用户名: 密码: 验证码:
氢醌等生物分子在液/液界面上的电子转移过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液/液界面(Liquid/Liquid interface,L/L)被认为是最简单的模拟生物膜的模型。在过去的几十年中,这种非互溶界面得到了广大科研工作者的普遍关注。电荷(电子和离子)转移是生命活动中最基本的物理化学过程之一。它与许多重要的化学、生物体系,如化学传感器、药理学中的药物释放、相转移催化以及模拟生物膜的研究密切相关。因此,研究液/液界面上的电子转移,建立完善合理的界面过程动力学理论,对于认识、理解、掌握许多重要的生理过程,揭示生物体内物质和能量的代谢,探究活体内自由基的产生、消除及其致病机理具有重要意义。
     本论文结合薄层循环伏安法(Thin-Layer Cyclic Voltammetry,TLCV)和扫描电化学显微镜(Scanning Electrochemical Microscope,SECM)技术探究了电子在液/液界面上的转移过程。
     全文共分为四部分,主要包括以下内容:
     1.概要回顾了液/液界面电化学的发展历史,介绍了液/液界面电化学的基本原理和发展前景,详述了TLCV和SECM两种方法的工作原理及其在液/液界面电化学研究中的应用、发展及定量分析理论等。
     2.结合SECM技术,应用TLCV方法研究了氢醌(QH2,水相)-十甲基二茂铁( DMFc,有机相)体系在硝基苯(NB)/水(W)界面上的电子转移过程。两种方法获得的实验结果相吻合,这不但证实了TLCV方法研究液/液界面异相电子转移反应的可靠性,并且还拓展了TLCV的研究范围。
     3.应用SECM对比研究了以下两个体系在硝基苯(NB)/水(W)界面上的电子转移过程:(1)氢醌(QH2,水相)-二茂铁(Fc,有机相)体系;(2)氢醌(QH2,水相)-十甲基二茂铁(DMFc,有机相)体系。并计算了异相电子转移的表观速率常数。结果表明:界面反应驱动力是影响电子转移速率大小的主要因素。此外,我们以ClO4-离子作为共同离子,研究了共同离子对液/液界面电位差的控制过程。
     4.应用SECM研究了锌卟啉阳离子稳定性对电子转移的影响。实验结果表明:正一价锌卟啉的稳定性是影响界面电子转移的重要因素之一。密度泛函理论的计算结果证实了取代基位置不同影响了正一价锌卟啉的热力学能、分子轨道能,以至于其稳定性也随之发生了变化。除此之外,共同离子对电子转移速率常数的影响证明了改变周围环境的离子组成可以有效地控制生物体系中电子转移过程。
A liquid/liquid (L/L) interface has been suggested as a simple model for biological membranes. In the last decades, electrochemical investigation at the interface between two immiscible electrolyte solutions (ITIES) has attracted much attention of researcher. The charge (electron and ion) transfer has been considerable as an essential physicalchemical process in life activities. Many important chemical and biological systems (such as chemical sensors, drug release of pharmacology, phase transfer catalysis, simulation of biomembrane) could be investigated at the L/L interface. So it is meaning for studying electron transfer (ET) at the L/L interface and putting forward dynamic theories to realize and understand many important physiological processes, e.g. energy metabolizing, free-radical presenting and disappearing.
     In this paper, both thin-layer cyclic voltammetry (TLCV) and scanning electrochemical microscope (SECM) were applied to investigate the processes of ET at the L/L interface.
     There are four parts in this thesis, the main contents are as follows:
     1. A short review was given on the historical background of electrochemistry of L/L interface. The basic principles of L/L interface and the developing foreground were introduced. The outlined of TLCV and SECM was summarized.Especially, the working-principle, development, calculative theories and the application of the two technologies in L/L interfacial electrochemistry were discussed in detail.
     2. Combined with SECM, the process of ET of QH2-DMFc system at NB/W interface was investigated by TLCV.The results from the two different approaches showed a reasonable agreement, which not only demonstrated the simplicity and the convenience but also expanded the research region of TLCV.
