regulation of expression of the multidrug resistance protein MRP1 by p53 in human prostate cancer cells[J].J Clin Invest,2000 May; 105 (9): 1261-1267.
    [62] Tsang WP, Chau SP, Fung KP, et al.Modulation of multidrug resistance-associated protein 1 (MRP1) by p53 mutant in Saos-2 cells.Cancer Chemother Pharmacol. 2003 Feb;51(2):161-6.
    [63] Roth JA, Grammer SF. Gene replacement therapy for non-small cell lung cancer: a review. Hematol Oncol Clin North Am,2004,18(1): 215-229.
    [64] Yuan RH,Jeng YM,Chen HL,et al.Stathmin overexpression cooperates with p53 mutation and osteopontin overexpression, and is associated with tumour progression, early recurrence, and poor prognosis in hepatocellular carcinoma. J Pathol. 2006 Aug;209(4):549-58.
    [65] Lee K, Wang T, Daoud SS,et al.Expression proteomics to p53 mutation reactivation with PRIMA-1 in breast cancer cells.Biochem Biophys Res Commun. 2006 Oct 27;349(3):1117-24.
    [66] Mondal N,Parvin JD.The tumor suppressor protein p53 functions similarly to p63 and p73 in activating transcription in vitro.Cancer Biol Ther. 2005,4(4):414-8.
    [67] Rampino N, Yamamoto H, Ionov Y, et al.Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science, 1997, 275(5302): 967-969.
    [68] Bahr O,Wick W, Weller M.Modulation of MDR/MRP by wild-type and mutant p53.J Clin Invest,2001 Mar;107(5):643-646.
    [69] Rho JK, Choi YJ,Lee,JC,et al.p53 Enhances Gefitinib-Induced Growth Inhibition and Apoptosis by Regulation of Fas in Non-Small Cell Lung Cancer.Cancer Res. 2007 Feb 1;67(3): 1163-9.
    [70] Rizk NP, Chang MY, Kouri C, et al.The evaluation of adenoviral p53-mediated bystander effect in gene therapy of cancer.Cancer Gene Ther,1999,6 (4): 291-301.
    [71] Kawabe S, Munshi A, Zumstein LA, et al.Adenovirus-mediated wild-type p53 gene expression radiosensitizes non-small cell lung cancer cells but not normal lung fibroblasts.Int J Radiat Biol,2001,77 (2): 185-194.
    [72] Carroll JL, Nielsen LL, Pruett SB, et al.The role of natural killer cells in adenovirus-mediated p53 gene therapy. Mol Cancer Ther,2001,1 (1): 49-60.
    [73] Kohn DB. Sadelain M, Glorio so JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nature Review Cancer, 2003; 3: 477.
    [74] Probha S,Labhasetwar V.Critical determinants in PLGA/PLA nanoparticlemediated gene expression.Pharm Res,2004 Feb;21(2):354-363.
    [75] Panyam J,Zhou WZ,Prabha S,et al.Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery.FASEB J. 2002 Aug; 16(10): 1217-26.
    [76] Lu W, Sun Q,Wan J,et al. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration.Cancer Res. 2006 Dec 15;66(24):11878-87.
    [77] Kerr JF,Winterford CM,Harmon BV. Apoptosis, its significance in cancer and cancer therapy[J]. Cancer, 1994, 73(8): 2013-2026.
    [78] Keane MM,Ettenberg SA,Nau MM, et al. Chemotherapy augments TRAIL-induced apoptosis in breast cell lines[J]. Cancer Res, 1999, 59(3): 734-741.
    [79] Duan XX,Ou JS,Li Y, et al. Dynamic expression of apoptosis-related genes during development of laboratory hepatocellular carcinoma and its relation to apoptosis[J]. World J Gastroenterol, 2005, 11(30): 4740-4744.
    [80] Xu J,Ji LD,Xu LH.Lead-induced apoptosis in PC 12 cells: involvement of p53, Bcl-2 family and caspase-3.Toxicol Lett. 2006 Oct 10;166(2): 160-7.
    [81] Sunyach C,Cisse MA,Checler F, et al.The C-terminal products of cellular prion protein processing, C1 and C2, exert distinct influence on p53-dependent staurosporine-induced caspase-3 activation.J Biol Chem. 2007 Jan 19;282(3):1956-63.
    [82] Kroemer G,Dallaporta B,Resche-Rigon M.The mitochondrial death/life regulator in apoptosis and necrosis.Armu Rev Physiol, 1998;60(3):619-642.
    [83] Checinska A,Giaccone G, Hoogeland BS,et al.TUCAN/CARDINAL/CARD8 and apoptosis resistance in non-small cell lung cancer cells.BMC Cancer. 2006 Jun 23;6:166.
    [84] Kigawa J,Sato S,Shimada M,et al.p53 geng status and chemosensitivity in ovarian cancer.Hum Cell,2001,14(3): 165-171.
    [85] Cavalcanti GB,Klumb CE,Maia RC,et al.Coexpression of p53 protein and MDR functional phenotype in leukemias: the predominant association in chronic myeloid leukemia.Cytometry B Clin Cytom. 2004 Sep;61 (1): 1-8.
    [86] Milacic V, Chen D,Ronconi L,et al. A novel anticancer gold(Ⅲ) dithiocarbamate compound inhibits the activity of a purified 20S proteasome and 26S proteasome in human breast cancer cell cultures and xenografts.Cancer Res. 2006 Nov 1 ;66(21): 10478-86.