     3. SECM was applied to investigate the processes of ET in following two systems at NB/W interface: (1) hydroquinone (QH2, in water)-ferrocene (Fc, in NB) system; (2) hydroquinone (QH2, in water)-decamethylferrocene (DMFc, in NB) system. And the formal rate constants of heterogeneous ET were calculated.The results demonstrated the driving force was dominating factor on the rate of electron transfer. Furthermore, taking ClO4- as common ion, the process of its controlling the potential drop at L/L interface has been studied.
     4. SECM was applied to investigate the effects of stability of univalent porphyrin zinc on electron transport across the simulative membrane. From the results of our study, we can see that the stability of univalent porphyrin zinc species was a dominating factor of the changing trend of the electron transfer rate across the interface. The calculated results by density-functional theory (DFT) proved that same substituents at different place of porphyrin zinc influenced the thermodynamic energy and MOs orbitals of univalent porphyrin zinc species and the stability changed consequently. In this paper, the dependence of the circumambient composing on the rate constants was also studied and domastrated that it would be effective to control the electron transfer rate in the biologic system.
引文
[1] Marcus R.A., J. Phys. Chem. [J], 1991, 95:2010.
    [2] Marcus R.A., J. Phys. Chem. [J], 1990, 94:1050.
    [3] Marcus R.A., J. Phys. Chem. [J], 1990, 94:4152.
    [4] Marcus R.A., J. Phys. Chem. [J], 1990, 94:7742.
    [5] Marcus R.A., J. Phys. Chem. [J], 1995, 99:5742.
    [6] Yudi L.M.,Baruzzi A.M., Solis V., J. Electroanal. Chem. [J], 1993, 360:211.
    [7] Girault H.H., Schiffrin D.J., J. Electroanal. Chem. [J], 1989, 15:1.
    [8] SendaM., Kakiuchi T., Osakai T., Electrochim. Acta [J], 1991, 36:253.
    [9] Giarult H.H., Modern Aspects of Electrochemistry [M], New York: Plenum, 1993, 25:1.
    [10]郭庆祥,王隽,刘有成.化学通报[J], 1993, 8: 3.
    [11] Minkin V.I., Simkin B.Y., Minyaev R.M., Quantum Chemistry of Organic Compounds [M], Springer_Verlag, Berlin, 1990, p.210.
    [12] Newton M.D., Sutin N., Annu. Rev. Phys. Chem. [J], 1984, 35:437.
    [13] Newton M.D., Chem. Rev. [J], 1991, 91:767.
    [14]Volkov A.G. (Ed.), Liquid Interfaces in Chemical, Biological, and Pharmaceutical Applications [M], Marcel Dekker, Boca Raton, FL, 2001.
    [15] Nernst W., Riensenfield E. H., Ann. Phys. [J], 1902, 8:600.
    [16] Verwey E.J., Niessen K.F., Phil. Mag. [J], 1939, 28:435.
    [17] Gavach C., Mlodnicka T., Guastalla J., C. R. Acad. Sci. [J], 1968, 266:1196.
    [18] Gavach C., Hency F., J. Electroanal. Chem. [J], 1974, 54:361.
    [19] Gavach C., D′epenoux B., J. Electroanal. Chem. [J], 1974, 55:59.
    [20] Gavach C., D′epenoux B., J. Electroanal. Chem. [J], 1975, 64:107.
    [21] Samec Z., J. Electroanal. Chem [J], 1979, 99:385.
    [22] Samec Z., J. Electroanal. Chem [J], 1979, 100:41.
    [23] Kakutani, Osakai T., Senda M., Bull Chem Soc Jpn [J], 1983, 56:991.
    [24] Gavach C., Mlodnicka T., Guastalla J., C. R. Acad. Sci. [J], 1968, 266:1196.
    [25] Gavach C., Hency F., J. Electroanal. Chem. [J], 1974, 54:361.
    [26] Gavach C., D′epenoux B., J. Electroanal. Chem. [J], 1976, 32:44.
    [27] Gavach C., D′epenoux B., J. Electroanal. Chem. [J], 1977, 76:54.
    [28] Wang E., Pang Z., J. Electranal. Chem. [J], 1985, 189:1.
    [29] Wang E., Pang Z., J. Electranal. Chem. [J], 1985, 189:21.
    [30] Pang Z., Wang E., Acta Chim. Sinica [J], 1985, 3:194.
    [31] Wang E., Liu Y., J. Electranal. Chem. [J], 1986, 459:214.
    [32] Wang E., Liu Y., J. Electroanal. Chem. [J], 1987, 85:234.
    [33] Wang E., Sun Z., J. Electroanal. Chem. [J], 1989, 143:266.
    [34] Sun Z., Wang E., Chin. J. Chem. [J], 1990, 1:21.
    [35] Wang E., Liu Y., Acta Chim. Sinca [J], 1989, 2:115.
    [36] Taylor G., Girault H.H., J. Elevtroanal. Chem. [J], 1986, 208:179.
    [37] Bard A.J., Fan F.F., Kwak J., Lev O., Anal. Chem. [J], 1989, 61:132.
    [38] Kwak J., Bard A.J., Anal. Chem. [J], 1989, 61:1221.
    [39] Kwak J., Bard A.J., Anal. Chem. [J], 1989, 61:1794.
    [40] Lee C., Miller C.J., Bard A.J., Anal. Chem. [J], 1991, 63:78.
    [41] Shi C., Anson F.C., J. Phys. Chem. [J], 1998, 70:3114 .
    [42] Shi C., Anson F.C., J. Phys. Chem. [J], 1998, 102:9850.
    [43] Shi C., Anson F.C., J. Phys. Chem. [J], 1999, 103:6283.
    [44] Shi C., Anson F. C., J. Phys. Chem. [J], 2001, 105:1047.
    [45] Shi C., Anson F.C., J. Phys. Chem. [J], 2001, 105:8963.
    [46] Shi C., Anson F.C., J. Phys. Chem. [J], 2001, 73:337.
    [47] Shao Y. H., Mirkin M. V., J .Am. Chem. Soc. [J], 1997, 119:8103.
    [48]陈勇,袁艺,张美芹,李菲,孙鹏,高曌,邵元华,中国科学, B辑[J], 2003, 33:416.
    [49]袁艺,高曌,张美芹,张志全,邵元华,中国科学, B辑[J], 2002, 32:271.
    [50]张美芹,孙鹏,陈勇,李菲,高曌,邵元华,科学通报[J],2003, 48:78.
    [51] Marcus R.A., J. Phys. Chem. [J], 1965, 43:679.
    [52] Reymond F., Fermin D., Lee H.J., Girault H.H., Electrochim. Acta [J], 2000, 45:2647.
    [53] Benjamin I., Annu. Rev. Phys. Chem. [J], 1997, 48:407.
    [54] Samer Z., Marecek V., Homolka D., J. Electroanal. Chem. [J], 1984, 187:31.
    [55] Girault H. H., Schiffrin D. J., J. Electroanl. Chem. [J], 1983, 195:213.
    [56] Girault H.H., Schiffrin D.J., J. Electroanal. Chem. [J], 1983, 150:43.
    [57] Giault H.H., Electrochim. Acta [J], 1987, 32:383.
    [58] Cheng Y., Cunnane V.J., Schiffrin D.J., Mutomaki L., Kontturi K., J. Chem. Soc. Faraday Trans. [J], 1991, 87:107.
    [59] Shi C., Anson F.C., J. Phys. Chem. [J], 1998, 70:3114.
    [60] Shi C., Anson F.C., J. Phys. Chem. [J], 1998, 102:9850.
    [61] Shi C., Anson F.C., J. Phys. Chem. [J], 1999, 103:6283.
    [62] Shi C., Anson F.C., J. Phys. Chem. [J], 2001,105:1047.
    [63] Shi C., Anson F.C., J. Phys. Chem. [J], 2001,105:8963.
    [64] Shi C., Anson F.C., J. Phys. Chem. [J], 2001, 73:337.
    [65] Shi C., Anson F.C., J. Phys. Chem. [J], 1998, 70:3114.
    [66] Shi C., Anson F. C., J. Phys. Chem. [J], 1998, 102:9850.
    [67] Shi C., Anson F.C., J. Phys. Chem. [J], 1999, 103:6283.