    [87] Ramesh R, Saeki T, Roth JA,et al. Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector.Mol Ther, 2001 Mar;3(3):337-50.
    [88] 任非,姜耀东,刘焰东等。丝裂霉素C-磁性纳米球在小鼠体内的分布。中国药理学通报,2005,21(10):1187-1191。
    [89] Alo PL, Visca P, et al.Fatty acid synthase(FAS) predictive strength in poorly diferentiated early breast carcinomas[Journal Article].Tumori,1999 Jan-Feb 85(1):35-40.
    [90] 张驰宇,徐顺高,黄新详。一种新颖简便的荧光实时RT-PCR相对定量方法的建立。生物化学与生物物理进展,2005,32(9):883-888.
    [91] 司徒镇强,吴军正.主编.细胞培养.第1版.西安:世界图书出版社西安公司,2001.144-147.
    [92] Anderson K, Lawson KA,Simmons-Menchaca M,et al.Alpha-TEA plus cisplatin Reduces human cisplatin-resistant ovarian cancer cell tumor burden and metastasis.Exp Biol Med(Maywood),2004,229(11): 1169-76.
    [93] Peer D,Dekel Y, Melikhov D,et al.Fluoxetine inhibits multidrug resistance extrusion pumps and enhances responses to chemotherapy in syngeneic and inhuman xenograft mouse tumor models.Cancer Res,2004,6 4(20):7562-9.
    [94] 张梅春,胡成平,陈琼等。Survivin反义寡核苷酸治疗耐顺铂人肺腺癌细胞裸鼠移植瘤的实验研究。中南大学学报(医学版),2006,31(5):717—722.
    [95] Fujiwara T, Cai DW, Georges RN,et al.Therapeutic effect of a retroviralwild-type p53 expression vector in an orthotopic lung cancer model.J Natl Cancer Inst, 1994,86(19): 1458-62.
    [96] Lebedeva Ⅳ, Su ZZ, Sarkar D, et al. Restoring apoptosis as a strategy for cancer gene therapy: focus on p53 and mda27.Semin Cancer Biol, 2003,13:169-178.
    [97] Choi JW, Ahn WS, Bae SM ,et al. Adenoviral p53 effects and cell-specific E7 protein-protein interactions of human cervical cancer cells. Biosens Bioelectron, 2005, 20:2236-2243.
    [98] Roth JA, Grammer SF. Gene replacement therapy for non-small cell lung cancer: a review. Hematol Oneol Clin North Am,2004,18(1) ; 215-229.
    [99] Izquierdo MA, Schefer GL,Flens MJ.et al.Relationship of LRP-human major vault protein to in vitro and clinical resistance to anticancer drugs. Cytotechnology, 1996,19(3): 191-197.
    [100] Harada T, Ogura S,Yamazaki K,et al.Predictive value of expression of P53, Bcl-2 and lung resistance-related protein for response to chemotherapy in non-small cell lung cancers.Cancer Sei,2003,94(4):394-399.
    [101] Bustin SA. Absolute quantification of Mrna using real-time reverse transcription polymerase chain reaction assay.J Mol Endocrinol,2000,25:169
    [102] Apple FS, Wu AH, Jaffe AS,et al. European society of cardiology and American college of cardiology guidelines for redefmiton of myocardial infraction:how to use existing assays clinically and for clinicaltrials.Am Heart J, 2002,144(6):981-986.
    [103] Weissleder R, Stark DD, Engelstad BL,et al. Superparamagnetic iron oxides: Pharmacokinetic and toxicity[J]. AJR Am J Roentgenol, 1989, 152(1): 167-73.
    [1] Kohn DB. Sadelain M, Glorio so JC. Occurrence of leukaemia following gene therapy of X--linked SCID. Nature Review Cancer, 2003; 3 : 477.
    [2] Cohen H, Levy RJ, Gao J, et al. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther, 2000,7:1986-1905.
    [3] Yi Y, Hahm SH,Lee KH. Retroviral gene therapy: safety issues and possible solutions.Curr Gene Ther. 2005 Feb;5(1):25-35. Review.
    [4] Tandia BM,Lonez C,Vandenbranden M,et al.Lipid mixing between lipoplexes and plasma lipoproteins is a major barrier for intravenous transfection mediated by cationic lipids.J Biol Chem. 2005 Apr;280(13): 12255-61.
    [5] Liu F, Qi H, Huang L, et al. Factors controlling the efficiency ofcationic lipid-mediated transfection in vivo via intravenous administration. Gene Ther, 1997,4:517-523.
    [6] Lu AH,Salabas EL,Schuth F.Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application.Angew Chem Int Ed Engl. 2007 Feb 5 ;46(8): 1222-1244.
    [7] Davis S S. Biomedical application of nanotechnology2implications for drug targeting and gene therapy. Trends in Biotech, 1997,15(2) : 217~224.
    [8] Lambert G, Fattal E, Couvreur P. Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv Drugs Deliv Rev, 2001,47 (1) : 99~112.
    [9] 向娟娟,朱诗国,吕红斌等。用氧化铁磁性纳米颗粒作为基因载体的研究。癌症,2001,20(10):1009-1014.
    [10] Fattal E, V authier C, Aynie I, et al. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J Control Release, 1998; 53 (123) :137.
    [11] Prabha S, Zhou W Z, Panyam J, et al. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm, 2002; 244 (122) : 105.