    [68] Shi C., Anson F.C., J. Phys. Chem. [J], 2001,105:1047.
    [69] Shi C., Anson F.C., J. Phys. Chem. [J], 2001,105:8963.
    [70] Shi C., Anson F.C., J. Phys. Chem. [J], 2001, 73:337.
    [71]刘秀辉,张立敏,胡丽娜,卢小泉,分析化学评述与进展[J], 2006, 34:135.
    [72] Lee C, Miller C.J., Bard A.J., Anal. Chem. [J], 1991, 63:78.
    [73] Toth K., Nagy G., Wei C., Bard A.J., Electroanal. [J], 1995, 7:801.
    [74] Ballesteros B., Schuhmann W., Electroanal. [J], 2002, 14:22.
    [75] Mirkin M.V., Horrocks B.R., Anal. Chim. Acta [J], 2000, 406:119.
    [76] Mirkin M.V., Richards T.C., Bard A.J., J. Phys. Chem. [J], 1993, 97:7672.
    [77] Solomon T., Bard A.J., J. Phys. Chem. [J], 1995, 99:17487.
    [78] Slevin C.J., Macperson J.V., Unwin P. R., J. Phys. Chem. B [J], 1997, 101:10851.
    [79]杨晓辉,赵瑜,谢青季,姚守拙,分析科学学报[J], 2004, 20:2.
    [80] Cai C., Liu B., Mirkin M.V., Frank H.A., Anal. Chem. [J], 2002, 74:114.
    [81] Tsionsky M., Zhou J., Amemiya S., Fan F.F., Bard A.J., Dryfe R.A.W., Anal. Chem. [J], 1999, 71:4300.
    [82] Sun P., Li F., Chen Y., Zhang M Q., Zhang Z.Q., Gao Z., Shao Y.H., J. Am. Chem.Soc. [J], 2003, 125:9600.
    [83] Nowall W.B., Wipf D.O., Kuhr W.G., Anal. Chem. [J], 1998, 70:2601.
    [84]张志全,佟月红,孙鹏,邵元华.高等学校化学学报[J], 2001, 22:206.
    [85] Koryta J., Electrochim. Acta [J], 1984, 29:445.
    [86] Delville M.H., Tsionsky M., Bard A.J., Langmuir [J], 1998, 14:2774.
    [87] Shao Y.H., Mirkin M.V., Rusling J.F., J. Phys. Chem. B [J], 1997, 101:3202.
    [88] Taylor G., Girault H.H., J. Electroanal. Chem. [J], 1986, 208:179.
    [89] Shao Y.H., Mirkin M.V., J. Electroanal. Chem. [J], 1997, 439:137.
    [90] Sun P., Zhang Z.Q., Gao Z., Shao Y.H., Angew. Chem. Int. Ed. [J], 2002, 41:3445.
    [91]邵元华,分析化学[J], 1999, 27:1348.
    [92] Shao Y.H., Mirkin M.V., J. Phys. Chem. B [J]. 1998, 102:9915.
    [93] Bard A.J., Mirkin M.V., Scanning Electrochemical Microscopy [M], Marcel Dekker: New York, 2001.
    [94] Amemiya S., Ding Z.F., Zhou J.F., Bard A.J., J. Electroanal. Chem. [J], 2000, 483:7.
    [95] Liu B., Mirkin M.V., Electroanal. [J], 2000, 12:1433.
    [96] Zhang Z.Q., Yuan Y., Sun P., Su B., Guo J.D., Shao Y.H., Girault H.H., J. Phys. Chem. B [J], 2002, 106:6713.
    [97] Zhang Z.Q., Ye J.Y., Sun P., Yuan Y., Tong Y H., Hu J.M., Shao Y.H., Anal. Chem. [J], 2002, 74:1530.
    [98] Smet L., Zuilhof H., Sudholter E., Wittstock G., Duerdin M.S., Lie A.H., Horrocks B. R., Electrochim. Acta [J], 2002, 47: 2653.
    [99] Wang J., Zhou F.M., J. Electroanal. Chem. [J], 2002, 537:95.