    [12] Almofti MR, Harashima H, Shinohara Y, et al. Lipoplex size determines lipofection efficiency with or without serum. Mol Membr Biol, 2003,20 (1) : 35.
    [13] Vasir JK,Labhasetwar V. Polymeric nanopartieles for gene delivery.Expert Opin Drug Deliv. 2006 May;3(3):325-344.
    [14] Bertram J. MATra-Magnet Assisted Transfection: combining nanotechnology and magnetic forces to improve intracellular delivery of nucleic acids.Curr Pharm Biotechnol,2006,7(4):277-85.
    [15] Morishita N,Nakagami H,Morishita R,et al. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector.Biochem Biophys Res Commun,2005 Sep 9;334(4): 1121-6.
    [16] Kommareddy S,Tiwari SB,Amiji MM. Long-circulating polymeric nanovectors for tumor-selective gene delivery. Technol Cancer Res Treat,2005 Dec;4(6):615-25. Review.
    [17] Luo D, Woodrow-Mumford K, Belcheva N. Controlled DNA delivery systems. Pharm Res, 1999; 16(8) : 1300.
    [18] Finsinger D,Remy JS,Erbacher P,et al.Plank protective copolymers for nonviral gene vectors: synthesis,vectors characterization and application in gene delivery[J].GeneTherapy,2000,7(14):1183-1192.
    [19] Hisayasu S,Mjiyauchi M,Akiyama K,et al.In vivo targeted gene transfer into liver cells mediated by a novel galactosyl-n-lysine/D-serine copolymer[J].Gene Ther,1999,6(14):689-693.
    [20] Reddy JA , Abburi C, Hofland H, et al. Folate-targeted,cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther, 2002; 9 (22) : 1542.
    [21] Hood JD, Bednarski M , Frausto R, et al. Tumor regression by targeted gene therapy to the neovasculature. Science, 2002,296 (5577) : 2404.
    [22] Xu L , Huang CC, Huang W , et al. System ic tumor-targeted gene delivery by anti-transferrin receptor scFv-immuno-liposomes. Mol Cancer Ther, 2002,1 (5) : 337.
    [23] Hayes ME,Drummond DC,Kirpotin DB,et al.Genospheres: self-assembling nucleic acid-lipid nanoparticles suitable for targeted gene delivery.Gene Ther, 2006 Apr; 13(7):646-651.
    [24] Gebhart CL , Kabanov AV. Evaluation of polyplexes as gene transfer agents. J of Control Release, 2001 , 73 : 401 - 416.
    [25] Foster BJ , Kem JA. Neurotensin-SPDP-poly-L-lysine conjugate : a nonviral vector for targeted gene delivery to neural cells. Hum Gene Ther , 1997 , 8 (6): 719.
    [26] Boussif O ,Lezoualc'h F, Zanta MA, et al . A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo-polyethylenimine. Proc Natl Acad Sci USA, 1995 , 92 : 7297 - 7301.
    [27] 何冬梅,张洹,刘革修。转铁蛋白受体介导的Bcl-2 shRNA转移对HL-60细胞生长的抑制作用.山东医药,2006,46(16):12-13.
    [28] Bielinska A, Kukowska Latallo JF, Johnson J, et al. The interaction of plasmid DNA with polyamidoamine dendrimers : mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcripitional activity of the complexed DNA. Nucleic Acids Res, 1996,24 (11) : 2176-2182.
    [29] Harada A,Kawamura M,Matsuo T, et al.Synthesis and characterization of a head-tail type polycation block copolymer as a nonviral gene vector. Bioconjug Chem, 2006 Jan-Feb;17(1):3-5.
    [30] Maruyama-Tabata H,Harada Y, Matsumura T, et al. Effective suicide gene therapy in vivo by EBV-based plasmid vector coupled with polyamidoamine dendrimer.Gene Ther,2000;7(1):53-60.
    [31] Roy K, Mao HQ , Huang SK, et al. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a routine model of peanut allergy. Nat Med, 1999;5(4):387.
    [32] 常津,刘海峰,许晓秋等.一种新型纳米基因载体的制备及体外实验.中国生物医学工程学报,2002,21(6):515~529.
    [33] Mansoud S,Cuie Y, Wirmik F, et al.Characterization of folate-chitosan-DNA nanoparticles for gene thempy.Biomaterials. 2006 Mar;27(9):2060-5.
    [34] Cohen-Sacks H, Najajreh Y, Tchaikovski V, et al. Novel PDGFbetaR antisense encapsulated in polymeric nanospheres for the treatment of restenosis. Gene Ther, 2002; 9 (23) : 1607.
    [35] Cohen H, Levy RJ, Gao J, et al. Sustained delivery and expression of DNA encap sulated in polymeric nanoparticles.Gene Ther, 2000; 7 (22) : 1896.
    [36] 潘一峰,张阳德,王吉伟等.PLGA纳米载体介导的端粒酶反义核酸体外转染率及对肝肿瘤细胞的影响.中国现代医学杂志,2005;15(23):3540-3543.
    [37] 潘一峰,张阳德,王吉伟等.PLGA纳米载体介导的端粒酶hTERT反义核酸对裸鼠肝癌移植瘤的影响.中国现代医学杂志,2006;16(5):664-668.
    [38] Prabha S,Labhasetwar V. Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells.Mol Pharm. 2004 May-Jun;1(3):211-9.
    [39] Dawson GF, Halbert GW. The in vitro cell association of invasin coated polylactide-co-glyco lide nanoparticles. Pharm Res, 2000; 17 (11) : 1420.