    [100] Csoka B., Kovacs B., Nagy G., Biosens. Bioelectron. [J], 2003, 18:141.
    [1] Lu X.Q., Nan M.N., Zhang H.R., Liu X.H., Yuan H.Q., Yang J.D., J. Phys. Chem. C [J], 2007, 111:14998.
    [2] Barker A. L., Unwin P. R., Amemiya S., Zhou J., Bard A.J., J. Phys. Chem. B [J], 1999, 103:7260.
    [3] Sun P., Li F., Chen Y., Zhang M., Zhang Z., Gao Z., Shao Y., J. Am. Chem. Soc. [J], 2003, 125:9600.
    [4] Marcus R. A., J. Phys. Chem. [J], 1956, 24:966.
    [5] Hush N. S., Trans. Faraday Soc. [J], 1961, 57:557.
    [6] Wei C., Bard A.J., Mirkin M.V., J. Phys. Chem. [J], 1995, 99:16033.
    [7] Tsionsky M., Bard A.J., Mirkin M.V., J. Phys. Chem. [J], 1996, 100:17881.
    [8] Tsionsky M., Bard A.J., Mirkin M.V., J. Am. Chem. Soc. [J], 1997, 119:10785.
    [9] Barker A.L., Unwin P.R., Zhou J., Amemiya S., Bard A.J., J. Phys. Chem. B [J],1999, 103:7260.
    [10] Zu Y., Fan F., Bard A.J., J. Phys .Chem .B [J], 1999, 103:6272.
    [11] Ding Z.F., Quinn B.M., Bard A.J., J. Phys. Chem. B [J], 2001, 105:6367.
    [12] Liu B., Mirkin M.V., J. Am. Chem. Soc. [J], 1999, 121:8352.
    [13] Zhang Z., Yuan Y., Sun P., Su B., Shao Y., Girault H.H., J. Phys. Chem. B [J], 2002, 106:6713.
    [14] Osakai T., Jensen H., Nagatani H., Frrmin D.J., Girault H.H., J. Electroanal. Chem. [J], 2001, 510:43.
    [15] Bentley R., Campbell I.M., The Chemistry of Quinonoid Compounds [M], Wiely, New York, 1974, p.715.
    [16] Porter M.D., Bright T.B., Allara D., Chidsey C.E.D., J. Am. Chem. Soc. [J], 1987 109:3559.
    [17] Love J.C., Estroff L.A., Kriebel J.K., etal. Chem. Rev. [J], 2005, 105:1103.
    [18] Ulmeanu S., Lee H.J.,Fermin D.J.,Girault H.H., ShaoY.H,Electrochem. Commun. [J], 2001, 3:219.
    [19] Eggins B.R., Chem.Commun. [J], 1969, 1267.
    [20] Eggins B.R., Chem.Commun. [J], 1969, 232.
    [21] Kakiuchi T., Electrochim. Acta [J], 1995, 40:2999.
    [22] Lu X.Q., Dong D.F., Liu X.H., Yao D.N., Wang W.T., Xu Y.M., Chin. Chem. Lett. [J], 2010, 21:225.
    [23] Shi C, Anson F. C., J. Phys. Chem. [J], 1998, 70:3114.
    [24] Shi C., Anson F. C., J. Phys. Chem. [J], 1998, 102:9850.
    [25] Shi C., Anson F. C., J. Phys. Chem. [J], 1999, 103:6283.
    [26] Shi C., Anson F. C., J. Phys. Chem. [J], 2001,105:1047.
    [27] Shi C., Anson F. C., J. Phys. Chem. [J], 2001,105:8963.
    [28] Shi C., Anson F. C., J. Phys. Chem. [J], 2001, 73:337.
    [29]胡丽娜,张立敏,卢小泉,高等学校化学学报[J], 2005, 26:1233.
    [1]刘秀辉,张立敏,胡丽娜,卢小泉,分析化学[J], 2006, 341:135.
    [2] Girault H H., Modern Aspects of Electrochemistry. [M], New York: Plenum Press, 1993, 25:1.
    [3] Volkov A.G., Deamer D.W., Liquid/liquid interface.[M], BocaRaton CRC Press, Inc,1996.
    [4]张志全,佟月红,孙鹏,邵元华,高等学校化学学报, 2001, 22:206.
    [5] Samec Z., Marecek V., Koryta J., Khalil M., J. Electranal. Chem. [J], 1977, 83: 393.
    [6] Cheng Y., Schiffrin D. J., J. Chem. Soc. [J], 1993, 89:199.
    [7] Tsionsky M., Bard A.J., Mirkin V., J. Am. Chem. Soc. [J], 1997, 119:10785.
    [8] Marcus R.A., J. Phys. Chem. [J], 1965, 43:679.
    [9] Marcus R.A., J. Phys. Chem. [J], 1990, 90:1050.
    [10] Marcus R.A., J. Phys. Chem. [J], 1990, 94:4152.
    [11] Marcus R.A., J. Phys. Chem. [J], 1991, 95:2010.
    [12] Sun P., Li F., Chen Y., Zhang M., Zhang Z., Gao Z., Shao Y., J. Am. Chem. Soc [J], 2003, 125:9600.
    [13] Koryta J., Vanysek P., Adavances in Electrochemistry and Electrochemical Engineering. [M], New York: John Wiley&Sons. Inc, 1981, 12:113.
    [14] Wei C., Bard A.J., Mirkin M.V., J. Phys. Chem. [J], 1995, 99:16033.
    [15] Tsionsky M., Bard A.J., Mirkin M.V, J. Phys. Chem. [J], 1996, 100:17881.
    [16] Barker A.L., Unwin P.R., Zhou J., Amemiya S., Bard A.J., J. Phys. Chem. B [J], 1999, 103:7260.
    [17] Zu Y., Fan F., Bard A.J., J. Phys. Chem. B [J], 1999, 103:6272.
    [18] Ding Z.F., Quinn B.M., Bard A.J., J. Phys. Chem. B [J], 2001, 105:6367.
    [19] Liu B., Mirkin M.V., J. Am. Chem. Soc. [J], 1999, 121:8352.
    [20] Zhang Z., Yuan Y., Sun P., Su B., Shao Y.H., Girault H.H., J. Phys. Chem. B [J], 2002, 106:6713.
    [21] Solomon T., Bard A.J., J. Phys .Chem. [J], 1995, 99:17487.
    [22] Vanysek P., Ruth W., Koryta J., J. Electronal. Chem. [J], 1983, 148:117.
    [23] Amemiya S., Bard A. J., Anal. Chem [J], 2000, 72:4940.
    [24] Shi C., Anson F.C., J. Phys. Chem. [J], 1998, 102:9850.
    [25] Shi C., Anson F.C., J. Phys. Chem. [J], 1999, 103:6283.
    [26] Shi C., Anson F.C., J. Phys. Chem. [J], 2001, 105:1047.
    [27] Shi C., Anson F.C., Anal. Chem. [J], 1998, 70:3114.
    [28] Xu J., Frcic A., Clyburne J.A.C., Gossage R.A., Yu H.Z., J. Phys. Chem. B [J], 2004, 108:5742.
    [29] Lu X.Q., Dong D.F., Liu X.H., Yao D.N., Wang W.T., Xu Y.M., Chin. Chem. Lett. [J], 2010, 21:225.
    [1] Farazdel A., Dupuis M., Clementi E., Aviram A., J. Am. Chem. Soc. [J], 1990, 112: 4206.
    [2] Bolton J.R., Matag N., McLendon G., J. Am. Chem. Soc. [J], Washington, D. C., 1991, Chapter 2.
    [3] Mikkelsen K.V., Ratner M.A., Chem. Rev. [J], 1987, 87:113.
    [4] Yarkony D.R., J. Am. Chem. Soc. [J], 1992, 114:5406.
    [5] Kamamurthy V., Turro N.J., Chem. Rev. [J], 1993, 98:1.
    [6] Leyh-Nihant B, Lorquet J.C., J. Chem. Phys. [J], 1988, 88:5606.
    [7] Desouler-Lecomte M., Leyh-Nihant B., Praet M.T., Lorquet J.C., J. Chem. Phys. [J], 1987, 86:7025.