    [40] Avgoustakis K.Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles:preparation, properties and possible applications in drug delivery.Curr Drug Deliv, 2004 Oct;1(4):321-33.
    [41] Kis IS,Lee SK,Park YM.Physicochemical characterization of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carrier. Int J Pharm,2005 Jul 14;298(1):255-62.
    [42] Csaba N, Sanchez A,Alonso MJ.PLGA: poloxamer and PLGA: poloxamine blend nanostructures as carriers for nasal gene delivery. J Control Release,2006 Jun 28; 113(2): 164-72.
    [43] Jeong JH, Park TG.Poly (L-lysine)-g-poly (D, L-lactic-co-glycolie acid ) micelles for low cytotoxic biodegradable gene delivery carriers. J Control Release, 2002; 82 (1) : 159.
    [44] Savic R, Luo L , Eisenberg A , MaysingSaer D. Micellar nanoeontainers distribute to defined cytoplasmic organelles.Seience, 2003; 300 (5619) : 615.
    [45] Torehilin VP, Lukyanov AN, Gao Z, et al. Immunomicelles:Targeted pharmaceutical carriers for poorly soluble drugs.Proe Natl Aead Sci USA, 2003; 100 (10) : 6039.
    [46] Cho KC,Kim SH,Jeong JH,Park TG.Folate receptor-mediated gene delivery using folate-poly(ethylene glycol)-poly(L-lysine) conjugate. Macromol Biosci.2005 Jun 24;5(6):512-9.
    [47] Senyei AE,Reich SD,Gonczy C,et al.In vivo kinetics of magnetically targeted low dose doxorbubin.J Pharm Sci,1981,70:389-394.
    [48] Andreeas Stephan Lubbe,Christian Bergemman,Winfried Huhnt,et al.Preclinical experiences with magnetic drug targeting:tolerance and efficacy.Cancer research,1996,56:4694-4701.
    [49] Mah C,Song S,Byrne BJ,et al.Improved method of recombinant AAV2 delivery for systemic targeted gene therapy.Mol Ther. 2002 Jul;6(1): 106-12.
    [50] Neuberger T, Schopf B, Hofmann H, Hofrnann M, von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J Magn Magn Mater 2005; 293: 483-496.
    [51] Harris LA, Goff JD, Carmichael AY, Riffle JS, Harbum JJ, et al. Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem Mater 2003; 15: 1367-1377.
    [52] 向娟娟,聂新民,唐敬群等。磁性氧化铁纳米颗粒用于体外基因的转染及其 外加磁场对于转染效率的影响。中华肿瘤杂志,2004,26(2):71-74.
    [53] Morishita N,Nakagami H,Morishita R, et al.Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem Biophys Res Commum.2005 9;334(4): 1121-6.
    [54] Kamau SW, Hassa PO,Steitz B,et al.Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res.2006 Mar 15;34(5):e40. Print 2006.
    [55] Bertram J.MATra - Magnet Assisted Transfection: combining nanotechnology and magnetic forces to improve intraeellular delivery of nucleic acids. Curr Pharm Biotechnol. 2006 Aug;7(4):277-85.
    [56] Scherer F ,Manton , Schillinger U , et al . Magnetofection :anhaneing ang targeting genedelivery by magneticforce in vitro and in vivo[J] Gene therapy ,2002,9:102-109.
    [57] Plank C, Schillinger U, Scherer F, Bergemann C, Remy JS, Krotz F, et al. The magnetofection method: using magnetic force to enhance gene therapy. Biol Chem 2003; 384: 737-747.
    [58] F Scherer, Manton,U Schillinger, et al.Magnetofeetion:Enhancing and targeting gene delivery by magneticforce in vitro and in vivo.Gene Therapy,2002,9:102-109.
    [59] Schillinger U, Brill T, Rudolph C, Huth S, Gersting SW, et al. Advances in magnetofection-magnetically guidednucleie acid delivery. J Magn Magn Mater 2005; 293:501-508.
    [60] Pohl U,Sohn H-Y, Zahler S, Gloe T, et al.Magnetofection-a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 2003; 7:700-710.
    [61] 韦卫中,吴华,李芳.磁性纳米颗粒介导基因治疗乳腺癌实验研究.肿瘤防治杂志,2005,32(8):473-476.
    [62] Dreher KL. Toxicological highlight : health and environmental impact of nanotechnology : toxicological assessment of manufactured nanopartieles[J]. Toxicological Science, 2004,77:3-5.
    [63] Lam CW, James JT, McCluskey R, et al. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation[J]. Toxicological Sciences,2004,77: 126-134.
    [64] Warheit DB, Laurence BR, Reed KL, et al. Pulmonary-toxicity-screening studies with single-wall carbonnanotubes [A]. In: The 225th ACS National Meeting[C]. New Orleans, LA, 2003. 23-27.
    [65] Mauderly JL,Snipes MB,Barr EB,et al.Pulmonary toxicity of inhaled diesel exhaust and carbon black in chronically exposed rats. Part I: Neoplastic and nonneoplastic lung lesions. Res Rep Health Eff Inst. 1994 Oct;(68 Pt 1):1-75; discussion 77-97.
    [66] Lee KP,Trochimowicz HJ,Reinhardt CF.Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicol Appl PHarmacol.1985 Jun 30;79(2):179-92.