    [8] Tully J.C., Int. J. Quantum. Chem. Quantum Chem. Symp. [J], 1991, 25:299.
    [9] Tully J.C., Dynamics of Molecular Collisions [M], Miller W. H. Ed., Plenum, New York, 1976, Part B: 217.
    [10]艾林著,石宝林译,《量子化学》[M], 1983, p365.
    [11]周晴中,何艳林,杜垚.大学化学[J], 1994, 9:25.
    [12] Barbara P.F., Meyer T.J., Ratner M.A., J. Phys. Chem. [J], 1996, 100:13148.
    [13] Marcus R.A., J. Chem. Phys. [J], 1964, 41:2624.
    [14] Dolin S.P., German E.D., Dogonadze R.R., J. Chem. Soc. [J], 1977, Faraday Trans. 2:7648.
    [15] Ohta K., Closs G.L., Morokuma K., Green N.J., J. Am. Chem. Soc. [J], 1986, 108:1319.
    [16] Brunschwig B.S., Logan J., Newton M.D., Sutin N., J. Am. Chem. Soc. [J], 1980, 102:579.
    [17] Marcus R.A., J .Chem. Phys. [J], 1956, 24: 979.
    [18] Marcus R. A., Can. J. Chem. [J], 1959, 37: 155.
    [19] Liang C., Newton M.D., J. Phys. Chem. [J], 1993, 97:3199.
    [20] Li X.-Y., Tian A.-M., He F.-C., Yan G.-S., Chem. Phys. Lett. [J], 1995, 233:227.
    [21] Rodriguez-Monge L., Larson S., J. Phys. Chem. [J], 1996, 100:6298.
    [22] Rodriguez-Monge L., Larson S., Int. J. Quantum Chem [J], 1997, 61:847.
    [23] Siddarth P., Marcus R.A., J. Phys. Chem. [J], 1990, 94: 985.
    [24] L(o|¨)wdin P.O., J. Mol. Spect. [J], 1963, 10:12.
    [25] Hush N.S., Prog. Inorg. Chem. [J], 1967, 8:391.
    [26] Lee C., Kwak J., Bard A.J., Proc. Natl. Acad. Sci. [J], 1990, 87:1740.
    [27] Tsionsky M., Cardon Z.G., Bard A.J., Jackson R.B., Plant Physiol. [J], 1997, 113:895.
    [28]张红芬,潘景浩,化学教育[J], 2005, 4:3.
    [29]张丽蓓,周锡庚,蔡瑞芳,张立新,宋永生,上海化工[J], 1999, 24:4.
    [30] Kadish K.M., Morrison M.M., J. Am. Chem. Soc. [J], 1976, 98:8387.
    [31] Ransdell R.A., J. Phys. Chem. [J], 1992, 92:10572.
    [32]刘雄,林湘,甘肃教育学院学报[J], 2000, 14:61.
    [33]吴飞鹏,周文慧,张云龙,功能高分子学报[J], 1999, 12:79
    [34]朱志昂,马刚,王传忠等,南开大学学报[J], 1997, 30:69.
    [35] Ding Z. F., Quinn B. M., Bard A. J., J. Phys. Chem. B [J], 2001, 105:6367.
    [36] Tsionsky M.,Bard A.J.,Mirkin M.V., J. Am. Chem. Soc. [J], 1997, 119:10785.
    [37] Shi C., Anson F.C., J. Phys. Chem. [J], 1998, 102:9850.
    [38] Shi C., Anson F.C., J. Phys. Chem. [J], 1999, 103:6283.
    [39] Liu X. H., Hu L. N., Zhang L. M., Liu. H. D., Lu X. Q., Electrochim. Acta [J], 2005, 51:467.
    [40] Lu X. Q., Hu L. N., Wang X. Q., Electroanal [J], 2005, 17:953.
    [41] Lu X.Q., Nan M.N., Zhang H.R., Liu X.H., Yuan H.Q., Yang J.D., J. Phys. Chem. C [J], 2007, 111:14998.
    [42] Lu X.Q., Zhang H.R., Hu L.N., Zhao C.Y., Zhang L.M., Liu X.H., Electrochem Commun. [J], 2006, 8:1027.