    [67] Heinrich U,Creutzenberg O,Muhle H,et al.Phagocytosis and chemotaxis of rat alveolar macrophages after a combined or separate exposure to ozone and carbon black. Exp Toxicol Pathol. 1995 May;47(2-3):202-6.
    [68] Oberdorster G, Ferin J,Lehnert BE.Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994 Oct;102 Suppl 5:173-9.
    [69] Oberdorster G, Sharp Z,Cox C,et al.Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol,2004 Jun;16(6-7):437-45.
    [70] Singh M, Briones M, Ott G, et al. Cationicm icroparticles: A potent delivery system for DNA vaccines. Proc Natl Acad Sci USA, 2000; 97 (2): 811.
    [71] Denis-Mize KS, Dupuis M , MacKichan ML. Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther, 2000; 7 (24) : 2105.
    [72] Sheng R ,Flore GA , Liu J . In vitro investigation of a novel cancer therapeutic method using embolizing properties of magnetorheological fluids. Journal of Magnetiam and Magnetic Materials , 1999 , (194) ;167.
    [73] Jing Liu, Flones GA, Sheng R. In vitro investigation of blood embolization incancer treatment using magnetorheological fluids. Journal of Magnetism and Magnetic Materials ,2001,(225): 209.
    [74] Jodan A, Wust P, Scholz R, et al. Effects of magnetic fluid hyperthermia (MFH) on C3H mamary carcinoma in vivo. Int J Hyperthermia. 1997,13: 587,
    [75] Jodan A, Wust, Scholz R, et al. Cellular up take of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int J Hyperthermia. 1996,12: 705.
    [76] Djavan B, Shariat S, FakhariM, et al. Neoadjuvant and adjuvant alpha-blockade imp roves early results of high-energy transurethralmicrowave thermotherapy for lower urinary tract symptoms of benign prostatic hyperplasia: a randomized, p rospective clinical trial. Urology. 1999, 53:251.
    [77] Jordan A, Scholz R, KlansMH, et al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magneie fluid hyperthermia. J MagnMater. 2001, 225: 118.
    [78] Hilger I, Bahring R, Hilger I, et al. Evaluation of the temperature increase with different amotmts ofmagnetie in liver tissue samples. InvestRadiol. 1997, 32: 705.
    [79] YanaseM, ShinkaiM, Honda H, et al. Antitumor immunity induction by intracellular hyperthermia usingmagnetie cationic liposomes. Jpn J Cancer Res. 1998, 89: 775.
    [80] Ito A, Shinkai M, Honda H, et al. Heat-inducible TN-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther. 2001, 8: 649.
    [81] Johannsen I, Thiesen B,Jordan A,et al.Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model.Prostate.2005 Aug 1 ;64(3):283-92.
    [82] Yan S,Zhang D,Gu N,et al.Therapeutic effect of Fe2O3 nanoparficles combined with magnetic fluid hyperthermia on cultured liver cancer cells and xenograft liver cancers. J Nanosci Nanotechnol.2005 Aug;5(8):1185-92.
    [1] Roth JA, Grammer SF, Swisher SG, et al.Gene replacement strategies for treating non-small cell lung cancer. Semin Radiat Oncol,2000,10 (4) : 333-342.
    [2] Ferreira CG,Tolis C,Giaccone G. p53 and chemosensitivity[J]. Ann Oncol, 1999,10(9):1011-1021.
    [3] Chang MY, Chong IW, Chen FM,et al.High frequency of frameshift mutation on p53 gene in Taiwanese with non small cell lung cancer.Cancer Lett. 2005 May 26;222(2): 195-204.
    [4] Kai K,Nishimura R, Arima N,et al.p53 expression status is a significant molecular marker in predicting the time to endocrine therapy failure in recurrent breast cancer: a cohort study.Int J Clin Oncol. 2006 Dec;11(6):426-33.
    [5] Brambilla C,Fievet F, Jeanmart M,et al. Early detection of lung cancer: role of biomarkers, J Eur Respir.2003, (Suppl. 39) :36s-44s.
    [6] 郑杰,吴秉铨。p53研究的新进展。中华病理学杂志,1997,26:251-254.
    [7] Kato S, Han SY, Liu W, et al.Understanding the function-structure and functionmutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis.PNAS, 2003,100:8424-8429.
    [8] Zhang Y, Xiong Y.A p53 amino-terminal nuclear export signal inhibited by DNA damage induced phosphorylation.Science,2001,292:1910-1915.
    [9] Roth JA, Grammer SF. Gene replacement therapy for non-small cell lung cancer: a review.Hematol Oncol Clin North Am ,2004,18(1) : 215-229.
    [10] Hosaka N,Ryu T, Cui W, et al.Relationship of p53, Bcl-2, Ki-67 index and E-cadherin expression in early invasive breast cancers with comedonecrosis as an accelerated apoptosis.J Clin Pathol. 2006 Jul;59(7):692-8. Epub 2006 Feb 10.
    [11] Lowe SW, Schmitt EM, Smith SW, et al.p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature, 1993,362 (6423) : 847-849.
    [12] Cheung KJ,Mitchell D,Lin P, et al.The tumor suppressor candidate p33ING1b mediater repair of UV-damaged DNA[J].Cancer Res,2001,61:4974-4977.
    [13] Yu JL,Rak JW, Coomber BL,et al.Effect of p53 status on tumor response to antiangiogenic therapy[J].Science,2002,295:1526-1528.
    [14] Lawler J, Miao WM, Duquette M, et al.Thrombospondin-1 gene expression affects survival and tumor spectrum of p53-deficient mice. Am J Pathol, 2001, 159(5) : 1949-1956.
    [15] Balint EE,Vousden KH.Activation and activities of the p53 tumor suppressor protein[J].Br J Cancer,2001,85:1813-1823.
    [16] Shu KX,Li B,Wu LX.The p53 network: p53 and its downstream genes.Colloids Surf B Biointerfaces. 2007 Mar 15;55(1): 10-8.
    [17] Morgunkova AA.The p53 gene family: control of cell proliferation and developmental programs.Biochemistry (Most). 2005 Sep;70(9):955-71.
    [18] Hayashi S,Ozaki T, Yoshida K,et al.p73 and MDM2 confer the resistance of epidermoid carcinoma to cisplatin by blocking p53.Biochem Biophys Res Commun. 2006 Aug 18;347(1):60-6.
    [19] Flores ER, Tsal KY, Crowley D,et al.p63 and p73 are required for p53-dependent apoptosis in response to DNA damage[J].Nature,2002,416:560-564.
    [20] Okada Y, Osada M,Kurata Si,et al.p53 gene family p51(p63)-encoded,secondary transactivator p53B occurs without forming an immunocipitable complex with mdm2,but respond to genotoxic stress by accurnulation[J].Exp Cell Res,2002,276:194-200.
    [21] Kunisaki R, Ikawa S,Maeda T, et al.p51/p63, a novel p53 homologue, potentiates p53 activity and is a human cancer gene therapy candidate.J Gene Med. 2006 Sep;8(9):1121-30.
    [22] Hirao A,Kong YY, Matsuoka SH,et al.DNA damage-induced activation of p53 by the checkpoint kinase chk2[J].Science,2000,287:1824-1827.
    [23] Hussain SP, Harris CC.p53 biological network: at the crossroads of the cellular-stress response pathway and molecular carcinogenesis.J Nippon Med Sch. 2006 Apr;73(2):54-64. Review.
    [24] Canman CE, Lim KA, Cimorich Y, et al.Activation of the ATM kinase by ionizing radiation and phosphorylation of p53[J].Science, 1998,281:1677-1679.
    [25] Zhou BP, Liao Y, Xia W, et al.Her-2/neu induces p53 ubiquitination via AKT-mediated mdm2 phosphorylation.Nature Cell Biol,2001 Nov;3(11):973-982.
    [26] Buschmann T, Fuchs SY, Lee CG,et al.SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53.Cell. 2000 Jun 23; 101 (7):753-62.
    [27] Ringshausen I,Finch AJ,Evan GI,et al.Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo.Cancer Cell. 2006 Dec;10(6):501-14.
    [28] Tolbert D,Lu XD,Yin CY, et al.pl9(ARF) is dispensable for oncogenic stress-induced p53-mediated apoptosis and tumor suppression in vivo.Mol Cell Biol. 2002 Jan;22(1):370-7.
    [29] Xirodimas D,Saville MK,Edling C,et al.Differrent effects of p14ARF-mdm2-p53 on the levels of ubiquitinated p53 and mdm2 in vivo[J].Oncogene,2001,20:4912-83.
    [30] Carr J,Bell E,Pearson AD,et al.Increased frequency of aberrations in the p53/MDM2/p14(ARF) pathway in neuroblastoma cell lines established at relapse.Cancer Res. 2006 Feb 15;66(4):2138-45.
    [31] Garkevtsev I,Grigorian IA,Gudkow AV, et al.The candidate tumor suppressor p33ING1 cooperates with p53 in cell growth control[J]. Nature, 1998,391:295-298.
    [32] Ashlcroft M,Micheal HG, Kubbutal H,et al.Regulation of p53 function and stability by phosphorylation.Mol Cell Biol. 1999 Mar;19(3):1751-8.
    [33] Luo J,Su F, Chen D,et al. Deacetylation of p53 modulates its effect on cell growth and apoptosis.Nature. 2000 Nov 16;408(6810):377-81.
    [34] Marchetti A, Buttitta F, Merlo G, et al. p53 alterations in non-small cell lung cancers correlate with metastatic involvement of hilar and mediastinal lymph nodes.Cancer Res, 1993,53(12):2846-2851.
    [35] 杨廷桐,李秀杰,张骏,等.小细胞肺癌组织中p53基因改变的研究.实用癌症杂志,1998,13(4):252~254.
    [36] Takahashi T, Carbone D, Takahashi T, et al.Wild-type but not mutant p53 suppresses the grow- th of human lung cancer cells bearing multiple genetic lesions. Cancer Res,1992,52(8):2340-2343.
    [37] Hainaut P, Pfeifer GP. Pattern of p53 G→T transversions in lung cancers reflect the primary-mutagenic signature of DNA-damage by tobacco smoke[J]. Carcinogenesis, 2001, 22 (3):367-374.
    [38] Kirsi H,William P, Katariina C, et al. P53 and K-ras mutations in lung cancers from former and never-smoking women[J]. Cancer Research, 2001, 61 (11) : 4350-4356.
    [39] Smith LE, Denissenko MF, Bennett WP, et al. Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons[J]. J Natl Cancer Inst, 2000, 92 (10) : 803-811.
    [40] Denissnko MF, Pao A, Tang M, et al. Preferential formation of benzo[α]pyrene adducts at lung cancermutational hotspots in p53[J]. Science, 1996, 274 (5286) : 430-432.