    [43] Stowasser R., Hoffmann R., J. Am. Chem. Soc. [J ], 1999, 121:3414.
    [44] Chang D.P., Gritsenko O.V., Baerends E.J., J. Chem. Phys. [J ], 2002, 116:1760.
    [45] Brown S.T., Rienstra-Kiracofe J.C., Schaefer H.F., J. Phys. Chem. A [J ], 1999, 103:4065.
    [46] Rienstra-Kiracofe J.C., Barden C.J., Brown S.T., Schaefer H.F., J. Phys. Chem. A [J], 2001, 105:524.
    [47] Hay P. J., J. Phys. Chem. A [J], 2002, 106:1634.
    [48] Gritsenko O.V., Baerends E.J., J. Chem. Phys. [J], 2004, 120:8364.
    [49] Howard I.A., March N.H., Ayers P.W., Chem. Phys. Lett. [J], 2004, 385:231.
    [50] Chang C.M., J. Mol. Struct. [J], 2003, 622:249.
    [51] Siri O., Braunstein P., Rohmer M.-M., Benard M., Welter R., J. Am. Chem. Soc. [J], 2003, 124: 13793.
    [52] Zhan C.G., Nicholas J.A., Dixon D.A., J. Phys. Chem. A [J], 2003, 107:4184.
    [53] Yamaguchi Y.J., J. Chem. Phys. [J], 2002, 117:9688.
    [54] Biesaga M., Pyrzyska K., Trojanowicz M., Talanta. [J], 2000, 51:209.
    [55] Eugster N., Ferm?′n D.J., Girault H.H., J. Am. Chem. Soc. [J], 2003, 125:4862.
    [56] Jensen H., Kakkassery J.J., Nagatani H., Ferm?′n David. J., Girault H.H., J. Am. Chem. Soc. [J], 2000, 122:10943.
    [57] Ferm?′n D. J., Ding Z. F., Duong H. D., Brevet P.–F., Girault H. H., J. Phys. Chem. B [J], 1998, 102:10334.
    [58] Ferm?′n D.J., Duong H.D., Ding Z.F., Brevet P.–F., Girault H.H., J. Am. Chem. Soc. [J], 1999, 121:10203.
    [59] Eugster N., Ferm?′n D.J., Girault H.H., J. Phys. Chem. B [J], 2002, 106:3428.
    [60] Jensen H., Ferm?′n D.J., Girault H.H., Phys.Chem.Chem.Phys.[J], 2001,3: 2503.
    [61] Nagatani H., Ferm?′n D.J., Girault H.H., J. Phys. Chem. B [J], 2001, 105:9463.
    [62] Yoshimoto S., Tada A., Suto K., Narita R., Itaya K., Langmuir.[J], 2003, 19:672.
    [63] Euihwan S., Chunnian S., Fred C. A., Langnuir. [J], 1998, 14:4315.
    [64] Boyle R.W., Dolphin D., Photochem. Photobiol. [J], 1996, 64:469.
    [65] Euihwan S., Chunnian S., Fred C.A., Langnuir. [J], 1998, 14:4315.
    [66] Bard A.J., Fan F.R.F., Mirkin M.V., J. Electroanal. Chem. [J], 1994, 18: 243.
    [67] Barker A.L., Unwin P.R., Bard A.J., J. Phys. Chem. B [J], 1999, 103:7260.
    [68] Barton M. T., Rowley N. M., Ashton P. R., J. Chem. Soc. [J], 2000, 3170.
    [69] Scheidt W.R., J. Biol. Inorg. Chem. [J], 2001, 6:727.
    [70] Tsionsky M., Bard A.J., Mirkin M.V., J. Phys. Chem. [J], 1996, 100:17881.
    [71] Vanysek P., Ruth W., Koryta J., J. Electroananl. Chem. [J], 1983, 148:117.
    [72] Liu B., Mirkin M.V., J. Am. Chem. Soc. [J ], 1999, 121:8352.
    [73] Tsionsky M., Bard A.J., Mirkin M.V., J. Am. Chem. Soc. [J ], 1997, 119:1078.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700