    [41] Cherpilod P, Amstad PA. Benzo[α]pyrene-induced mutagenesis of p53 hotspot codons 248 and 249 in human hepatocytes[J]. Mol Carcinog, 1995, 13:15-20.
    [42] Hollstein M, Sidransky D,Vogelstein B, et al. p53 mutations in human cancers[J]. Science, 1991, 253 (5015) : 49-53.
    [43] Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations[J]. Adv Cancer Res, 2000, 77:81-137.
    [44] Denissenko MF, Chen JX, Tang MS, et al. Cytosine methylation determines hotspots of DNA damage in the human p53 gene[J].Proc Natl Acad Sci USA, 1997, 94: 3893-3898.
    [45] Chen JX, Zheng Y, WestM, et al. Carcinogens preferentially bind at methylated CpG in p53 mutational hotspots[J]. Cancer Research, 1998, 58:2070-2075.
    [46] Pan ZZ,Wan DS,Chen G, et al.Co-mutation of p53, K-ras genes and accumulation of p53 protein and its correlation to clinicopathological features in rectal cancer.World J Gastroenterol. 2004 Dec 15;10(24):3688-90.
    [47] Westra WH. Overexpression of the p53 tumor suppressor gene product in primary lung ade-nocarcinomas is associated with cigarette smoking[J]. Am J Surg Pathol, 1993, 17 (3) : 213-220.
    [48] Chandrika J,Andra R. Nuclear accumulation of p53 is a potential marker for the development of squamous cell lung cancer in smokers[J]. Chest, 2003, 123 (1) : 181-186.
    [49] Mechanic LE, Marrogi AJ,Welsh JA, et al. Polymorphisms in XPD and Tp53 and mutation in human lung cancer.Carcinogenesis,2005,26 (3) :597-604.
    [50] Park JK, Lee HJ, Kim JW, et al. Differences in p53 gene polymorphisms between korean schizophrenia and lung cancer patients. Schizophr Res ,2004,67(1) :71-74.
    [51] Mahasneh AA,Abdel-Hafiz.SS. Polymorphism of p53 gene in jordanian population and possible associations with breast cancer and lung adenocarcinoma. Saudi Med J, 2004,25 (11) : 1568-1573.
    [52] 李琰,张健慧,王瑞,等.p53~(PIN3)基因多态性与食管癌及肺癌发病风险关系的研究.肿瘤,2004,24(2):146-148.
    [53] Rampino N, Yamamoto H, Ionov Y, et al.Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science, 1997, 275(5302) : 967-969.
    [54] Sullivan GF, Yang JM,Vassil A,et al.Regulation of expression of the multidrug resistance protein MRP1 by p53 in human prostate cancer cells[J].J Clin Invest,2000,105 :1261-1267.
    [55] Roth JA, Grammer SF. Gene replacement therapy for non-small cell lung cancer: a review. Hematol Oncol Clin North Am,2004,18(1) : 215-229.
    [56] Rizk NP, Chang MY, Kouri C, et al.The evaluation of adenoviral p53-mediated bystander effect in gene therapy of cancer.Cancer Gene Ther,1999,6 (4) : 291-301.
    [57] Kawabe S, Munshi A, Zumstein LA, et al.Adenovirus-mediated wild-type p53 gene expression radiosensitizes non-small cell lung cancer cells but not normal lung fibroblasts.Int J Radiat Biol,2001,77 (2) : 185-194.
    [58] Carroll JL, Nielsen LL, Pmett SB, et al.The role of natural killer cells in adenovirus-mediated p53 gene therapy. Mol Cancer Ther,2001,1 (1) : 49-60.
    [59] Fujiwara T, Grimm EA,Mukhopadhyay T, et al.A retroviral wild-type p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis.Cancer Res, 1993, 8:4129-4133.
    [60] Roth JA, Nguyen D, Lawrence DD, et al.Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med ,1996,2 (9) :985-991.
    [61] Kohn DB, Sadelain M, Glorioso JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer ,2003,3 (7) : 477-488.
    [62] O'Malley BWJr, Couch ME. Gene therapy principles and strategies for head and neck cancer. Adv Otorhinolaryngol, 2000, 56 : 279-288.
    [63] D'Orazi G, Marchetti A, Creseenzi M, et al. Exogenous wt-p53 protein is active in transformed cells but not in their nontransformed counterparts: implications for cancer gene therapy without tumor targeting. J Gene Med ,2000,2 (1) : 11-21.
    [64] Zhang WW, Fang X, Mazur W, et al.High-efficieney gene transfer and high-level expression of wild-type p53 in humanlung cancer cells mediated by recombinant adenovirus. Cancer Gene Ther, 1994, 1(1) : 5213.
    [65] Osaki S, Nakanishi Y, Takayama K, et al.Alteration of drug chemosensitivity caused by the adenovirus-mediated transfer of the wild-type p53 gene in human lung cancer cells. Cancer Gene Ther, 2000, 7(2) : 300-307.
    [66] Horio Y, Hasegawa Y, Sekido Y, et al.Synergistic effects of adenovirus expressing wild-type p53 on chemosensitivity of non-small cell lung cancer cells.Cancer Gene Ther,2000,7(4):537-544.
    [67] Kawabe S, Munshi A, Zumstein LA, et al. Adenovirus-mediated wild-type p53 gene expression radiosensitizes non-small cell lung cancer cells but not normal lung fibroblasts. Int J Radiat Biol, 2001, 77(2) : 185-194.
    [68] Swisher SG, Roth JA , Nemunaitis J, etal. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst,1999,91 (9): 763-771.
    [69] Weill D, Mack M, Rot h J, et al. Adenoviral-mediated p53 gene transfer to non-small cell lung cancer through endobronchial injection. Chest,2000,118 (4) : 966-970.
    [70] Nemunaltis J, Swisher SG, Timmons T, et al. Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patient s with non-small-cell lung cancer. J Clin Oncol,2000,18 (3) : 609-622.
    [71] Fujiwara T, Tanaka N,Kanazzawa S,et al.Multicenter phase I study of repeated intratumoral delivery of adenoviral p53 in patients with advanced non-small-cell lung cancer.J Clin Oncol. 2006 Apr 10;24(11):1689-99. Epub 2006 Feb 27.
    [72] Carbone DP, Adak K, Schiller J, et al.Adenovirus p53 administered by bronchoalveolar lavage in patient s with bronchioalveolar cell lung carcinoma (BAC)[abstract]. Proc Am Soc Clin Onco1,2003,22 : 620a.
    [73] Schuler M, Herrmarm R, De Greve JL, et al. Adenovirus-mediated wild-type p53 gene transfer in patients receiving chemotherapy for advanced non-small-cell lungcancer: results of a multicenter phase Ⅱ study. J Clin Oncol, 2001, 19 (6) : 1750-1758.
    [74] Viktorsson K,De Petris L,Lewensohn R.The role of p53 in treatment responses of lung cancer.Biochem Biophys Res Commun. 2005 Jun 10;331(3):868-80. Review.
    [75] Swisher SG, Rot h JA, Komaki R, et al. A phase Ⅱ trial of adenoviral mediated p53 gene transfer (RPR/INGN 201) in conjunction with radiation therapy in patients with localized non-small cell lung cancer(NSCLC)[abstract]. Proc Am Soc Clin Oncol,2000,19 : 461a.
    [76] Swisher SG, Roth JA, Komaki R, et al.Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy. Clin Cancer Res,2003,9 (1) : 93-101.
    [77] Neyns B, Noppen M. Int ratumoral gene therapy for non-small cell lung cancer:current status and future directions.Monaldi Arch Chest Dis, 2003, 59 (4): 287-295.
    [78] Jenks S. Gene therapy death: everyone has to share in the guilt. J Natl Cancer Inst, 2000, 92: 98-100.
    [79] Bilbao G, Contreras JL, Dmitriev I, et al. Genetically modified adenomirus vector containing an RGD peptide in the HI loop of the fiber knob improves gene transfer to nonhuman primate isolated pancreatic islets. Am J Transp lant, 2002, 2: 237-243.
    [80] Wu H, Han T, Lam JT, et al. Preclinical evaluation of a class of infectivity-enhanced adenoviral vectors in ovarian cancer gene therapy. Gene Therapy, 2004, 11: 874-878.
    [81] Kelly FJ, Miller CR, Buchsbaum DJ, et al. Selectivity of TAG272-targeted adenovirus gene transfer to primary ovarian carcinoma cells versus autologousmesothelial cells in vitro. Clin Cancer Res. 2000.6: 4323-4333.
    [82] 黄宗堂,尹志伟,刘虹。野生型P53抑制肺癌细胞生长的研究。天津医科大学学报,2003,9(2):165—168.
    [83] 张洪涛,汪蕙,赖百塘,等。外源野生型p53基因表达对人肺癌细胞药物敏感性影响。中国肺癌杂志,2000,3(3):166-168.
    [84] Yu W, Pirollo KF, Rait A, et al. A sterically stabilized immunolipoplex for systemic administration of a therapeutic gene.Gene Therapy, 2004, 11: 1434-1440.
    [85] Prabha S,Labhasetwar V. Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells.Mol Pharm. 2004 May-Jun; 1 (3):211-9.
    [86] Sak A, Wurm R, Elo B, et al. Increased radiation-induced apoptosis and altered cell cycle progression of human lung cancer cell lines by antisense oligodeoxynucleotides targeting p53 and p21 (WAF1/CIP1) . Cancer Gene Ther,2003,10 (12):926-934.
    [87] Martinez LA, Naguibneva I, Lehrmarm H, et al. Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc Natl Acad Sci USA, 2002, 99: 14849-14854.
    [88] Shin KS, Sullenger BA, Lee SW. Ribozyme-midiated induction of apoptosis in human cancer cells by targeted repair of mutant p53RNA. Mol Ther, 2004, 10: 365-372.
    [89] Watanabe T, Sullenger BA. Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts.Proe Natl Acad Sei USA, 2000, 97: 8490-8494.
    [90] Issaeva N, Friedler A, Bozko P, et al. Rescue of mutants of the tumor supp ressor p53 in cancer cells by a designed peptide. Proc Natl Acad Sci USA, 2003, 100: 13303-13307.
    [91] Baroni TE, Wang T, Qian H, et al. A global suppressor motif forp53 cancer mutants. Proc Natl Acad Sci USA, 2004, 101: 4930-4935.
    [92] 汪蕙,李金照,赖百塘,等.P53C末端356~393氨基酸对人肺癌细胞恶性表型的影响.中华肿瘤杂志,2003,25(6):527-530.
    [93] Antonia SJ, Mirza N,Fricke I,et al.Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer.Clin Cancer RES. 2006 Feb 1;12(3 Pt1):878-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700